
Parallel Assertions for Architectures
with Weak Memory Models

Daniel Schwartz-Narbonne1, Georg Weissenbacher1,2, and Sharad Malik1

1 Princeton University
2 Vienna University of Technology, Austria

Assertions are a powerful and widely used debugging tool in sequential pro-
grams, but are ineffective at detecting concurrency bugs. We recently introduced
parallel assertions which solve this problem by providing programmers with a
simple and powerful tool to find bugs in parallel programs. However, while mod-
ern computer hardware implements weak memory models, the sequentially con-
sistent semantics of parallel assertions prevents these assertions from detecting
some feasible bugs. We present a formal semantics for parallel assertions that ac-
counts for the effects of weak memory models. This new formal semantics allows
us to prove the correctness of two key optimizations which significantly increase
the speed of a runtime assertion checker on a set of PARSEC benchmarks. We
discuss the probe effect caused by checking these assertions at runtime, and show
how our new semantics allows the detection of bugs that were undetectable in
the previous semantics.

1 Introduction

Assertions are a powerful and widely used debugging tool. They allow program-
mers to state their expectations about program executions, and provide a mecha-
nism to indicate when these expectations are violated. However, while assertions
have proven to be a valuable tool for debugging sequential programs, they have
fundamental limitations that restrict their utility in parallel programs.

If a programmer asserts a property φ in a sequential program, he can safely
assume that the code after the assertion executes in an environment in which φ
is true. In a parallel program, however, other threads can interfere and invalidate
the property φ. The programmer wants to state “while this code is executing, φ
must hold”, but only has a way to say “before this code executes, φ holds”.

Parallel Assertions [13] provide an elegant solution to this problem. Instead of
evaluating an assertion at a single point in time, a parallel assertion is associated
with a syntactic scope, delineated with the keywords thru and passert(φ). The
assertion φ must hold at all times between the begin and end of the scope.

Atomicity violations and order violations comprise the majority of concur-
rency bugs [11]. These bugs have the same ultimate cause: a read or a write
was issued by a thread at a time when it should not have been able to inter-
fere. In order to allow the specification of such non-interference properties, we
allow parallel assertions to refer to memory accesses by means of the opera-
tors LocalWrite LW(x), RemoteWrite RW(x), LocalRead LR(x), RemoteRead

RR(x), which indicate whether a given variable is read or written by a local or
remote thread. The history operator HasOccurred (HO) allows the programmer
to make assertions about a (limited) history of the execution. The assertion

thru {
. . . ; x = 1; . . .

} passert(! RR(x)||HO(LW(x))

Fig. 1. A simple assertion

if Fig. 1, for example, checks whether the
variable x is initialised by the local thread
before it is read by any remote thread.
These features make parallel assertions
highly expressive, allowing them to cap-
ture 14 out of 17 real world bugs from the University of Michigan bug bench [17].

We recently presented a runtime checker for parallel assertions [12]. This
work, however, is limited by the fact that the semantics of parallel assertions
in [13] is based on a sequentially consistent (SC) memory model. Modern pro-
cessor architectures do not satisfy this requirement, and enforcing SC on a weaker
memory model using fences slows down the execution and effectively masks bugs.

Contributions: We present a formal operational semantics for parallel as-
sertions that accounts for the effects of weak memory models (§2, §3). This
model enables two key optimisations (event filtering and relaxed timing) which
we present and prove correct in (§4). We discuss the impact of fences in our
model in (§5). We implemented a run-time checker for weak memory systems,
and show the significant (order 2×) speedups enabled by our optimisations (§6).

2 Observing Program Executions

The evaluation of an assertion is based on the observation of an execution of the
program under test. An execution is characterised by a series of events (discussed
in §2.1) and the order in which they are observed (§2.2).

2.1 Program Events

A parallel program comprises a set of threads, each of which generates a series of
observable events. Events are generated by instructions executed by the proces-
sor, and each instruction may result in a number of events. The execution of the
assignment x:=y+z, for instance, may give rise to two read and one write events.
We intentionally base the specification of our assertion language on program
events rather than on the instructions of the underlying programming language.
The rationale for this decision is that the C++ standard [7] does not provide
a semantics for programs with race conditions. In practice, though, a compiler
would still generate assembly code (albeit with a compiler-specific behaviour) for
such a program. It is exactly in such corner cases that parallel assertions enabling
the programmer to debug the flawed program are particularly valuable.

We use E to denote the set of all observable program events. Formally, an
event is a tuple comprising a unique identifier uid, the thread identifier tid of the
thread that generated the event, the type of the event, and any data associated
with that particular type of event. We distinguish the following types of events:

Memory events M are physical memory accesses, such as reads and writes. A
memory event is a tuple 〈uid, tid, type, `, v〉, where uid, tid ∈ N are unique iden-
tifiers, type ∈ {READ,WRITE} represents the direction of the access, ` is the
memory location accessed, and v ∈ V (where V is a set of values) is the value read
or written. We use Wtid ` v to denote the write access 〈uid, tid,WRITE, `, v〉 and
Rtid ` to denote a read access 〈uid, tid,READ, `, v〉 when uid (and v, respectively)
is not relevant in the given context.

