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Abstract—The localisation of faults in integrated circuits is a
dominating factor in the overall verification effort. The limited
observability of internal signals of chips complicates the spatial
and temporal localisation of bugs in post-silicon validation. We
address the problem of recovering the values of unobservable
signals of a chip prototype from state bits recorded in a trace-
buffer of limited size using a SAT-based analysis.

Our technique is a novel application of backbones. This term
refers to the set of parameters of a Boolean function that need
to be fixed to a constant value for that function to evaluate to
true. There is a range of known SAT-based techniques targeting
this problem. We discuss a number of existing techniques and
gradually extend these techniques with novel ideas, leading to
novel and previously unstudied algorithms.

We evaluate the performance of these algorithms using the
aforementioned application in post-silicon validation. Our results
show that these SAT-based techniques are suitable for large-
scale applications with even millions of variables. Moreover, we
evaluate the utility of backbones by quantifying the restored state
bits in a number of case studies, including two processor cores.

I. INTRODUCTION

The localisation of faults in fabricated prototypes, referred
to as silicon debug or post-silicon validation, is a challenging
and time-consuming problem. While test cases can be run
much more efficiently on a chip than by means of simulation,
this advantage comes at the cost of limited observability of
signals in integrated circuits. Logging techniques such as
trace buffers enable us to track a relatively small number of
signals over a limited amount of time (e.g., a few thousand
execution cycles). This limited observability adds to the chal-
lenge of analysing erroneous behaviour of chip prototypes. We
present a SAT-based analysis which enables the restoration
of unobservable signals from state bits recorded in a trace
buffer of limited size. Our analysis is based on computing the
backbone [19] of a symbolic representation of the circuit. The
problem is quite simply stated: given a Boolean representation
F (x1, x2, x3, . . . , xn) of the circuit, determine the set F of all
variables such that each xi ∈ F takes the same constant value
ci ∈ {0, 1} in all assignments under which F evaluates to
1, i.e., F · ci implies 0. Thus, for F to evaluate to 1, the
assignments to the variables in F are fixed. For example, in
the function x1 · (x2 + x3), the variable x1 is fixed to 1.

A number of SAT-based algorithms for computing back-
bones of formulae have been suggested (see [11], [25], [10],
[17]). We discuss these algorithms in § II (and § IV) of our
paper and gradually extend them with techniques such as
learning, leading to novel and previously unstudied algorithms,
which reduce the required number of calls to the SAT solver.
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Fig. 1: Unwinding the combinational circuit C

We focus on the application of backbones for fault lo-
calisation in post-silicon validation. Given an execution of
a chip prototype which exhibits unexpected behaviour, we
want to localise the cycle and the gate which caused this
error. We recently published a description of our methodology
in [33], where we also present a case study demonstrating
that backbones can aid fault localisation. In the following, we
discuss the underlying algorithms and provide an empirical
evaluation of the amount of information that can be recovered
using backbones.

The specific methodology that we are relating to is based
on storing a subset of the state bits of the chip prototype in
a trace buffer and then using the stored values for localising
the faulty cycle and the logic block [22], [21]. The setting is
shown in Figure 1a: Ci+1 represents the combinational part
of the circuit under consideration. The state bits Si and Si+1

correspond to the full system state at the end of the ith and
(i+1)th cycles for the given error trace. The hatched sections
show the subset of the system state that is stored in the trace
buffers and is labelled Ti and Ti+1. The values of this fraction
of the system state are known, whereas Si\Ti and Si+1\Ti+1

is unknown. The error can be localised to cycle i + 1 if the
“golden model” of Ci+1 contradicts the observations Ti and
Ti+1; various consistency-based analysis techniques have been
proposed (see, for instance, [27]). These are not the focus of
this paper. If, however, the error cannot be localised to cycle
i+1, then the analysis proceeds backwards to cycle i. In doing
so, it is helpful to determine whether, given the values of Ti+1

and Ti, any of the assignments to the variables in Si \ Ti can
be determined to be fixed: intuitively, the more state bits are
known the higher is the chance to detect an inconsistency of
the observed behaviour and the golden model. Let the set of
the fixed variables thus determined be Fi. This is shown as
the shaded part of Si in the figure. Thus, in the analysis of
cycle i, we can use the values of Fi in addition to Ti and
Ti−1. Furthermore, Fi can then be used in conjunction with
Ti, Ti−1, and Ci to derive Fi−1. We refer to the problem of



determining Fi for a given Ci+1, Ti, and Ti+1 as the trace-
buffer fixed-assignment problem.

