
An Interpolating Decision Procedure
for Transitive Relations

with Uninterpreted Functions

Daniel Kroening1 and Georg Weissenbacher ( )1,2?

1 Computing Laboratory, Oxford University
2 Computer Systems Institute, ETH Zurich

Abstract. We present a proof-generating decision procedure for the
quantifier-free fragment of first-order logic with the relations =, 6=, ≥,
and > and argue that this logic, augmented with a set of theory-specific
rewriting rules, is adequate for bit-level accurate verification. We describe
our decision procedure from an algorithmic point of view and explain how
it is possible to efficiently generate Craig interpolants for this logic.
Furthermore, we discuss the relevance of the logical fragment in software
model checking and provide a preliminary evaluation of its applicability
using an interpolation-based program analyser.

1 Introduction

Interpolants play an ever more important role in software and hardware verifica-
tion [1]. Since interpolants are typically constructed from proofs of inconsistency,
interpolation-based verification techniques depend on efficient, proof-generating
decision procedures. Interpolating decision procedures have been available for
over a decade [2, 3], but the field is still advancing rapidly.

McMillan’s landmark paper [3] gives an axiomatic description of his interpo-
lating theorem prover FOCI. Recently, more algorithmic descriptions of similar
interpolating decision procedures have been published [4, 5], indicating that pub-
lications that make the material in [3] more accessible are well appreciated.

We present a graph-based interpolating decision procedure for a subset of
quantifier free first-order logic with a fixed set of relations, an extension of the
logic covered by [4]. We support equality (=), disequality ( 6=), and strong and
weak inequality (> and ≥, respectively). Furthermore, we provide limited sup-
port for interpreted functions such as bit-vector operations. Our presentation
emphasises the algorithmic point of view.

Our work is motivated by the discrepancy between the bit-vector interpre-
tation underlying most programming languages and the domains R or Z used
by many interpolating decision procedures. The decision procedure we present

Supported by the Semiconductor Research Corporation (SRC) under contract no.
2006-TJ-1539 and by the EU FP7 STREP MOGENTES (project ID ICT-216679).

? Supported by Microsoft Research’s European PhD Scholarship Programme.

To appear in Namjoshi, K. & and Zeller, A. (eds.), Proceedings of the 5th Haifa

Verification Conference, Springer Verlag. The original publication is available on

http://www.springerlink.com .



is sound for bit-level formulæ, i.e., if a formula is satisfiable in the bit-vector
interpretation, then our algorithm will not conclude that it is unsatisfiable.

Our contribution is a self-contained, algorithmic description of a bit-level
accurate decision procedure integrating rewriting rules for theory-specific ax-
ioms. We provide a preliminary evaluation of the suitability of our first-order
logic fragment for software verification using a re-implementation of the model
checking algorithm in [6].

2 Preliminaries

In the following, we define L, a quantifier-free, conjunctive fragment of first-order
logic. We restrict the predicates of this language to equality (=), disequality ( 6=),
and strong and weak inequality (> and ≥, respectively).

Syntax. We fix an enumerable set of variables, function symbols, and constant
symbols. Well-formed elements of L are generated by the following set of rules:

– A term t is a constant, a variable, or an application f(t1, . . . tn) of an n-ary
function symbol f to terms t1, . . . , tn.

– An atom t1Bt2 is a binary relation B ∈ {=,≥, >, 6=} applied to two terms t1
and t2. We do not allow any predicates other than the relations listed above.

– A formula F is a conjunction of atoms.

Note that the set of atoms is closed under negation, i.e., the negation ¬(t1Bt2)
of an atom can be expressed in terms of an atom. Conjunction (∧) is the only
logical connective we allow in L. This is a common restriction for (interpolat-
ing) decision procedures for specialised theories, since arbitrary propositional
connectives can be handled using the orthogonal approach presented in [3, 7].

Interpretations. We use the standard interpretation of the relation symbols =
and 6=. The relation ≥ is a partial order over the (interpreted) domain D, and
ti > tj denotes (ti ≥ tj)∧ (ti 6= tj) . An interpreted n-ary function symbol f has
a well-defined function fM : Dn → D associated to it, whereas an uninterpreted
function symbol has no other property than its name and arity.

We use F |= G to state that the formula F entails G.

Craig interpolation. Since L is a fragment of first-order logic, there exists a
Craig interpolant (a first-order logic formula) for every inconsistent pair of L-
formulæ F and G:

Definition 1 (Craig interpolant for L). Given an unsatisfiable L-formula
F ∧G, a Craig interpolant is a first-order logic formula I such that

1. F |= I,
2. G |= ¬I, and
3. the variables and function symbols I refers to are common to F and G.

Remark 1. Note that I is not necessarily a L-formula (and may not even be
expressible in L). An example is the pair of formulæ f(x0) 6= f(x5)∧ x0 = x1 ∧
x2 = x3∧x4 = x5 and x1 = x2∧x3 = x4 and their interpolant x1 6= x2∨x3 6= x4.



f(x) f(y)

x y=

(a) Congruence edge

x y

x y

u v

≥

≥

≥

≤

=

=

(b) Derived edge

Fig. 1: Congruence edges and derived edges.

Graph representation of L formulæ. The fact that an L-formula F is a conjunc-
tion of atoms of the form ti B tj enables us to represent F using a graph [8].

Definition 2 (L-graph). Given a formula F , let GF (V,E) be a directed graph,
where each term ti in F corresponds to a node vi in V , and each atom ti B tj

corresponds to a B-labelled edge (vi
B→ vj) ∈ E, B ∈ {=,≥, >, 6=}. Atoms tiB tj

with a symmetric relation B ∈ {=, 6=} additionally contribute an edge (vj
B→ vi).

For convenience, we use undirected edges to depict equalities and disequalities.
In accordance to [3], we write vi ' vj if and only if i = j.