Fence (barrier) events F affect the legal orderings in an execution by enforcing
ordering constraints on memory operations issued before and after the fence
instruction (c.f. §2.2). A fence event is a tuple comprising a unique identifier
uid, a thread identifier tid, an architecture dependent fence-type type, and an
optional (architecture-dependent) set of ordering constraints (c.f. §5).

Scope events S are generated upon entry or exit of a syntactic assertion scope.
A scope entry event is a tuple 〈uid, tid,ENTRY, φuid〉, where φuid is an assertion
(defined in §3.1). A scope exit event is a tuple 〈uid, tid,EXIT, uidENTRY〉, where
uidENTRY represents the unique entry event corresponding to the scope exit.

We use skip to denote events that are irrelevant for assertion evaluation.

2.2 Observation Order for Threads

An observation of a program execution is a sequence of program events. From the
viewpoint of a thread Pn, each event occurs at a particular point in time (which
determines its location in the sequence). In general, there is no global notion of
time, and therefore two threads may disagree on the order in which they observe
events. Note that we do not distinguish between “thread-local” and “global”
events — conceptually, a thread observes all events in some order, though in
practice it is typically infeasible (and unnecessary) to record all observations.

The following definition (borrowed from [6] and consistent with [1]) deter-
mines what constitutes an observation of a memory event — from the point of
view of a given thread — in terms of the local time of that thread.

Definition 1 (Observability). A read or write event is observed when the
respective memory access takes effect from the point of view of the observer:
– A write to a location in memory is said to be observed by an observer Pn

when a subsequent read of the location by Pn would return the value written
by the write.

– A read of a location in memory is said to be observed by an observer Pn
when a subsequent write to the location by Pn would have no effect on the
value returned by the read.3

Fence events have no side effect on the execution other than the constraints
they impose on the ordering of events (c.f. §3 and §5). Accordingly, when a fence
event is observed is architecture-dependent and determined by the respective
ordering constraints. Therefore, we do not provide a general definition.

3 This definition is not cyclic, since a read observation is defined in terms of the
potential effect of a write rather than in terms of the observation of a write.

Scope events are only visible to the thread which generates them (see §3).
Since they are side-effect free, we assume they are observed by Pn at the point
in time when they are generated.

Observations induce a per-thread total order of events, reflecting the order
in which they became visible to a particular thread Pn. We represent this order

using an irreflexive transitive relation
obsn−−−→ : E × E. For every pair of events

e1, e2 and thread Pn, there is a thread-local observation edge e1
obsn−−−→e2 iff e1

is before e2 in this total order, i.e., the thread observes e1 before e2. We use

e1
obsn−−−→× e2 to abbreviate ¬(e1

obsn−−−→e2) (which implies e2
obsn−−−→e1 for e1 6= e2).

Note that since
obsn−−−→ is irreflexive (i.e., ei

obsn−−−→× ei) and transitive, cycles are
not allowed. Accordingly, executions characterised by a cyclic ordering relation

are infeasible. While the definition of
obsn−−−→ does not impose any further re-

striction on executions, the program structure imposes certain restrictions as
to the order in which events are generated; the thread executing x:=y+z, for
example, has to perform reads from y and z before it can issue a write to x.

We refer to these (thread-local) constraints as the program order
pon−−→ : E × E.

W1 x 1po
1

po
1

R1 x R1 x
po

1 po1W1 y 2

The program order of a thread Pn enforces that certain

events are observed in a specific order, i.e., e1
pon−−→e2 ⇒

e1
obsn−−−→e2. The relation

pon−−→ corresponds to
po−→ in [2] and

to the sequenced-before relation of [4] and is determined by
the semantics of the language. The diagram to the right,
for instance, shows the program order derived from the
code fragment x=1; y=x+x in the C++ language [7].

In addition to the restrictions imposed by the semantics of the program-
ming language, we require that events are not reordered across assertion scope
boundaries. For events ebef and eaft generated by instructions before and after
the beginning of a scope, respectively, and the corresponding scope entry event

eentry, we impose ebef
pon−−→eentry

pon−−→eaft (and similarly for the end of the scope).

We emphasise that the relation
obsn−−−→ does not impose ordering constraints on

other threads, i.e.,
obsn−−−→ is not global in the sense that

(
∃n . ei

obsn−−−→ej
)

does

not imply
(
∀n . ei

obsn−−−→ej
)

.