The circuit C and the set of states S can be quite large
in practice. Therefore, we need techniques that can handle
functions with hundreds of thousands to millions of variables.
Furthermore, as shown in Figure 1b, a multi-cycle version of
the problem (in this case two cycles) can be used to determine
the fixed assignments Fi−1 and Fi using Ti−1, Ti, Ti+1, Ci,
Ci+1, and Fi+1. The set of fixed assignments over multiple
cycles can be larger than in the one cycle case, as we have
additional information from cycle i. The size of the functions
grows quickly with unrolling over multiple cycles, further
increasing the need for scalable algorithms.

We explore SAT-based techniques with the goal of leverag-
ing the capabilities of modern SAT solvers. We show a range
of techniques which use existing SAT solvers in different ways,
and provide a theoretical analysis of the number of calls to
the SAT solver for the different techniques. We also report
our experimental results with using these techniques for the
single and multi-cycle trace-buffer fixed assignment problem
for processor cores used in the Backspace work [6] and for a
set of circuits from the hardware model checking competition1

(HMCC) benchmarks. These results show the practical value
of the techniques and provide insights into their characteristics.

The paper is organised as follows. § II describes the various
SAT-based techniques for the fixed-assignment problem and
provides a theoretical analysis of the number of calls to a
SAT solver for each of them. Our presentation covers existing
techniques [11], [25], [10], [17] as well as novel algorithms.
This is followed by § III, which covers the experimental
evaluation of these techniques over a range of benchmark
circuits. We address the performance of the algorithms in § II
and address the utility of the approach in post-silicon valida-
tion by quantifying the information gained using backbones.
§ IV discusses related work for this problem, and finally § V
provides some concluding remarks.

II. DETERMINING FIXED VARIABLES

Preliminaries and Problem Definition

Let V be a set of n propositional logic variables and let
0 and 1 denote the elements of the Boolean domain B.
Every Boolean function f : Bn → B can be expressed as a
propositional logic formula F in n variables x1, . . . , xn ∈ V .
The logical connectives {−,+, ·,→,⊕} are defined as usual.
For brevity, we may omit · in conjunctions (e.g., x1x3). An
assignment A is a total mapping from V to B, and A(x) refers
to the value A assigns to x. A satisfies a formula F (x1, . . . xn)
iff F (A(x1), . . . ,A(xn)) evaluates to 1 (denoted by A |= F ).
A formula F is satisfiable iff ∃A .A |= F , and unsatisfiable
otherwise. We use #AF to denote the number of satisfying
assignments of a formula F and drop the subscript if F is
clear from the context. A formula F holds iff ∀A .A |= F .

We use LitV = {x, x |x ∈ V} to denote the set of literals
over V , where x is the negation of x. Given a literal l ∈ LitV ,

1http://fmv.jku.at/hwmcc10/benchmarks.html

we write var(l) to denote the variable occuring in l. A cube
over V is a product of literals l1 . . . lm such that li ∈ LitV and
var(li) 6= var(lj) for all i, j ∈ {1..m} with i 6= j. We write
l ∈ C to indicate that the literal l occurs in a cube C. Given an
assignment A, we use CA to denote the cube

∏n
i=1 li where

li = xi if A(xi) = 1 and li = xi otherwise. For a cube C over
V and a set of variables W ⊆ V , let C|W be the restriction
of C to W . That is, C|W =

∏
{l | l ∈ C, var(l) ∈ W}.