Due to the presence of functions in L-terms, the congruence relation may
give rise to additional equality edges in the graph: The congruence relation
satisfies, in addition to the properties of the equality relation, the monotonicity
axioms, i.e., for all n-ary functions f , it holds that f(s1, . . . , sn) = f(t1, . . . , tn)
whenever si = ti holds for all i in {1, .., n}. We use congruence edges to depict
such equalities (see Fig. 1a). The dashed arrows indicate that f(x) = f(y) is
derived from the equality of the sub-terms x = y.

Definition 3 (Contradictory and equality-entailing cycles). A contradic-
tory cycle [8] in an L-graph is a cyclic path consisting of either

a) edges labelled with = and a single edge labelled with 6=, or
b) edges labelled with either = or ≥ and at least one edge labelled with >.

An equality-entailing cycle in an L-graph is a cyclic path consisting of edges
labelled with either = or ≥. For any two terms ti and tj corresponding to nodes
in an equality-entailing cycle, it holds that ti ≥ tj and tj ≥ ti, and thus ti = tj.

We depict derived edges using a graphical representation similar to congru-
ence edges (see Fig. 1b). In this example, the equality x = y is derived from the

equality-entailing cycle x
≥→ y

≥→ v
≥→ u

≥→ x.

3 A Graph-Based Decision Procedure

We begin this section with a brief outline of our decision procedure for L-
formulæ followed by a detailed description of the proof-generating algorithm.
Let G(V,E) be the L-graph for a given formula F . The decision procedure is
subdivided into two phases:



1. In the first phase, the algorithm searches for contradictory or equality-
entailing cycles with edges labelled =, ≥, and > (Def. 3a) in the graph

G(V,E=), where E= denotes E \ {(vi
6=→ vj) ∈ E}. If a contradictory cycle

exists, the algorithm terminates. Otherwise, the procedure adds to E the
edges vi

=→ vj and vj
=→ vi for all nodes vi, vj adjacent in an equality-

entailing cycle.
2. In the second phase, additional equalities are inferred by means of constant

propagation and congruence closure and searches for contradictory cycles
with edges labelled = or > (Def. 3b) in the graph G(V,E 6=), where E 6= =
{(vi B vj) ∈ E |B ∈ {=, 6=}}.

The phases are iterated until no new equalities can be inferred. Both phases
use well-known and efficient graph algorithms such as Tarjan’s algorithm for the
computation of strongly connected components (SCCs) and a graph-based union-
find data structure. In a pre-processing step, we form two (possibly non-disjoint)
sets of the atoms in F , one of which contains the inequalities and equalities, and
one which contains equalities and disequalities.

Phase I: Inequalities. Let G(V,E=) be the L-graph corresponding to the equal-
ity and inequality atoms of F . Using Tarjan’s algorithm, we compute all strongly
connected components in G(V,E=) and classify them as contradictory or equality-
entailing cycles, respectively:

≥≥

≥

≥≥

≥

>

>

>

A B

(a) SCCs in L-graphs

f(x) f(y)

≥≥

≥

≥≥

≥

≥

≥

B

(b) Congruences and SCCs

Fig. 2: Strongly connected components (SCCs) in L-graphs

1. A SCC is contradictory if it contains at least one edge vi
>→ vj (see compo-

nent B in Fig. 2a). Then, any path from vj to vi forms a contradictory cycle
with vi

>→ vj . If our algorithm finds a contradictory SCC, we compute the
shortest such path and report it as a proof of inconsistency.

2. A SCC is equality-entailing if it contains no edge labelled with > (see com-
ponent A in Fig. 2a or the SCCs in Fig. 2b). In this case, we conclude that
for any edge vi

B→ vj in the SCC ti = tj holds for the corresponding terms.
The derived equalities are passed on to the second phase.

Phase II: Equalities and Disequalities. The second phase starts with computing
the equivalence closure of the equality atoms (and the equalities derived in the



first phase). For this purpose, we use a proof-generating union-find data structure
that incrementally constructs an L-graph G(V,E=), where E= denotes a set of
edges labelled with =. In the following, we present the modifications necessary to
generate a proof of inconsistency. In a union-find data structure, each equivalence
class corresponds to a sub-graph of G(V,E=) identified by its representative,
and each node which is not a representative holds a reference to its parent node
(indicated by an directed edge in our illustrations). The data structure supports
two operations:

1. Find(vi) returns the representative of the node vi.
2. Union(vi, vj) adds an (undirected) equality edge to the graph G(V,E=) and

merges the two equivalence classes containing vi and vj , respectively.

s

u

v
rep(s, u, v)

2

1

(a) Path compression

1

3

2

s

rep(s) rep(t)

t
(b) Triangulation

assert v1 6' v2 ∧ r1 6' r2

if v1 ' r1 then
if v2 6' r2 then

E= := E= ∪ {r2
〈v2〉→ r1}

end if
else

if v2 6' r1 then

E= := E= ∪ {v2
〈v1〉→ r1}

end if
if v2 6' r2 then

E= := E= ∪ {r2
〈v2〉→ r1}

end if
end if

(c) Implementation of 3b

Fig. 3: An illustration of union-find operations

The Find(vi) operation performs path compression in order to reduce the
computational effort in case of repeated queries for vi. During this process, it
adds new derived edges to E=, which connect vi directly with its representative.
This is illustrated by the example in Fig. 3a. Find follows the parent nodes
until it reaches the representative. In Fig. 3a, the call to Find(v1) results in
two recursive calls Find(v2) and Find(v3). The latter call returns v4 as the

representative for v3. We add v2
〈v3〉→ v4 to E= (step 1 in Fig. 3a) and replace the

parent v3 with v4. Here, the label 〈v3〉 is used to memorise the fact that v2
=→ v3

derives from v2
=→ v3

=→ v4 (visualised by the dashed arrow). Finally, Find(v2)

yields v4 and we add v1
〈v3〉→ v4 to E= and replace the parent v2 with v4. Thus,

Find(v1) returns v4.
The Union(v1, v2) operation merges two equivalence classes with the repre-

sentatives r1, r2 (obtained using Find). We assume that redundant unions are



ignored, i.e., v1 6' v2 and r1 6' r2. Consider the example in Fig. 3b. We add
the edge v1

=→ v2 (step 1) and conclude that the terms corresponding to r1 are
r2 equivalent. The algorithm chooses a new representative (r1 in our example),

favouring nodes with a higher in-degree. The resulting edge v2
〈v1〉→ r1 is labelled

accordingly in step 2, in order to memorise its derivation. Finally, we connect r2

and r1; the corresponding edge derives from r2
=→ v2

=→ r1.
Observe that Union triangulates the sub-graph spanning V = {v1, v2, r1, r2}.