The underlying memory model, however, may impose ordering constraints
across threads. A common assumption is that the memory model guarantees
memory coherence in that for each location, there is a global total order over
the writes to that location (c.f. [2]):(
∃n . 〈uid1, tid1,WRITE, `, v1〉

obsn−−−→〈uid2, tid2,WRITE, `, v2〉
)

⇒
(
∀n . 〈uid1, tid1,WRITE, `, v1〉

obsn−−−→〈uid2, tid2,WRITE, `, v2〉
)

(1)

Example 1 (Memory Coherence). Fig. 2(a) depicts an execution invalidated by
the coherence constraint (1). Threads P1 and P3 observe the write events W2 x 1

and W2 x 2 in opposite order. By transitivity, W2 x 2
obs3−−−→W2 x 1 follows from

P1 P2 P3

W2x1

W2x2

o
b
s 1

,3

R1x

R1x

obs1

obs1

obs1

obs3

R3x

R3xobs3

obs3

(a) Write serialisation

P1 P2 P3

R2x

R2y

o
b
s
1o

b
s 3

W1x

W1y

obs1,2

obs2
×

obs1,2

obs2
×

obs1

W3x

W3y
obs2,3

obs2
×

obs2,3

obs3
×

o
b
s 3

(b) Read order

Fig. 2. P1 and P3 observing (a) two instances of W2x or (b) R2x and R2y

W2 x 2
obs3−−−→R3 x

obs3−−−→W2 x 1. Similarly, W2 x 1
obs1−−−→R1 x

obs1−−−→W2 x 2 implies that

W2 x 1
obs1−−−→W2 x 2, andW2 x 2

obs1−−−→W2 x 1 follows from (1) andW2 x 2
obs3−−−→W2 x 1.

This contradicts W2 x 1
obs1−−−→W2 x 2. C

The coherence constraint (1) also implies that the observation orders for
reads of the same location are consistent for all threads. There is, however, no
such constraint for write (or read) accesses to different locations. Fig. 2(b), for
instance, depicts a valid execution in which the threads P1 and P3 observe two
subsequent reads from x and y in opposite order. We point out that this does
not contradict the definition in [2, §2.4] that “a read is globally performed as
soon as it is performed.” This apparent discrepancy stems from the fact that [2]
defines when read events are performed (“the point when the value of the read
is determined” [2, §2.3]) whereas we define when they are observed : it is possible
to conceive a cache hierarchy in which thread Pn has already observed a read
while thread Pm may still influence its outcome, i.e., according to Definition 1,
a read can be observed before it is actually performed.

3 Operational Semantics of Parallel Assertions

Parallel assertions are evaluated over a given thread’s observation of the program
state and execution history. We provide the syntax and semantics of assertions
in §3.1, and subsequently cover executions in §3.2.

3.1 Structural Operational Semantics for Assertions

Each scope event e ∈ S has a unique identifier uid and an assertion expression
φuid ∈ AExpr, where AExpr is the set of all side-effect-free C++ expressions
(defined in [7, §A.4]) augmented with a number of operators (described be-
low). Table 1 shows the (simplified) syntax of assertions in AExpr. We hide
the complexity of C++ expressions by omitting details about unary and binary
operations (unary-op and infix-op), operator precedence, and type correctness.

assertion ::= HO (assertion) |
LR (lvalue) | LW (lvalue) | RR (lvalue) | RW (lvalue) |
assertion infix-op asssertion | unary-op assertion | rvalue | lvalue
Table 1. Simplified syntax of assertion expressions

In accordance with the C++ standard [7, §3.10], the non-terminal lvalue
represents an expression that “designates [. . .] an object,” and an rvalue is “a
value that is not associated with an object.” As in §2.1, we use v ∈ V to refer
to rvalues and ` ∈ L to refer to lvalues. The access operators LR, LW, RR, and
RW in Table 1 take a single lvalue as a parameter and check for the occurrence
of a memory access to the respective object (c.f. §1). The operator HO takes an
assertion as a parameter and returns a Boolean indicating whether this assertion
evaluated to true at some point in the respective scope. The use of these operators
is demonstrated in Fig. 1 and [13].

We use lvalues(expr) ⊆ L to denote the set of memory locations (lvalues, re-
spectively) referenced by expr ∈ AExpr outside an access operator. The operator
lvalues is defined inductively as follows:

– If lvalues(expr) = L, then lvalues(HO(expr)) = lvalues(unary-op expr) = L.
– Similarly, lvalues(expr1 infix-op expr2) = lvalues(expr1) ∪ lvalues(expr2).
– If expr ∈ {LR(`),LW(`),RR(`),RW(`)} , ` ∈ L, then lvalues(expr) = ∅.
– Finally, lvalues(`) = {`} for ` ∈ L and lvalues(v) = ∅ for v ∈ V.

Similarly, accessops(expr) ⊆ AExpr is the set of all sub-expressions of expr ∈
AExpr of the form LR(`), LW(`), RR(`), or RW(`) (where ` ∈ L). Intuitively,
lvalues(expr) represents all memory locations whose value is relevant to the eval-
uation of expr, and accessops(expr) represents all access events in an expression.