Given a satisfiable formula F over V , a variable xi ∈ V is
fixed in F if either A(xi) = 1 for all A |= F or A(xi) = 0
for all A |= F , i.e., if either (F → xi) or (F → xi) holds.
Our goal is to determine the set F ⊆ V of all fixed variables
for F . We assume that F is a satisfiable formula over V , else
F = ∅ holds trivially. In the formula

F = (x1 ⊕ x2 ⊕ x3) ∧ (x1 ⊕ x2) , (1)

for instance, x3 is fixed to 1, while x1 and x2 are not fixed.
We explore a number of increasingly sophisticated techniques
to determine the set F , culminating in the algorithm in § II.F
which, to the best of our knowledge, is novel.

A. All-SAT

A first naı̈ve attempt to determine the set F = {x3}
for Formula (1) is to enumerate all satisfying assignments
{(x1 7→ 0, x2 7→ 0, x3 7→ 1), (x1 7→ 1, x2 7→ 1, x3 7→ 1)}
of Formula (1). This technique, known as All-SAT [18],
requires #A iterations, which may be as many as 2n. This
approach has been evaluated in [17] and found unfit for large
problem instances. The following sections describe our quest
for a more practical solution leveraging efficient satisfiability
solving techniques (c.f. [20] and [7]).

B. Probing

Given an initial satisfying assignment A |= F , the set F
can be determined by solving n independent SAT instances.
In each of these instances, we constrain one variable x in
F to take the value opposing A(x). The variable x is fixed
iff F · (A(x) ⊕ x) is unsatisfiable. The following algorithm
computes the set F by probing each variable independently:

1: F := ∅
2: let A be such that A |= F
3: for all l ∈ CA do
4: if 6 ∃A′ .A′ |= (F · l) then
5: F := F ∪ {var(l)}
6: end if
7: end for

Contemporary SAT solvers support repeated incremental
calls with differing assumptions (e.g., l) about V in the form
of cubes [7], which performs significantly better than restarts.
The solver only discards the information inferred from l and
retains the learnt clauses derived from F . Our experiments (see
§ III) show that this is crucial to the feasibility of probing.

Note that each iteration of line 4 potentially provides us
with a new satisfying assignment A′ |= F · l. By construction,
A′ disagrees with A on the value of at least one variable.



The assignments A and A′, however, may differ in more than
just one variable. The discrepancy between A and A′ can be
used to derive an (initially empty) set N of variables that
are definitely not fixed. We call this technique recording and
provide the following pseudo-code:

1: procedure RECORD(A,A′,F ,N )
2: for all x ∈ (V \ (N ∪ F)) do
3: if (A(x) 6= A′(x)) then
4: N := N ∪ {x}
5: end if
6: end for
7: return N
8: end procedure

Recording can rapidly reduce the number of potentially
fixed variables P = V \ (N ∪ F). Iteratively computing the
set P and skipping all literals l 6∈ P accordingly in line 3
of the probing algorithm results in a significant performance
leap. For Formula (1), for instance, recording enables us to
skip x2 if we probe the variables in order of increasing index.

Probing requires n = |V| iterations (each of which involves
a call to the SAT solver) in the worst case, but may terminate
after |F| (or n− |N |, respectively) iterations in the best case
if paired with recording (where F and N represent to the final
results of the algorithm).

Probing as well as recording have been introduced in [11].

C. All-SAT and Recording

The idea of recording discrepancies between two
subsequent assignments also makes it worthwhile to
revisit the enumeration-based approach previously dismissed
as naı̈ve.2 The enumeration of assignments is typically
implemented by successively blocking an increasing set of
satisfying assignments of F (c.f. [18]). This approach is
illustrated by the following algorithm:

1: N := ∅, F0 := F , i := 0
2: let A be such that A |= F0

3: while
(
∃A′ .A′ |= Fi · CA

and N 6= V

)
do

4: Fi+1 := Fi · CA
5: N := RECORD(A,A′,F ,N )
6: A := A′, i := i + 1
7: end while
8: F := V \ N