Fig. 3c shows the general algorithm for this triangulation (where r1 is the rep-
resentative node with the higher in-degree), which is a constant time operation.

Using Union, we compute the equivalence closure for F by adding all equiv-
alence atoms and derived equalities to G(V,E=). We can now efficiently query
whether a disequality ti 6= tj contradicts the equality relations stored in G(V,E=)
by checking whether Find(vi) 'Find(vj). If this is the case, we obtain a con-

tradictory cycle vi
6=→ vj

=→ r
=→ vi. From this cycle, we obtain a proof for the

inconsistency by repeatedly expanding derived edges vi
〈vj〉→ vk to vi

=→ vj
=→ vk.

Edges derived in Phase I are justified by their respective equality-entailing cycles.

Congruence closure. The decision procedure described above lacks a provision
for deriving congruence edges (Fig. 1a) and is therefore not sufficient to support
uninterpreted functions. An equality relation ti = tj in the congruence graph
G(V,E=) gives rise to a congruence edge representing f(ti) = f(tj), which, in
return, may entail additional equality relations in G(V,E=). Therefore, we use an
incremental congruence closure algorithm (following the ideas presented in [9])
that is closely intertwined with the construction of the L-graph for equalities.

The algorithm uses the union-find data-structure representing G(V,E=). It
indexes each representative in G(V,E=) with a term tc. Thus, all terms in an
equivalence class of G(V,E=) are associated with the same term tc. If the equiv-
alence class contains an interpreted constant (e.g., a numeral), we choose it as
the index term,3 otherwise, we use the term corresponding to the representative
of the equivalence class as index. In this setting, an equivalence class containing
terms with function symbols represents a set of congruence relations. Consider
two terms f(ti) and f(tj), where ti and tj have the same representative indexed
with tc. Then f(ti) and f(tj) belong to the same equivalence class.

In addition, we maintain a function Lookup(f(tc)) which maps f(tc) to a
term f(ti) such that ti belongs to an equivalence class indexed with tc, or ⊥ if
there is no such term in G(V,E=).

The Union operation potentially changes the representatives of the equiv-
alence classes in G(V,E=). Therefore, the algorithm maintains for each index
term tc a list UseList(tc) of terms that contain a sub-term indexed with tc. This
list is updated whenever Union merges two equivalence classes. W.l.o.g., assume
that Union merges an equivalence class indexed with tc with an equivalence
class indexed with t′c, choosing the latter term as the new index. Then, for each

3 Note this constant is unique, since an equivalence class that contains two constants
with a different interpretation contains a contradictory cycle.



f(x)

f(y)

f(z)
z

x

UseList [z] = [ f(z) ]

99K

f(x)

f(y)

f(z)
z

x

UseList [z] = [ f(z) ]

99K

f(x)

f(y)

f(z)
z

x

UseList [z] = [ ]

Fig. 4: A 3-step example illustrating the congruence closure algorithm

f(ti) ∈ UseList(tc), where tc is the index term associated with ti, the algorithm
proceeds as follows:

– If Lookup(f(t′c)) returns f(tj), it uses Union to add a the congruence edge
for f(ti) = f(tj) to G(V,E=) and memorises that the edge is derived from
ti = tj . Furthermore, f(ti) is moved from UseList(tc) to UseList(t′c).

– If Lookup(f(t′c)) returns ⊥, it sets Lookup(f(t′c)) to f(ti) and moves f(ti) to
UseList(t′c).

Example 1. Consider a union-find data structure with four equivalence classes
{f(x), f(y)}, {f(z)}, {x}, and {z} (see Fig. 4, on the left). UseList [z] contains
f(z), since z is a sub-term of f(z). Adding x = z yields a new equivalence class
{x}∪{z}. Assume that the representative of the resulting equivalence class {x, z}
is x and that Lookup(f(x)) = f(y). Then the algorithm infers f(z) = f(y). C

The extension to n-ary functions is straight-forward. An efficient implemen-
tation based on currifying is presented in [9].

Bit-vector theory axioms, constant propagation, and interpreted functions. Our
decision procedure provides limited support for the theory of bit-vectors by inte-
grating a small set of bit-vector axioms and rewriting rules. Furthermore, when-
ever possible, it uses interpreted functions and constants in order to simplify
terms. This is achieved by the following mechanisms:

1. We order all interpreted constants c1, . . . , cn processed in Phase I and add
n−1 inequality relations of the form ci < ci+1, 1 ≤ i < n to G(V,E=) before
computing the SCCs.

2. In Phase II, if Union is applied to two terms indexed with different inter-
preted constants c1 and c2, we introduce the disequality c1 6= c2.

3. Let T be the set of terms corresponding to the nodes in G(V,E=). For each
f(ti) ∈ T such that f is an interpreted function symbol in a given theory T
and ti is a term indexed with an interpreted constant c, we check whether
f(c) can be simplified to a term tj not containing any variables or function
symbols that do not occur in f(c). If this is the case, and tj ∈ T or tj is an
interpreted constant, we add the equivalence relations f(ti) = f(c) (derived
from ti = c) and f(c) = tj (a tautology in T ) to G(V,E=). This technique
allows us to perform bit-level-accurate simplifications of terms.