An assertion set α is a set of tagged assertion expressions uid : expr (where
expr ∈ AExpr). Each set α can be partitioned into sets α|uid, which denotes the
restriction of α to elements tagged with uid. The set α|uid itself is inductively
defined for each uid as the smallest set satisfying the following rules:

– The assertion uid :φuid as well as its negation uid : (¬φuid) are in α|uid.
– If uid : (¬expr) ∈ α|uid, then uid :expr ∈ α|uid.
– If uid : (expr1 bop expr2) ∈ α|uid, then uid :expr1 and uid :expr2 are in α|uid.
– If uid : (HO(expr)) ∈ α|uid, then uid :expr ∈ α|uid

Here, expr, expr1, expr2 ∈ AExpr and bop represents the Boolean connectives
supported by the programming language (e.g., ∧ or ∨). Intuitively, α|uid contains
the assertion φuid and its negation ¬φuid, as well as all sub-expressions of φuid.
A denotes the set of all conceivable assertion sets.

Example 2. The assertion set α for ! RR(x)||HO(LW(x)) (from Fig. 1) com-
prises the original assertion as well as the elements uid : !(! RR(x)||HO(LW(x))),
uid : ! RR(x), uid :RR(x), uid :HO(LW(x)), and uid :LW(x). C

A state σ is a finite mapping from locations L to values V. S denotes the
set of all conceivable states, and σ[` 7→ v] denotes the state that maps ` ∈ L to
v ∈ V and all other locations `′ 6= ` to σ[`′]. For a given set of locations L ⊆ L

the projection σ|L of σ to L is the state that maps locations ` ∈ L to σ[`] and
is undefined for all other locations.

A history χ is a tuple 〈δ, θ〉4 of sets of assertion expressions which represents
past evaluations of assertions by recording assertion expressions that evaluate
to true at some point during the execution. χ.δ (of type AExpr) represents the
immediate past reflecting only the most recent event. χ.θ is an assertion set
representing the distant past, cumulating all tagged assertions that evaluated to
true at some point in the past of the current execution trace. H denotes the set
of all conceivable histories.

A configuration κ is a tuple 〈σ, χ, α〉 comprising a state σ ∈ S, a history
χ ∈ H, and an assertion set α ∈ A. C denotes the set of all configurations.

Evaluating Assertions. Assertions are evaluated over a given configuration. We
introduce a reduction relation→a⊆ C×(N×AExpr)×(N×AExpr) for assertions.
We use (→a)∗ to denote the reflexive transitive closure of →a.

1. Assertion expressions (or sub-expressions) that do not contain the operators
LR, LW, RR, RW, and HO are evaluated over σ according to the semantics
of the C++ language. Therefore, 〈σ, χ, α〉 ` uid : expr →a uid : v if expr
evaluates to v ∈ V in state σ.

2. Expressions involving the access operators LR, LW, RR, or RW are evaluated
according to the immediate history χ.δ:

expr ∈ χ.δ
〈σ, χ, α〉 ` uid :expr→a uid :T

expr ∈
{

LR(`), LW(`),
RR(`), RW(`)

}
(2)

and similarly 〈σ, χ, α〉 ` uid :expr→a uid :F if expr 6∈ χ.δ.
3. The operator HO maps its parameter expr to true if expr evaluates to true

in the current configuration, or if expr was true at some point in the past.

〈σ, χ, α〉 ` uid :expr (→a)∗ uid :T

〈σ, χ, α〉 ` uid :HO(expr)→a uid :T
(3)

〈σ, χ, α〉 ` uid :expr (→a)∗ uid :F

〈σ, χ, α〉 ` uid :HO(expr)→a uid :b
b

def
=

{
T if ((uid :expr) ∈ χ.θ)
F otherwise

(4)

Note that the parameters of HO must not be reduced by →a or evaluated
over σ unless this step yields T. This is necessary to avoid mixing values of
σ and values of past states during the evaluation.

Example 3. The configuration κ
def
= 〈σ, 〈{LR(x)}, {uid : LW(x)}〉, α〉 (with α as

in Example 2) reflects a recent read access as well as a previous write access to
x by the asserting thread. Thus, →a yields T for HO(LW(x)) (by rule 4, since
κ ` uid : LW(x) →a uid : F and uid : LW(x) ∈ χ.θ) and !F for ! RR(x) (since
RR(x) 6∈ χ.δ). The assertion ! RR(x)||HO(LW(x)) does not fail at this point. C

4 Our notation is inspired by the Dirac delta function δ and the Heaviside function θ.

〈(Wtid ` v) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ[` 7→ v], 〈{LW(`)}, χ′.θ〉, α〉〉
tid = n (6)

〈(Rtid `) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈{LR(`)}, χ′.θ〉, α〉〉
tid = n (7)

〈(Wtid ` v) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ[` 7→ v], 〈{RW(`)}, χ′.θ〉, α〉〉
tid 6= n (8)

〈(Rtid `) :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈{RR(`)}, χ′.θ〉, α〉〉
tid 6= n (9)

Fig. 3. Reduction rules for read and write accesses

3.2 Operational Semantics for Events

Given a set of events E, its Kleene closure E∗ is the set of all sequences of events
in E, including the empty sequence ε. We use the ML-like notation :: for sequence
concatenation. An execution of a thread with tid = n is a sequence ex ∈ E∗ of

events such that for every sub-sequence ei :: ei+1 of ex we have ei
obsn−−−→ei+1 .