In this case, modern SAT solvers enable the incremental
construction of Fi+1 without discarding any information pre-
viously learnt about Fi. The enumeration of the satisfying
assignments terminates prematurely iff N becomes equal to
V: in the worst case, the algorithm enumerates 2n−1 + 1
assignments before N = V . In all other cases, i.e., whenever
F 6= ∅, the algorithm still enumerates all satisfying assign-
ments. Thus, the algorithm may require as few as two calls

2This combination of recording and All-SAT has not been reported in [11],
[25], [10], [17].

to the SAT solver if there are no fixed variables, but #A
iterations otherwise. Moreover, the size of Fi increases by n
literals in each iteration, potentially resulting in a final Fi that
is exponentially larger than F0. The next section addresses the
latter issue.

D. Decision-based All-SAT
Contemporary SAT solvers make a decision about the values

of a subset D of V and propagate the implications of these
decisions. In the terminology of [29], the set D is a (weak)
backdoor for unit propagation. Setting x1 to 0 in Formula (1),
for instance, requires x2 to be 0 and x3 to be 1 to keep the
output signal 1. The SAT solver may be able to derive that x1

implies x2 ∧ x3 and accordingly, the domain of a satisfying
assignment A : V → B can be partitioned into decision
variables D and implied variables V \D. We use DA to denote
the decision variables associated with a specific assignment A
and drop the subscript if A is clear from the context. The
partial assignment to the decision variables is represented by
the cube CA|D.

Note that F · (CA|D) ↔ CA as well as CA → CA|D
must hold for all satisfying assignments A |= F . The fact
that (CA|D) → CA and F · (CA|D) ↔ CA hold immediately
enables us to replace CA with (CA|D) in the algorithm in
§ II.C. Blocking the partial assignment x1 readily eliminates
the satisfying assignment x1x2x3. The experiments in [29]
suggest that in practical “structured” SAT instances |D| is
much smaller than |V|, resulting in smaller blocking clauses.

Observe, however, that F · (CA|D) necessarily implies
exactly one assignment CA (since CA ·CA′ is unsatisfiable if
A 6= A′). Accordingly, the decision variable-based algorithm,
while generating smaller blocking clauses, still potentially
eliminates satisfying assignments one by one and does not
necessarily perform better than All-SAT (solving up to #A
SAT instances, unless there are no fixed variables). This
observation is consistent with the result in [17], where the
blocking clauses are minimised using variable lifting (see
§ IV). This worst case behavior can only be prevented by
blocking more than one satisfying assignment per iteration.
Such an attempt is presented in the following section.

E. All-SAT and Learning
The benefit of recording (see § II.B) is contingent on the

values of A and A′ on the variables in P . Assignments A
and A′ that disagree exclusively on the values of N do not
provide any additional information and can be safely ignored.
Accordingly, it is sufficient to block only the combination of
values that A imposes on P . The following algorithm uses this
idea to learn sets of assignments that can be safely eliminated:

1: N := ∅
2: let A be such that A |= F
3: while ∃A′ .A′ |= F · (CA|P) do . (note: P = V \N )
4: N := RECORD(A,A′,F ,N )
5: A := A′
6: end while
7: F := P



Another benefit of this implementation is that it, unlike
the algorithm in § II.C, discards the cubes blocking previous
assignments, preventing the formula from growing: given two
subsequently computed sets of potentially forced variables P
and P ′ such that P ′ ⊆ P holds, (CA|P′) subsumes (CA|P)
since (CA|P) → (CA|P′). Thus (CA|P) can be dropped.

Note that each iteration of line 4 decreases the size of P
(and increases the size of N , respectively) by at least one, thus
guaranteeing the progress of the algorithm in each iteration.
Moreover, F · (CA|P) becomes unsatisfiable once P = F .
Thus, the algorithm terminates after at most |V \F| iterations.

The following section presents an algorithm which draws
together the ideas presented in § II.D and § II.E.