(t2 + c) 6= t2 if c 6= 0mod 2m

(t2 + c) = t2 if c = 0mod 2m
(t << c) = (t + t) if c = 1
(t << c) = (2c · t) if 1 < c < m

Fig. 5: Two examples for rewriting rules for m-bit variables

t1 = t2 & t3
t1 ≤ t2 t1 ≤ t3

t1 = t2 | t3
t1 ≥ t2 t1 ≥ t3

t1 + t2 = t1
t2 = 0

Fig. 6: Examples of axioms for bit-vector operations

4. We apply a fixed set of rewriting rules of the form tB t′ to all terms t, where
t′ is the term obtained by applying the rule to t. All rules have the property
that they do not introduce variables. Examples of such rules are listed in
Fig. 5. If t and t′ correspond to nodes in G(V,E=), we add the relation tB t′.

5. Axioms of the form (t1 B1 t2) ` (t3 B2 t4) may be applied if t3 and t4 refer
to a subset of the non-logical symbols in t1 and t2. Examples of such axioms
are provided in Fig. 6.4

Combining both phases. As explained above, equality relations derived from
equality-entailing cycles in Phase I are passed on to Phase II. Now consider the
L-graph in Fig. 2b. Adding the congruence edge corresponding to f(x) = f(y)
results in a new SCC, which, depending on the label B in Fig. 2b, is either
contradictory or equality-entailing. Therefore, the congruence edges generated
in Phase II must be added to G(V,E=), necessitating an additional iteration
of Phase I. The two phases need to be iterated until no more new congruence
edges are generated. Since both phases are exchanging equalities exclusively, our
implementation is essentially a Nelson-Oppen-style decision procedure.

Complexity. Tarjan’s algorithm applied in Phase I has a run-time linear in the
number n of edges of the graph. The computation of the equivalence closure in
the second phase takes O(n ·α(n)) time, where α is the inverse of the Ackermann
function A(n, n). The congruence closure is of complexity O(n · log n) [9]. Thus,
a single iteration of Phase I and Phase II takes O(n · log n) time.

It remains to determine how often the phases need to be iterated. Since the
algorithm never adds redundant congruence edges, the congruence closure adds
at most O(n) equalities (see [9]). Due to the restrictions on the application of
rules and axioms, rewriting interpreted functions increases the number of sub-
terms by at most a constant factor. Altogether, we face a run-time complexity
of O(n2 · log n) for our decision procedure.

Finally, the extraction of an explanation from a contradictory cycle can be
performed in O(n · log n) time, since the derived edges form a tree.

4 The näıve application of such axioms increases the complexity of the algorithm
significantly. Therefore, we apply each axiom only once in an initial rewriting phase.



Proofs of inconsistency. We review the artefacts generated by our decision pro-
cedure. A proof of inconsistency of an L-formula F is a contradictory cycle
comprising

– edges directly corresponding to relations in F ,
– edges derived from equality-entailing cycles, and
– congruence edges, derived from a number of equality relations.

In the next section we explain how a Craig interpolant can be constructed
from such a proof of inconsistency.

4 Extracting interpolants from contradictory cycles

This section introduces the concept of coloured L-graphs and explains how inter-
polants can be constructed from contradictory cycles in such a coloured graph.

Colouring L-graphs Given an L-formula F ∧ G, we say that a node vi of the
corresponding graph G(V,E) is F -colourable if the corresponding term ti refers
only to variables and function symbols in F ; similarly for G. We use VF and
VG to refer to the set of F -colourable and G-colourable nodes, respectively. This
definition splits V = VF ∪ VG into two non-disjoint sets of vertices. It leaves us
a choice for a subset VS

def
= (VF ∩ VG) of V . We refer to VS as shared vertices.

An edge vi
B→ vj is F -colourable if and only if {vi, vj} ⊆ VF ; analogously

for G. We use EF (EG) to refer to the F -colourable (G-colourable, respectively)
edges in E. An edge is colourable if it is either F -colourable or G-colourable. The
edges of the initial L-graph G(V,E), in which each edge corresponds to an atom
in F ∧ G, are always colourable. This is not necessarily the case for the graph
that we obtain by computing the congruence closure (in Phase II). Consider the
nodes labelled f(x) and f(y) in the L-graph in Fig. 2b. Assume that the variable
x occurs only in F and y occurs only in G. If we deduce f(x) = f(y) from x = y,
then the corresponding edge is not colourable.

It is, however, possible to transform a congruence-closed L-graph into a
colourable graph [4, 10]. We provide a constructive proof based on structural
induction over an L-graph with congruence edges:

1. Base case. Colour the equality edges of the L-graph according to their re-
spective atoms in the formula F ∧G.

2. Induction step. The argument is split into two cases:
(a) Derived edges. For each edge vi

=→ vj derived from an equality-entailing
cycle, there exists an edge vi

B→ vj (B ∈ {≥,=}) in that cycle, which is,
by the induction hypothesis, colourable. Let vi

=→ vj take the colour of
that edge.

(b) Congruence edges. Pick any non-colourable congruence edge with nodes
vf(x) and vf(y) labelled f(x) and f(y), respectively. By the induction
hypothesis, all edges in the path vx → . . . → vy entailing x = y can be
coloured. Since vx and vy are of different colour, there is a path prefix



= 6= ≥ >

= = 6= ≥ >
≥ ≥ ⊥ ≥ >
> > ⊥ > >

In order to label facts, the labels of the edges on a path are
merged according to the rules to the left. By construction,
the decision procedure described in Section 3 guarantees that
no fact in a proof of inconsistency has an undefined (⊥) label.