The semantics of an execution is determined by the (reflexive) reduction relation
→⊆ (E∗×C)×(E∗×C) which characterises the impact of events on configurations.
In the following, we define this reduction relation → based on →a.

A common side effect of all events is the modification of the history. Let
〈σ, χ, α〉 be the current configuration and let χ and χ′ denote the history before
and after an event, respectively. For all events, χ′.θ is χ.θ augmented with all
assertion expressions in α that evaluate to true in the previous configuration:

χ′.θ
def
= χ.θ ∪ {(uid :expr) ∈ α | 〈σ, χ, α〉 ` (uid :expr) (→a)∗ uid :T} (5)

The reduction rules presented in the following refer to χ′.θ as defined in (5).
From now on, we use n to denote the identifier of the current (asserting) thread.

1. Fig. 3 shows the reduction rules for memory events. We distinguish between
events generated by thread n and events generated by other threads in order
to determine their effect on the immediate past χ.δ.

2. Fig. 4 shows the reduction rules for scope events. Upon entry of a scope, the
respective assertion is added to the assertion set. Note that Rule (11) does
not allow us to exit a scope if the corresponding assertion (identified by eid)
failed. Finally, a thread only observes the scope events generated by itself.

3. Skip and fence events modify the history in accordance with (5). In addition,
the memory model (see §5) may impose ordering constraints on fence events.

〈ei :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈∅, χ′.θ〉, α〉〉
ei ∈ (F ∪ {skip}) (12)

〈〈uid, tid,ENTRY, φuid〉 :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈∅, χ′.θ〉, α ∪ α|uid〉〉
tid = n

(10)

(eid :¬φeid) 6∈ χ.θ ∧ 〈σ, χ, α〉 ` eid :φeid (→a)∗ eid :T

〈〈uid, tid,EXIT, eid〉 :: ex, 〈σ, χ, α〉〉 → 〈ex, 〈σ, 〈∅, χ′.θ〉, α \ α|eid〉〉
tid = n (11)

Fig. 4. Reduction rules for scope events

Assertion Failures. In case of a failure of an active assertion φuid, the configu-
ration can be reduced to a (canonical) error configuration error. We allow this
rule to be applied non-deterministically at any point after an assertion failure
(but at latest upon exit of the corresponding scope, see Rule (11)). This leaves
some freedom for the implementation as to when a failed assertion is reported.

(uid :¬φuid) ∈ χ.θ ∨ (uid :φuid) ∈ α ∧ κ ` (uid :φuid) (→a)∗ (uid :F)

〈ex, κ〉 → error
(13)

Example 4. Consider an execution Wn x 1 :: Rtid x (where tid 6= n) starting in

the configuration κ
def
= 〈σ, 〈{LR(x)}, {uid : LW(x)}〉, α〉 introduced in Exam-

ple 3. By rule 6, we derive 〈Rtid x, 〈σ[x 7→ 1], 〈{LW(x)}, {uid :LW(x)}, α〉〉 from
〈Wn x 1 :: Rtid x, κ〉. Note that uid : LR(x) is not added to χ′.θ by rule 5, since
it is not an element of the assertion set α. C

4 Optimisations

In this section, we formally prove that only a fraction of the events in an ex-
ecution is necessary to evaluate an assertion. Since logging information can be
expensive, there is a significant optimisation opportunity in filtering the execu-
tions before they are evaluated. In particular, this means that throughout a scope
we can dismiss the events that are irrelevant to the corresponding assertion, as
long as assertion failures are preserved:

Definition 2. Let ex1, ex2 ∈ E∗ be two executions delimited by a scope with
assertion φuid that contains no other scope events. Then, ex1 and ex2 are parallel
assertion equivalent with respect to φuid iff in all configurations 〈σ, χ, α|uid〉 it
holds that (〈ex1, 〈σ, χ, α|uid〉〉 (→)∗ error)⇔ (〈ex2, 〈σ, χ, α|uid〉〉 (→)∗ error).

Nested Assertion Scopes. For the purpose of checking whether a specific assertion
φuid is violated by an execution, we can treat other scope events similar to skip.
Scope events occurring in threads other than the current one have no impact
on the evaluation of φuid (c.f. Rules 10, 11). A nested scope event only affects
the execution if its respective assertion fails. Therefore, it is legal to process
assertion scopes independently as long as we report the first assertion that fails

(upon exit of the corresponding scope). This allows us to define parallel assertion
equivalence (Definition 2) with respect to a single parallel assertion.

In the following, we formally define the projection of configurations and exe-
cutions to a given assertion and prove that projection preserves assertion failures.