F. Decision-based All-SAT and Learning

When combining learning and blocking decision variables,
we have to carefully navigate around the case in which
D ⊆ P does not hold. In this case, namely, blocking CA|(D∩P)

potentially eliminates assignments still required to derive a
correct solution, effectively “cornering” the algorithm in a
dead end in which F · (CA|(D∩P)) is unsatisfiable but only
a fraction of the satisfying assignments has been taken into
account.

What we can conclude from the unsatisfiability of
F · (CA|(D∩P)), however, is that all variables in D ∩ P are
fixed. Unless (D ∩ P) = ∅, this enables us to enlarge the set
F of definitely fixed variables, as realised in the following
implementation:

1: F := ∅, N := ∅
2: let A be such that A |= F
3: while (N ∪ F) 6= V do
4: while true do
5: if (DA ∩ P) 6= ∅ then . (P = V \ (N ∪ F))
6: G := D ∩ P
7: else
8: G := P
9: end if

10: if ∃A′ .A′ |= F · (CA|G) then
11: N := RECORD(A,A′,F ,N )
12: A := A′
13: else
14: break . (exit inner loop)
15: end if
16: end while
17: F := F ∪ {var(l) | l ∈ (CA|G)}
18: end while
Note that N ∪F = V if P = ∅, in which case the algorithm

terminates.
The case in which F · (CA|(D∩P)) becomes trivially un-

satisfiable due to D ∩ P being empty is avoided by falling
back on the solution presented in § II.E. Thus, termination
is guaranteed since the algorithm expands either F or N in
each iteration. However, unless the SAT solver selects D in
a clairvoyant manner such that F 6⊆ D holds, the algorithm

worst case
A All-SAT #A
B Probing |V|
C All-SAT with Recording #A
D Decision-based All-SAT #A
E All-SAT and Learning |V \ F|
F Decision-based All-SAT + Learning |V|

TABLE I: Number of SAT calls for our techniques

may potentially end up probing individual variables in F (by
means of an unfavourable choice of G in line 6). Notably,
the probing technique we started out with in § II.B can
be derived from the algorithm above by replacing G with
{xi} (xi ∈ P) in each iteration. Accordingly, the algorithm
above also terminates after at most |V| iterations of the inner
loop. Moreover, similarly to probing, the algorithm relies on
incremental SAT to “retract” constraints (CA|(D∩P)) which
made the instance unsatisfiable,3 thus avoiding computation-
ally expensive restarts of the SAT solver.

We conclude the presentation of our techniques with an
overview of their respective worst-case behavior. Table I lists
the number of iterations (with respect to #A, V , and the final
value of F) excluding the first call to the SAT solver to obtain
an initial assignment. Note that the algorithms in § II.B, § II.E,
and § II.F, which incorporate recording, can “get lucky” and
terminate after only one iteration if there are no fixed variables.
This case, however, is untypical. Further, recording does not
help in § II.C and § II.D except in this very special case.

Nominally, the learning-based All-SAT technique is at an
advantage. This, however, refers to the number calls to the
SAT solver. In practice, the corresponding SAT instances
may be of varying complexity across different examples. The
experimental evaluation in the following section exposes this
phenomenon further.

III. EXPERIMENTAL EVALUATION

This section evaluates the scalability as well as the utility
of the techniques presented in § II. We implemented these
techniques in our tool called JEDISAT (which determines
variables with forced values). The implementation is based on
version 2.0 of MINISAT [7]. JEDISAT uses the search algo-
rithm of MINISAT 2.0, but does not exploit its simplification
capabilities.