Table 1: Rules for labelling contracted edges

vx → . . . → vz such that all nodes in the prefix are of the same colour
and vz ∈ VS . Let z be the term that corresponds to vz. Then, the term
f(z) refers only to non-logical symbols common to F and G. Introduce a
new node vf(z) representing f(z) and add an equality edge vf(x) → vf(z)

justified by vx → . . . → vz, and a new congruence edge vf(z) → vf(y)

justified by vz → . . . → vy. All these new elements are colourable.

This proof translates into an algorithm of complexity O(n · log n). The trans-
formation yields a graph representing a formula equisatisfiable with F ∧G, i.e.,
the modified graph contains a contradictory cycle if and only if the original
congruence-closed graph G(V,E) contains one.

It is straight-forward to extend this argument to the edges introduced by the
term rewriting rules and axioms in Section 3. Consider, w.l.o.g., an F -coloured
node vi corresponding to a term t, and a node vj corresponding to the rewritten
term t′. Due to the restriction that the rewriting rule t t′ must not introduce
new non-logical symbols,5 the edge vi → vj can be coloured with ‘F ’. A similar
argument holds for axioms, which do not change the colour of the affected edge.

This line of reasoning leads to the following observation:

Lemma 1. A proof of inconsistency, which is a sub-graph of the congruence-
closed L-graph G(V,E) obtained using the algorithm in Section 3, can be trans-
formed into a colourable graph.

Furthermore, given that an L-graph G(V,E) represents a formula F ∧ G,
which is a conjunction of atoms, the formula represented by a sub-graph is
implied by F ∧ G. Thus, the proof of inconsistency is implied by the original
formula F ∧G.

Interpolants from coloured inconsistency proofs. Given a coloured proof of in-
consistency, it is now possible to factorise this graph according to the colour of
its edges. Accordingly, a factor of a path in this graph is a maximal sub-path
consisting of edges of equal colour. If we contract a factor v1

B1→ . . .
Bn−1→ vn,

we obtain a fact v1
B→ vn. The label B of this fact is determined by iteratively

merging the labels along the path according to the rules in Table 1.
Facts over the shared vocabulary VS are the basic building blocks of in-

terpolants for L-graphs. In general, however, it is not possible to represent an
interpolant for F ∧ G as an L-graph or as an L-formula (see Remark 1 in Sec-
tion 2). Intuitively, the reason is that the proof of inconsistency is a result of a
5 Interpreted function symbols and constants are considered logical symbols.



mutual interplay6 of facts derived from F -coloured as well as from G-coloured
edges. An F -coloured congruence edge may be derived from a path that con-
tains edges corresponding to atoms in G. This prevents us from extracting a
contradictory sub-graph of the proof that is derived exclusively from F .

We account for the interrelation between F -coloured and G-coloured facts
by introducing conditions and premises for facts in L-graphs.

Definition 4 (Conditions for facts, edges). Let E = EF ·∪EG and V =
VF ∪ VG be a colouring of the edges and vertices of a proof of inconsistency for
F ∧ G. A condition for a fact (or edge) vi

=→ vj is a (possibly empty) set C of
facts obtained from factorised and contracted paths in E such that one of the
following conditions holds:

– C = ∅ and vi
=→ vj is a contraction of edges corresponding to atoms in F ∧G.

– vi
=→ vj can be derived from the L-graph G(V,C) by means of equality and

congruence closure and equality-entailing cycles.

We refer to the subset of F -coloured (G-coloured) facts in C as F -condition
(G-condition, respectively).

The facts in a proof of inconsistency as constructed by the decision procedure
in Section 3 comprise congruence edges, edges derived from equality-entailing
cycles, and “basic” edges corresponding to atoms in the original formula F ∧G.
The conditions for basic edges and facts comprising only basic edges are defined
to be C = ∅ in Def. 4. For the remaining artefacts, we construct a set of conditions
C as follows:

1. Congruence edges. For a congruence edge, C is the set of facts obtained by
factorising and contracting the path the congruence edge is derived from.

2. Edges derived from equality-entailing cycles. For an edge derived from an
equality-entailing cycle, C is the set of facts obtained by factorising and
contracting that cycle.

3. Facts. The condition for a fact v1 → vn obtained by contracting the path
v1 → . . . → vn is

⋃
i∈{1..n−1} Ci, where Ci is a condition for vi → vi+1.

The correctness of this construction follows immediately from Def. 4 and the
definition of congruence edges and derived edges.

A premise denotes a recursively closed set of conditions, in which the derived
facts are in turn justified by their respective conditions:

Definition 5 (Premises for facts). The F -premise for a fact vi
=→ vj of

colour G is the set F -premise(vi
=→ vj) of F -coloured facts defined as

F -premise (vi
=→ vj)

def=

(F -condition for vi
=→ vj) ∪⋃

{F -premise (vn → vm) | vn → vm ∈ (G-condition for vi
=→ vj)} .

The definition of the G-premise for F -coloured facts is symmetric.
6 This process can also be formalised as a cooperative two-player game [4].



Premises can be seen as a form of rely-guarantee reasoning. F -premises take
the role of ρ in McMillan’s interpolations [3], and G-premises correspond to
justifications in [4].

Lemma 2. Let C be the F -condition of a G-coloured fact (or edge) vi
=→ vj in a

coloured proof of inconsistency G(E, V ), where E = EF ·∪EG and V = VF ∪ VG.
For all (vn → vm) ∈ C it holds that vn, vm ∈ VS.

It follows immediately that F -premises and G-premises refer only to the
shared vertices of a proof of inconsistency (cf. Lemma 2(iii) in [4]).