Definition 3. We define the projection of a configuration 〈σ, χ, α〉 to a given

assertion φuid as 〈σ, χ, α〉|φuid

def
= 〈σ|lvalues(φuid), 〈χ.δ ∩ accessops(φuid), χ.θ〉, α〉.

Theorem 1. Projecting a configuration 〈σ, χ, α〉 to an assertion φuid has no
impact on the evaluation of φuid:

∀κ ∈ C .∀expr1 ∈ α|uid, expr2 ∈ AExpr .

(κ ` expr1 (→a)∗ expr2)⇔ (κ|φuid
` expr1 (→a)∗ expr2)

Proof: By induction on the structure and height of derivations generated
by the reduction rules in §3.1.

Definition 4. The projection of an execution ex ∈ E∗ to an assertion φuid is

defined inductively by ε|φuid

def
= ε and (e :: ex)|φuid

def
= e|φuid

:: (ex|φuid
), where

e|φuid

def
=

e if (e = Wtid ` v)∧ (` ∈ lvalues(φuid)) ∨
(tid = n ∧ LW(`) ∈ accessops(φuid)) ∨
(tid 6= n ∧ RW(`) ∈ accessops(φuid))

or (e = Rtid `v)∧(

(tid = n ∧ LR(`) ∈ accessops(φuid)) ∨
(tid 6= n ∧ RR(`) ∈ accessops(φuid))

)
skip otherwise

Theorem 2. Let ex ∈ E∗ be an execution that is delimited by a scope associated
with φuid and does not contain any other assertion scopes. Then ex and ex|φuid

are parallel assertion equivalent with respect to the assertion φuid.

The proof of Theorem 2, led by induction over the length of ex, shows that
events can be treated as skip as long they have no impact on the evaluation of
φuid (in accordance with Theorem 1).

Theorems 1 and 2 enable the following optimisation. For each scope instance,
no events need to be logged before its respective entry event. Upon reaching
a scope entry event with assertion φuid, our implementation records only the
relevant fraction σ|φuid

of the state. After that, it is sufficient to log all events
e|φuid

(in observation order) until the corresponding scope exit event is reached.

Relaxed Order Observations. Under certain conditions it is sufficient to approxi-

mate the observation order
obsn−−−→ by a partial order. In particular, we show that

for a certain class of assertions all that matters is the order of events with respect
to the scope events S.

Theorem 3. Let ex be an execution that is delimited by a scope associated with
φuid and does not contain any other assertion scopes, and let π(ex) be an arbi-
trary permutation of ex. If one of the following conditions holds for φuid, then
ex and π(ex) are parallel assertion equivalent with respect to φuid:

i φuid does not contain the operator HO and lvalues(φuid) = ∅.
ii φuid does not contain the operator HO, lvalues(φuid) = {`} (for some ` ∈ L),

and accessops(φuid) = ∅.

Proof: We prove that the order of the sequence is irrelevant by showing
that the following logical equivalence holds:

(〈ex, 〈σ, χ, α|uid〉〉 (→)∗ error) ⇔
∃e ∈ ex .∀〈σ′, χ′, α|uid〉 . 〈e :: ε, 〈σ′, χ′, α|uid〉〉 (→)∗ error

Note that the implication holds trivially in one direction (⇐). For the other
direction, we need to show that φuid does not depend on the configuration
before the execution of e ∈ ex. Let 〈σ′′, χ′′, α|uid〉 be the configuration af-
ter the execution of e. By Theorem 1 we have 〈σ′′, χ′′, α|uid〉 (→a)∗ error if
〈σ′′, χ′′, α|uid〉|φuid

(→a)∗ error. In case (i), the domain of σ|φuid
is empty and

φuid refers only to χ′′.δ. In case (ii), σ|φuid
is only defined for `, and χ′′.δ ∩

accessops(φuid) = ∅. Accordingly, φuid depends on only a single item in the
configuration, which can only be updated atomically by the events in ex.

The conditions for φuid in Theorem 3 are not tight. Other criteria (based on
partial order reduction, for instance) may allow for more aggressive optimisa-
tions. Note that in the most extreme case — if we can establish statically that
the assertion holds — it is not necessary to log any events at all. In general, an
approach based in this insight is obviously impractical. However, since observing
events and orderings between events is expensive, an improved relaxation func-
tion which limits the number of required observations can significantly reduce
the work required by the checker.

5 Memory Models and Fences

On a platform that guarantees sequential consistency (SC) the operations of
each individual thread are globally observed in a sequential order consistent with
the program order. For performance reasons, modern processors do not provide
such a guarantee. They do, however, provide fence instructions, which enable
the programmer (or compiler) to enforce a global ordering between events.