We consider the trace-buffer fixed assignment problem as
outlined in § I (c.f. Fig. 1a). Our experiments (run on an
Intel 4Core i7 @ 2.67GHz CPU with 3GB memory) for this
comprise benchmarks from two different sources. We selected
(i) the five largest circuits (in terms of file size) from the
HMCC 2010 as well as (ii) the two processor cores from
opencores.org (OC) that were used in the Backspace paper [6].
We converted the latter two Verilog designs into the DIMACS
CNF format using the following flow of translation steps:

Verilog Altera Quartus4−−−−−−−−→ blif
ABC5

−−−−→ aig
AIGER6

−−−−→ cnf

3This is achieved by introducing a relaxation literal ri in each iteration of
the inner loop such that (ri ⇒ (CA|(G))). Flipping ri from 0 to 1 eliminates
the constraint.
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Benchmark CNF vars Clauses |I| |S|
bjrb07amba10andenv 98091 294015 23 63
bjrb07amba9andenv 72952 218616 21 59
mentorbm1and 36299 95182 224 4377
neclaftp1001 71296 190305 32 7880
neclaftp1002 71296 190305 32 7880
68hc05 567 1610 11 127
oc8051 26468 70857 83 2784

TABLE II: Size statistics

Table II lists the size of the CNF formulas resulting from
the benchmarks, where |S| denotes the number of latches and
|I| denotes the number of inputs of the design.

For each of these seven benchmarks, we create four dif-
ferent instances of the problem as follows. For each cycle
of the hardware design (c.f. Fig. 1a), we constrain a certain
percentage (1%, 5%, 10%, or 20%, respectively) of the latches
and IO signals (chosen at random) to values determined by a
prior simulation-run. The intention is to emulate the trace-
buffers recording exactly this percentage of state variables.
These correspond to the Ti for cycle i in § I. In practice, the
state variables recorded in a trace-buffer will most certainly be
chosen with more care, thus providing more useful information
than a randomly chosen subset of variables. We compare the
performance of the algorithms and evaluate the utility of our
technique by quantifying the additional information gained
with the help of backbones.

A. Performance

Fig. 2 shows the relative performance of the algorithms in
§ II on this set of benchmarks for the single cycle version
of this problem (c.f. Fig. 1a) with a 100 second timeout
for each instance. We omit the results for All-SAT without
recording, since the results are identical to All-SAT with
recording (as F 6= ∅). In addition, to emphasize the benefits
of incremental solving, we evaluated an implementation of
probing which restarts the SAT solver in each iteration and
drops all learnt clauses. The run-times are presented in a
“cactus plot”, indicating the number of instances that can be
solved (x-axis) within a given per-instance time limit (y-axis).
For each respective algorithm, the instances are ordered by
increasing difficulty. As we can see, only algorithms B, E and
F are competitive, while the others are only able to solve a few
instances within 100 seconds. Further, algorithm B (probing)
seems to be significantly better in overall runtime. This is
somewhat surprising, since Table I suggests that algorithm E
(All SAT and Learning) should perform better, as it has fewer
iterations in the worst case.

Fig. 3 provides some additional insight into this. It provides
the number of iterations, i.e., calls to the SAT solver (y-axis)
for each of the seven benchmarks. For each benchmark, we
evaluated the three most competitive algorithms (B, E, F) for
4 different sizes (1%, 5%, 10%, and 20% of |I∪Si∪Si+1|) of
the trace buffers. Missing bars indicate that the technique did
not finish within 100 seconds on the respective benchmark.

4altera.com 5www.eecs.berkeley.edu/∼alanmi/abc/ 6fmv.jku.at/aiger/
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Fig. 2: Run-time of different techniques on single-cycle hard-
ware competition and processor benchmarks

As expected, probing requires significantly more iterations.
Moreover, the number of iterations of probing increases with
the size of the trace-buffers, since larger trace-buffers in
general result in more fixed variables. However, Fig. 2 shows
that B is faster than the algorithms E and F, implying that the
iterations of B are significantly faster on average. The reason
for this is that probing a single literal strongly constrains
the search space and enables efficient unit-propagation. We
observed that probing performs better in particular for the
first few iterations, i.e., probing gets a head start over the
other approaches. The SAT-runs in later iterations provide
an answer almost instantaneously, which we attribute to the
fact that the SAT solver retains the information learnt in
previous iterations. We emphasise that this approach depends
crucially on the capability of the SAT-solver to solve instances
incrementally even if unit-clauses are discarded along the way
(c.f. §§ II.B and II.F). Experiments in which we deactivated
this feature and performed a restart of the SAT solver instead
(see non-incremental probing in Fig. 2) show that probing
and decision-based All-SAT with recording quickly become
computationally infeasible. Between E and F the results are
somewhat mixed across the benchmarks.