Definition 6 (L-graph-based interpolant). Let G(V,E) be a proof of incon-
sistency for F ∧G and let E = EF ·∪EG and V = VF ∪ VG, VS = VF ∩ VG be a
colouring of its edges and vertices. A L-graph-based interpolant is a pair 〈I,J 〉
of sets such that the following mutual conditions hold:

1. J is a set of pairs 〈P, vi → vj〉, and for each 〈P, vi → vj〉 ∈ J it holds that
(a) P ⊆ I is the F -premise for the G-coloured fact vi → vj, and
(b) for all vn → vm ∈ I, the G-premise for vn → vm is a subset of

{vk → vl | 〈P, vk → vl〉 ∈ J } .

2. I is a set of F -coloured facts obtained by contracting edges in EF , and the
graph

G (VS , I ∪ {vi → vj | 〈P, vi → vj〉 ∈ J }) (1)

contains a contradictory cycle.
3. For all vn

B→ vm in I ∪ {vi
B→ vj | 〈P, vi

B→ vj〉 ∈ J } it holds that either
(a) vn, vm ∈ VS, or
(b) vn ' vm and B ∈ {>, 6=}.

Fig. 7 shows an algorithm that extracts a pair 〈I,J 〉 from a proof of incon-
sistency. We argue that 〈I,J 〉 is an L-graph-based interpolant:

1. Since the factorisation and contraction preserves the structure of the graph,
the graph G(VF ∪ VG, EF ·∪EG) contains a contradictory cycle of facts (pos-
sibly degenerate, i.e., vi

B→ vi, B ∈ {>, 6=}). Therefore, EC exists.
2. Observe that the algorithm maintains the following invariants:

(a) For each 〈P, vi → vj〉 ∈ J , P is an F -premise of vi → vj and a subset of
W ∪ I (established in line 3 and maintained by lines 7, 8, and 13).

(b) For each vi → vj ∈ I, the G-premise of vi → vj ∈ I is a subset of
W ∪ {vn → vm | 〈P, vn → vm〉 ∈ J }. This is established in line 3 and
maintained by the statements in lines 10, 11, and 13.

(c) G(VS ,W ∪ I ∪ {vi → vj | 〈P, vi → vj〉 ∈ J }) contains a contradictory
cycle. This invariant is established in line 3.

Upon termination of the algorithm, W = ∅ holds. Together with W = ∅,
the invariant (2a) implies condition (1a) and the invariant (2b) implies con-
dition (1b) in Def. 6. Furthermore, it follows from the invariant (2c) that
condition (2) in Def. 6 is fulfilled.



1: let G(VF ∩ VG, EF ·∪EG) be the factorised and contracted proof
2: let EC be the facts in the contradictory cycle of G(VF ∪ VG, EF ·∪EG)
3: W := EC , I := ∅, J := ∅
4: while (W 6= ∅) do
5: remove vi → vj from W
6: if vi → vj is G-coloured then
7: P := F -premise (vi → vj)
8: J := J ∪ {〈P, vi → vj〉}
9: else

10: P := G-premise (vi → vj)
11: I := I ∪ {vi → vj}
12: end if
13: W := W ∪ P
14: end while

Fig. 7: Computing an L-graph-based interpolant

3. Due to the tree-structured derivations in the proof, the algorithm terminates.
4. The sets I and J contain only

(a) edges vi → vj from the factorised and contracted contradictory cycle EC

of the proof of inconsistency (lines 2 and 3), and
(b) G-premises (F -premises) for F -coloured (G-coloured) facts.
According to Lemma 2, all facts in the premises (4b) are edges with endpoints
vi, vj ∈ VS . If EC contains F -coloured as well as G-coloured facts, then the
facts (4a) must be edges connecting vertices in VS . Otherwise, EC contains
a single degenerate edge vi

B→ vi, where vi is not necessarily an element of
VS . Therefore, condition 3 in Def. 6 holds.

The interpolant I for an L-formula F ∧ G may not be expressible in L (see
Remark 1). We can, however, translate the L-graph-based interpolant into an
L-formula with disjunctions:

I
def=

∧
vi

B→vj∈I

(ti B tj)

︸ ︷︷ ︸
(a)

∨
∨

〈P,vn
B→vm〉∈J

 ∧
(vi

BP→ vj)∈P

(ti BP tj)

 ∧ ¬(tn B tm)

︸ ︷︷ ︸
(b)

(2)

We simplify all terms of the form ti B ti to false if B ∈ {>, 6=} and to true
if B ∈ {≥,=}.

Example 2. Consider the proof of inconsistency shown in in Fig. 8a. Contracting
the inconsistent cycle yields f(g(y)) 6= v (G-coloured) and f(g(y)) = v (F -
coloured) under the condition that u = g(z) (F -coloured), and g(z) = g(y)



= 6=
v

f(x) f(g(y))

x g(y)
u g(z)

z
yw

(a) A proof of inconsistency

f(g(y)) = v ∧ w = y ∨
f(g(y)) = v ∨
(x 6= u) ∨
(w = y) ∧ g(z) 6= g(y)

(b) Interpolant for Fig. 8a

Fig. 8: An example of an interpolant for an inconsistency proof

(G-coloured) hold. The condition for g(z) = g(y), in turn, is that z = w and
w = y holds, where the latter fact is F -coloured. The resulting interpolant is
shown in Fig. 8b. C

Finally, we claim that I as defined in (2) is indeed an interpolant for F ∧G.

Theorem 1. Given an L-graph-based interpolant 〈I,J 〉 for an L-formula F∧G,
the formula (2) is an interpolant for F ∧G.