Different platforms provide different types of fences, and their semantics de-
pends on the specific architecture (c.f. [2, 6]). In general, we distinguish between
non-cumulative and cumulative fences. Intuitively, non-cumulative fences pre-
vent thread-local reordering of events across the fence event. Cumulative barriers
also affect the order of events of other threads (e.g., by flushing store buffers or
caches). One non-cumulative fence operations is mfence on Intel processors: it

“guarantees that every load and store instruction that precedes in program or-
der the mfence instruction is globally visible before any load or store instruction
that follows the mfence instruction is globally visible.” [1, pg. 4-23]5

Formally, two memory events e1, e2 ∈M occurring before and after an mfence

event in program order, respectively, will be observed in this order by all threads:

∃n .
(
e1

pon−−→mfence
pon−−→e2

)
⇒ ∀n . e1

obsn−−−→e2 (14)

The hwsync instruction of the Power architecture provides a similar guar-
antee, but is also cumulative in the sense that it separates the memory events
observed by the thread before and after executing hwsync.

Example 5. The assertion in the program in Fig. 5 holds on any platform that
guarantees sequential consistency, but may fail on a platform that permits re-
ordering of write events (as shown in the diagram in Fig. 5). A fence between
the events W1 x 1 and W1 y 1 (indicated by a dashed arrow) rules out the failing
execution and restores sequential consistency for this program. C

The side effect described in Example 5 is not always desirable. If the fence
instruction is part of the instrumentation code required to log the write events,
then this modification effectively eliminates an erroneous execution. Logging
mechanisms requiring stronger guarantees (as provided by the atomic compare-
and-swap instruction lock cmpxchg on Intel architectures, for instance, which
is frequently used to implement locks) exacerbate the probe effect.

A complete formalisation of fences exceeds the scope of our paper; we refer
the reader to [2] instead. The following section presents our implementation,
which makes use of fences, and discusses their side effects.

6 Implementation

We implemented a runtime checker for parallel assertions called passert [12]
as an extension of the LLVM compiler [9]. During compilation, passert instru-
ments read and write accesses in a program annotated with assertions with calls
to logging functions. The log is then analysed for assertion violations by a checker
(either during or after the execution).

The instrumentation results in a number of side effects. Firstly, logging events
takes time, and hence changes the timing behaviour of the program under test.
More subtly, the instrumentation adds locks and fences which may rule out exe-
cutions that are otherwise legal the underlying memory model. In the following,
we discuss two key optimisations that dramatically reduced these effects based
on the results from §4.
Filtering Optimisation. To counteract the probe effect, we implemented an event
filter that conservatively approximates the set of events required by Theorem 2.

Firstly, we use an alias analysis to narrow down which memory locations may
affect the evaluation of an assertion, which significantly reduces the number of

5 The concept of global visibility coincides with our notion of observability.

P1 P2

thru {
x = 1;

y = 1;

} passert(!RW(x) &&

!RW(y) &&

!RW(z));

if (y && !x)

z = 1;

P1 P2

W1x1

W1y1

R2x0

R2y1

W2z1

obs2

obs2 p
o
2

p
o
2

Fig. 5. Restoring sequential consistency using fences (x and y are initially 0)

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

$" %" $" %" $" %" $" %" $" %"

()*+,"-./01/+2"

3)44564"71+8/"-./01/+2"

9,+:;8:1),/8""""""""""""</2=>"""""""""""""?,=52+65@+*/""""""A*0/+@:,=8*/0"""""""""AB+>C)68"

$D"A*05:*"(5@564"

%D"E/,+F/2"(5@564"

Fig. 6. Runtime overhead for PARSEC benchmarks

instructions that need to be instrumented and therefore eliminates the associated
side effect. Secondly, we use dynamic filtering to determine at runtime which
locations are not referenced by any live assertions, and hence need not be logged.
This further reduces – but does not entirely eliminate – the probe effect.

Filtering effectively enables runtime checking. Before this optimisation, most
instrumented programs simply ran out of memory, while all our benchmarks
completed successfully after filtering.
Time-stamping Mechanisms. Assertion evaluation requires recording the timing
of remote events relative to the asserting thread. For events generated by different
threads this requires a certain amount of synchronisation. Our implementation
uses a global time-stamp for this purpose.

A time-stamping mechanism must correctly associate events with timestamps
reflecting the observation order. In a weak memory model, this may need to be
enforced through the use of locks and memory fences. Consequently, stronger
ordering requirements exacerbate the probe effect, which in turn may rule out
otherwise legal executions. In Fig. 5, for example, a time-stamping mechanism
inserting a fence between W1 x 1 and W1 y 1 effectively prevents reordering of
these events, thus hiding the bug (as explained in Example 5).

By Theorem 3, the order of events within a scope can be safely ignored in
certain cases (such as the program in Example 5). Our experience suggests that

this relaxation is admissible for many assertions: previous work [12] showed that
of the 14 out of 17 real world bugs presented in [17] can be captured using
parallel assertions; all of those assertions are amenable to relaxed timing. This
observation led us to implement two different time-stamping mechanisms:
– Strict time-stamping uses locks to guarantee that a shared counter is incre-

mented atomically with the execution of an event, hence providing a total
order over all time-stamped events.