B. Utility

Fig. 4 illustrates the fraction of unknown latch values
determined to be fixed by using these techniques (naturally,
B, E, and F yield the same results if they terminate and only
differ in run-time). This corresponds to |Fi∪Fi+1|/|(Si\Ti)∪
(Si+1 \ Ti+1)| in Fig. 1a. The x-axis lists the 7 benchmarks,
with the 4 bars for each corresponding to increasing sizes of
the trace buffers. With increasing sizes of the trace buffer, a
larger fraction of the unknown state bits are determined to
be fixed. An exception is the oc8051. The backbone size
decreases for the largest trace buffer size due to the fact that
the signals recorded in the trace buffer are chosen at random
and vary across different trace buffer sizes.

Motivated by the application described in § I, we also
explored the scalability and utility of the multi-cycle version
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of the problem as illustrated in Figure 1b. Fig. 5 shows
the percentage of the unknown state bits

⋃n
i=1(Si \ Ti) (as

a function of the number of cycles that form the problem
instance) that can be recovered (i.e.,

⋃n
i=1 Fi) given that the

content of 5% of the latches (randomly chosen) of the oc8051
and the 68hc05 design is known for each of the cycles. In
this scenario, we assume that all IO values are known. The
timeout for the computation was set to one hour. Fig. 5b
illustrates the scalability limits of the approach: within one
hour, the analysis can cover at most 271 cycles of the slightly
large oc8051 processor, and 20.24% of the unknown state
bits can be restored. For the smaller 68hc05, we are able to
analyse 3292 cycles within one hour, however, in this case,
full information can be restored with just 750 cycles.
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IV. RELATED WORK

There is extensive literature on the computation and the
applications of backbones. In the following, we give a brief
overview covering the complexity of the problem and different
algorithms to compute backbones. Finally we cover techniques
for post-silicon validation that are related to our application.

A. Complexity of Computing Backbones

The term backbone was coined by researchers investigating
the hardness of instances of NP-complete problems [19], [1],
[12], [3], [31], [32]. The backbone represents the strongly
constrained variables of a SAT instance and its size is one
parameter studied in this context. The problem of computing
backbones is NP-equivalent [13]. It is in the class of NP-hard
problems and can be solved using polynomially many calls to a
SAT oracle, i.e., it is NP-easy. Kilby et al. [14] shows that even
the existence of a polynomial approximation algorithm for
computing backbones would imply that P = NP . The notion
of backbones has also been generalised to graph colouring
problems [3].

B. Techniques for Computing Backbones

Climer et al. [2] presents a graph-based algorithm which
relies on approximate lower and upper bounds to compute
backbones of instances of the travelling salesman problem.
The focus of our paper is on SAT-based techniques. A recent
overview and experimental evaluation of such techniques is
provided by Marques-Silva et al. [17]. In particular, this paper
covers model enumeration (corresponding to the All-SAT al-
gorithm in § II.A), iterative SAT-testing (equivalent to probing
in § II.B), and filtering (which we call recording). Moreover,
[17] discusses two optimisations (introduced in [23]) which
we have not considered in our presentation. Firstly, variable
lifting denotes the technique of discarding variables if they
are not used for satisfying any clause. Secondly, a greedy
approximation algorithm for the set covering problem, the
problem of finding a minimal set of variables that satisfy all
clauses, helps to eliminate variables in the probing algorithm.

Probing as well as recording were first developed as means
to determine valid configurations of products. Kaiser and
Küchlin [11], [25] partitions backbones into inadmissible
(always false) and necessary (always true) variables and
present three algorithms dubbed basic, filter, and directed.
The former two algorithms correspond to probing with and
without recording (see II.B), and the latter uses a variable
selection and assignment strategy which aims at maximising
the number of variables eliminated by recording. Janota [10]
uses probing and a memoization technique similar to recording
to find backbones.