Let us provide an intuitive explanation of Formula (2) before we proceed to
the proof of Theorem 1. The formula is split into two sub-formulæ (a) and (b):
Condition (1b) in Def. 6 guarantees that (2a) holds if∧

〈P,vn
B→vm〉∈J

(tn B tm) (3)

and F (i.e., the F -coloured atoms in F ∧G) hold.
Formula (2b) takes the rôle of the interface in rely-guarantee reasoning and

challenges G to contradict one of the atoms in Formula (3). The F -premises of
these G-coloured atoms are a subset of I, and therefore implied by (2a) due to
condition (1a) in Def. 6. The G-premises of the facts in I are in turn implied
by Formula (3). The tree-structured derivations of congruence edges and derived
edges (generated by algorithm in Fig. 7) prevent circular reasoning. The resulting
tree-structure of these premises is illustrated in Fig. 9: The G-coloured facts
e1, . . . , e5 derived from the F -premises at the leaves in turn form the G-premise
at an inner node of the tree, and so on. We show that this structure prevents G
from contradicting Formula (3).

We are now in a position to show the correctness of Theorem 1.
Proof: We review the conditions of Def. 1 in Section 2:

1. F |= I. Consider that the G-premises (3) for the F -facts in (2a) hold.
W.l.o.g., pick an edge vi

B→ vj from I. Since (3) holds, the G-premise for
vi

B→ vj holds. We show that the F -condition (Def. 4) for vi
B→ vj is implied

by F and (3) by means of induction.
– Base case. The height of the tree-shaped derivation of vi

B→ vj is one;
Thus, the F -condition of vi

B→ vj is a subset of the atoms in F .



P6

e6

P4 P5

e4 e5

P1 P2 P3

e1 e2 e3

Fig. 9: Tree-structure of the premises in an interpolant

– Hypothesis. The F -condition of vi
B→ vj is implied by F and (3) if the

height of the tree-shaped derivation is n− 1 or less.
– Induction step. The height of the derivation of vi

B→ vj is n. W.l.o.g.,
pick a fact vn → vm from the F -condition of vi

B→ vj . The height of
the tree-shaped derivation of this fact is n − 1 or less. The G-condition
for vn → vm holds because of Def. 5, condition (1b) in Def. 6, and the
assumption that (3) holds. The F -condition of vn → vm holds by our
induction hypothesis, and therefore vn → vm and the F -condition of
vi

B→ vj must hold.
Therefore, F and (3) imply (2a). Otherwise, at least one atom ti B tj in (3)
is false. W.l.o.g., we can choose a fact vi

B→ vj (e.g., e6 in Fig. 9) such that
the following conditions hold:
– vi

B→ vj corresponds to an atom ti B tj in (3) which is false.
– The G-premises of the F -premise of vi

B→ vj comprise only of facts
corresponding to atoms in (3) that are true.

Then, using the same induction argument as above, we can show that the
F -premise P for the G-coloured fact vi

B→ vj holds. Therefore, the conjunct
corresponding to 〈P, vi

B→ vj〉 is true.
2. G ∧ I |= ⊥. Assume that the formulæ (2a) and (3) hold, i.e., G does not

contradict (3). Since (2a) corresponds to I and (3) to

{vi → vj |〈C, vi → vj〉 ∈ J } ,

G ∧ I must be contradictory (condition 2 in Def. 6).
Otherwise, in order for G to contradict (3), at least one of the atoms in
{tn B tm | 〈P, vn

B→ vm〉 ∈ J } must be false. Using induction, we show that
the condition of vn

B→ vm holds, contradicting the assumption that ¬(tnBtm)
holds. Thanks to condition (1b) in Def. 6, the F -premise of vn

B→ vm is a
subset of I. It remains to show that the G-condition of vn

B→ vm holds.
– Base case. The height of the tree-shaped derivation of vi

B→ vj is one;
Thus the G-condition of vi

B→ vj is a subset of the atoms in G.
– Hypothesis. The G-condition of vi

B→ vj is implied by G and Formula
(2a) if the height of the tree-shaped derivation is n− 1 or less.



– Induction step. The height of the derivation of vi
B→ vj is n. W.l.o.g.,

pick a fact vn → vm from the G-condition of vi
B→ vj . The height of

the tree-shaped derivation of this fact is n − 1 or less. The F -condition
for vn → vm holds because of Def. 5, condition (1a) in Def. 6, and the
assumption that Formula (2a) holds. The G-condition of vn → vm holds
by our induction hypothesis, and therefore vn → vm and the G-condition
of vi

B→ vj must hold.
3. Condition 3 in Def. 6 and the fact that we simplify terms ti B ti to true or

false guarantee that I refers only to shared variables and function symbols.

The next section discusses applications of our interpolating decision proce-
dure and provides an evaluation of its adequacy for verifying systems software.

5 Application and Evaluation

The two most prominent interpolation-based software model checking techniques
are predicate abstraction [11] and interpolation-based abstraction [6]. Both tech-
niques construct an abstract reachability tree by unwinding the (abstract) tran-
sition relation. The nodes in this tree are labelled with interpolants derived
from infeasible counterexamples (i.e., unsatisfiable conjunctions of relations),
thus over-approximating the set of safely reachable program states. The verifi-
cation process terminates if a fixed-point of this set is reached.

The transition function of programs is typically represented using first or-
der logic formulæ. The primitive data-types of a vast majority of programming
languages have bounded domains. In order to be able to apply interpolation-
based techniques in a sound manner, the decision procedure must not conclude
that a formula is unsatisfiable if it is satisfiable in its bit-vector interpretation.
This is not guaranteed if we use linear arithmetic over R or Z: The operator +
in infinite interpretations is addition on an infinite set, while it corresponds to
addition modm (for some m) in the case of bit-vectors. Consider the formula
a > b + 2 ∧ a ≤ b over the 2-bit variables a and b. This formula has the sat-
isfying assignment {a 7→ 2, b 7→ 2} in its bit-vector interpretation, while it is
unsatisfiable in the theory of linear arithmetic over the reals or the integers.