– Smeared time-stamps yield a partial order sufficiently accurate to evaluate
the assertions characterised in Theorem 3. Scope events atomically increment
a global counter. All other events e are logged using a preceding and a

successive read to the global counter ts. Rtid ts
potid−−−→e potid−−−→Rtid ts is enforced

using (non-cumulative) fences if necessary, thus avoiding the use of locks.
Smeared time-stamping is sufficient to determine whether an event happened

within a certain scope. A potentially ambiguity may arise in the rare case that
different time-stamps are recorded before and after the event. If this difference
affects the correctness of an assertion, we report a potential error (though we
have not observed this in practice).

In order to measure the run-time overhead, we evaluated the runtime over-
head of passert by annotating a set of PARSEC benchmarks with parallel as-
sertions. We did not discover any new bugs in this widely used benchmark suite.
Strict timing had an overhead of 6.6×, which can be reduced to 3.5× through
the use of smeared timestamps (Fig. 6).

7 Related Work

A number different assertion formalisms for parallel programs have been pro-
posed and implemented. JMPaX [14], for instance, checks linear temporal logic
properties for Java programs. Phalanx [15] allows the checking of expressive
heap assertions in Java programs. SharC [3] enables the static and dynamic
verification of rules for sharing individual objects in C. These formalisms ad-
dress different properties than parallel assertions — a more detailed discussion
is given in [13], where we initially introduced parallel assertions.

There is a wide variety of work on debugging programs in the presence of
weak memory models. One approach is to minimize the probe effect through
hardware based logging. [16] allows the observation of events with minimal (2%)
perturbation to the program execution on both TSO(x86) and SC systems. Pre-
dictive analyses (e.g. [5]), on the other hand, enable the prediction of possible
assertion violations in a weak memory model based on an SC execution. Trace
based analysis can also be used to automatically fix bugs. Liu et al. [10], for
example, provide a formal semantics for LLVM bytecode under weak memory
models, and show how to add fences to prevent erroneous traces. A model checker
can exhaustively explore all possible interleavings under a given memory model
for all possible inputs (e.g. [8]), and hence capture all bugs albeit at a high
computational cost. All of these techniques are orthogonal to our work. Parallel
assertions could be implemented as an extension to any of these systems.

8 Conclusion

We provide a formal definition of parallel assertions, a novel assertion language
for detecting intricate concurrency bugs, and an operational semantics enabling
their evaluation on architectures with weak memory models. Unlike the original
semantics [13], which assumes sequential consistency, our new semantics is less
restrictive and enables the detection of a highly relevant class of bugs introduced
by the complexity of modern multi-processor architectures. Secondly, our novel
semantics enables two key optimisations which, as demonstrated in §6, are crucial
to making run-time checking of parallel assertions feasible.

Acknowledgements. The authors thank Lennart Beringer and the anonymous
reviewers for their helpful suggestions and comments.

References

1. Intel 64 and IA-32 architectures software developer’s manual, March 2012.
2. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak memory models

(extended version). Formal Methods in System Design, 40(2), 2012.
3. Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: checking data sharing

strategies for multithreaded C. In PLDI. ACM, 2008.
4. H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model.

In PLDI. ACM, 2008.
5. J. Burnim, K. Sen, and C. Stergiou. Testing concurrent programs on relaxed

memory models. In ISSTA. ACM, 2011.
6. N. Chong and S. Ishtiaq. Reasoning about the ARM weakly consistent memory

model. In MSPC. ACM, 2008.
7. International Standard 14882 (Programming Languages) C++, Final Committee

Draft N3092, March 2010. ISO/IEC.
8. B. Jonsson. State-space exploration for concurrent algorithms under weak memory

orderings: (preliminary version). SIGARCH Comput. Archit. News, 36(5), 2009.
9. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. In Code Generation and Optimization. IEEE, 2004.
10. F. Liu, N. Nedev, N. Prisadnikov, M. Vechev, and E. Yahav. Dynamic synthesis

for relaxed memory models. In PLDI. ACM, 2012.
11. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive

study on real world concurrency bug characteristics. In ASPLOS. ACM, 2008.
12. D. Schwartz-Narbonne, F. Liu, D. August, and S. Malik. PASSERT: A tool for

debugging parallel programs. In CAV, LNCS. Springer, 2012.
13. D. Schwartz-Narbonne, F. Liu, T. Pondicherry, D. I. August, and S. Malik. Parallel

assertions for debugging parallel programs. In MEMOCODE. IEEE, 2011.
14. K. Sen, G. Rosu, and G. Agha. Runtime safety analysis of multithreaded programs.

In ESEC/FSE. ACM, 2003.
15. M. Vechev, E. Yahav, and G. Yorsh. Phalanx: parallel checking of expressive heap

assertions. In ISMM. ACM, 2010.
16. M. Xu, R. Bodik, and M. D. Hill. A hardware memory race recorder for determin-

istic replay. IEEE Micro, 27(1), 2007.
17. J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory

multi-processor. In ISCA. ACM, 2009.