The conclusions of [17] are similar to ours:
1) Backbone computation for large practical instances is

feasible. Enumeration-based algorithms do not scale,
neither do iterative algorithms that do not use the in-
cremental interface of the SAT solver.

2) Backbones can represent a significant percentage of the
number of variables (up to 90% and never below 10%

in the benchmarks presented in [17], some of which are
selected instances from the SAT 2005, 2007, and 2009
competition).

Gregory et al. [8] confirms that backbones can be as large
as 86% of the variables in structured instances, but also shows
that they are as small or non-existent in problems such as graph
colouring. Hsu et al. [9] discusses approximation techniques to
compute the bias of a variable, i.e., the proportion of solutions
that assign a variable a particular value. This concept is more
general than backbones.

The reduction of the size of blocking clauses in All-SAT
based on conflict clauses is discussed in [18]. To the best of
our knowledge, the algorithm we present in § II.F is novel.

C. Other SAT-based Techniques and Learning

Contemporary decision procedures are modern SAT solvers
based on the DLL algorithm [4] using unit-propagation [5]
for deriving implications. The implications determined in this
context are not intended to be complete, but rather to help
prune the search space [20]. In contrast, recursive learning
is a complete algorithm for learning all variable implica-
tions [16]. There are some similarities between this technique
and Stålmarck’s algorithm for Boolean satisfiability, which can
also provide a complete list of implications by recursively
learning from setting all individual variables to both possible
values, all pairs of variables to all four possible values and so
on [24]. While both recursive learning as well as Stålmarck’s
algorithm are theoretically complete in the sense of potentially
learning all implications, in practice they are only used in
limited ways to improve on local implications to help prune
large search spaces. In contrast, in this paper, we are interested
in complete solutions to this problem in a large-scale setting
(for functions of a hundred thousand or even millions of
variables).

In his work on learning Boolean formulae, Valiant used the
notion of queries to an oracle [28]. There is some similarity
between that and the iterative use of a SAT-solver in our
methods. However, Valiant’s learning is limited to Boolean
monomials (a conjunction of literals, or a Boolean cube), or
Disjunctive Normal Forms (a set of cubes) and does not extend
to learning fixed assignments.

D. Related Applications

The work most related to the application of backbones
for post-silicon validation is [15]. This paper addresses the
restoration of states by constructing a set of “restorabil-
ity equations” that enable the propagation of known trace
signals. Our approach does not require the construction of
such equations. Moreover, our technique is complete in the
sense that it will restore all signals covered by the backbone,
whereas the recovery rate in [15] is limited by the fact that,
for reasons of efficiency, no branching and backtracking is
performed. Finally, our approach is SAT-based, allowing us to
take advantage of the advances in satisfiability solving.

Yang et al. [30] proposes a SAT-based technique that, given
a test scenario that results in a failure, identifies signals



that are relevant to the analysis of the failure and should
therefore be recorded in (configurable) trace buffers. Our
technique is orthogonal and would benefit significantly from
systematically gathered information, which increases the size
of the backbones.

De Paula et al. [6], have also used SAT for “backspacing”
in post-silicon validation. However, their end-goal is different;
they enumerate all possible previous states using a SAT solver
and do not consider deriving the fixed assignments, which is
the focus of our paper. Smith et al. [27] discusses a SAT-based
technique to localise faults in post-silicon validation which
does not take limited observability into account.

An overview of applications of backbones in optimisa-
tion problems and approximation algorithms, covering graph
colouring, the travelling salesman problem, number partition-
ing, and planning, can be found in [26]. These applications
exceed the scope of our paper.

V. CONCLUSION

This paper studies SAT-based techniques for determining
the backbones of a Boolean formula with applications in post-
silicon validation. We consider a set of known techniques as
well as develop new techniques for this purpose. Overall these
techniques scale up to realistic problem instances. We provide
a number of case studies (including two processor cores) that
demonstrate the utility of backbones in post-silicon validation.
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