While the ability of our algorithm to handle arithmetic operations is very
limited (our rewriting rules can simplify terms involving addition in only cer-
tain special cases), it does not falsely conclude unsatisfiablity for the bit-vector
interpretation. However, we may fail to prove unsatisfiability in certain cases
(for instance, a chain of 2n disequalities over 2n + 1 distinct n-bit variables).
The reason underlying this problem is that the Nelson-Oppen method requires
theories to be stably infinite, which is not the case for the theory of bit-vectors.
This may lead to spurious counterexamples, which can be caught by falling back
to a bit-level accurate decision procedure (such as bit-flattening [12]).

Finally, we have to ask whether our logic is sufficient to represent the transi-
tion relation of realistic programs. Whether the relations and interpreted func-
tions provided by L are sufficient depends largely on the application domain.



A common benchmark for software model checking tools is the set of Windows
device drivers used in [6]. In order to evaluate the usefulness of our logic L, we
have integrated the decision procedure into our prototypical interpolation-based
model checker Wolverine. Wolverine is an implementation of the algorithm
presented in [6]. It generates conjunctive formulæ by unwinding the program
and labelling the edges in the reachability graph with transition relations. In
this setting, formulæ corresponding to infeasible paths are unsatisfiable. We ran
Wolverine on the kbfiltr.i, floppy.i, and mouclass.i drivers presented
in [13, 6]. Our decision procedure was able to provide interpolants for all unsat-
isfiable formulæ encountered during the verification process.7 We attribute this
to the fact that device drivers make little use of arithmetic. The loops typically
iterate over initialised induction variables, which can be handled by constant
propagation (resulting in ground terms that can be rewritten).

6 Related Work

The related work in the area of decision procedures is vast. We focus on recent
interpolating decision procedures. The first implementation of an interpolat-
ing decision procedure widely used in verification is McMillan’s FOCI [3]. This
tool supports linear arithmetic over R and equality with uninterpreted func-
tions (EUF), and introduces the semantic discrepancy discussed in Section 5
when used for program verification. Based on the ideas in [3], Fuchs presents a
graph-based approach for EUF [4]. The interpolants in CNF generated by this
technique are reported to be (syntactically) smaller than the results of FOCI.
In comparison, we support a strict super-set of EUF and generate interpolants
in DNF. Fuchs’ work has recently been extended to combined theories [5], and
our algorithm can be seen as an instance of that framework. An interpolating
decision procedure for the theory of unit-to-variable-per-inequality (UT VPI?),
a logic with atoms of the form (0 ≤ ax1 + bx2 + k) over Z, is presented in [14].
Jain et al. present an interpolating decision procedure for linear modular equa-
tions [15], but does not support uninterpreted functions. We plan to integrate
this algorithm into our implementation.

Our algorithm can also be implemented in a Nelson-Oppen or SMT frame-
work, and interpolants can be generated using the mechanisms presented in [10]
or [5, 16]. It can also be integrated in a proof-lifting decision procedure, which
constructs word-level proofs from propositional resolution proofs [12].

7 Conclusion and Future Work

We present a decision procedure for a first-order logic fragment with the rela-
tions =, 6=, ≥, and > and argue that this logic is an efficiently decidable subset
of first order logic. Furthermore, the logic is sound with respect to reasoning
7 We do not present results on the run-time, as the performance of Wolverine is not

yet competitive due to a lack of optimisation of the model checking algorithm.



about software with bounded integers. We intend to perform an evaluation of a
larger scale than presented in this paper. Furthermore, we plan to integrate ac-
celeration techniques similar to [17] into our interpolation-based model checker
Wolverine.

Acknowledgements. We thank Philipp Rümmer and May Chan for their detailed
comments on our paper and Mitra Purandare for the inspiring discussions.

References

1. McMillan, K.L.: Applications of Craig interpolation to model checking. In: Com-
puter Science Logic. Volume 3210 of LNCS., Springer (2004) 22–23

2. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. The Journal of Symbolic Logic 62 (1997) 981–998

3. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science
345 (2005) 101–121

4. Fuchs, A., Goel, A., Grundy, J., Krstić, S., Tinelli, C.: Ground interpolation for
the theory of equality. In: Tools and Algorithms for the Construction and Analysis
of Systems. Volume 5005 of LNCS., Springer (2009) 413–427

5. Goel, A., Krstić, S., Tinelli, C.: Ground interpolation for combined theories. In:
Automated Deduction, Springer (2009)

6. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verifi-
cation. Volume 4144 of LNCS., Springer (2006) 123–136

7. Cimatti, A., Sebastiani, R.: Building efficient decision procedures on top of SAT
solvers. In: Formal Methods for the Design of Computer, Communication, and
Software Systems. Volume 3965 of LNCS., Springer (2006) 144–175

8. Meir, O., Strichman, O.: Yet another decision procedure for equality logic. In:
Computer Aided Verification. Volume 3576 of LNCS., Springer (2005) 307–320

9. Nieuwenhuis, R., Oliveras, A.: Proof-Producing Congruence Closure. In: Term
Rewriting and Applications. Volume 3467 of LNCS., Springer (2005) 453–468

10. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Automated Deduction. Volume 3632 of LNCS., Springer (2005) 353–368

11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Principles of Programming Languages, ACM (2004) 232–244

12. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-
level. In: Formal Methods in Computer-Aided Design, IEEE (2007) 85–89

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Prin-
ciples of Programming Languages, ACM (2002) 58–70

14. Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant generation for UTVPI?. In:
Automated Deduction, Springer (2009)

15. Jain, H., Clarke, E.M., Grumberg, O.: Efficient craig interpolation for linear dio-
phantine (dis)equations and linear modular equations. In: Computer Aided Veri-
fication. Volume 5123 of LNCS., Springer (2008) 254–267

16. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: Delayed
theory combination vs. Nelson-Oppen for satisfiability modulo theories: A compar-
ative analysis. In: Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR). Volume 4246 of LNCS., Springer (2006) 527–541

17. Kroening, D., Weissenbacher, G.: Verification and falsification of programs with
loops using predicate abstraction. Formal Aspects of Computing (2009) published
Online FirstTM.


