Software Model Checking
with
Predicate Abstraction, Interpolation, & IC3

Johannes Birgmeier, Aaron Bradley,
Georg Weissenbacher
Challenges in (Software) Model Checking

1. Finding Inductive Invariants
2. Scalability (State Space Explosion)
How we will address these challenges
Part I: IC3

The diagram shows the relationships between Interpolation, Induction (IC3), and Predicate Abstraction. The intersection of all three concepts represents the focus or the main topic of Part I: IC3.
Verification of finite state systems

Aaron Bradley

SAT-Based Model Checking without Unrolling [VMCAI’11]

Given: Finite State Transition System

- Initial states $I \subseteq S$
- Transition relation $T \subseteq S \times S$
- Safety property P
Incremental Construction of Inductive Clauses for Indubitable Correctness

- Verification of *finite state systems*
- Aaron Bradley

 SAT-Based Model Checking without Unrolling [VMCAI'11]

- Given: Finite State Transition System

 - Initial states $I \subseteq S$
 - Transition relation $T \subseteq S \times S$
 - Safety property P

- Goal: **Inductive** invariant F

 - $I(s) \Rightarrow F(s)$,
 - $F(s) \land T(s, s') \Rightarrow F(s')$
 - $F(s) \Rightarrow P(s)$
Approach: Construct sequence F_0, F_1, \ldots, F_k of candidates

\[I \iff F_0 \] (1)

\[\forall 0 \leq i < k . F_i \Rightarrow F_{i+1} \] (2)

\[\forall 0 \leq i \leq k . F_i \Rightarrow P \] (3)

\[\forall 0 \leq i < k . F_i \land T \Rightarrow F_{i+1}' \] (4)
Approach: Construct sequence F_0, F_1, \ldots, F_k of candidates

\begin{align*}
I & \iff F_0 \quad (1) \\
\forall 0 \leq i < k . F_i & \implies F_{i+1} \quad (2) \\
\forall 0 \leq i \leq k . F_i & \implies P \quad (3) \\
\forall 0 \leq i < k . F_i \land T & \implies F'_{i+1} \quad (4)
\end{align*}

(1) F_0 represents the initial states
Approach: Construct sequence F_0, F_1, \ldots, F_k of candidates

$I \Leftrightarrow F_0$ \hspace{1cm} (1)

$\forall 0 \leq i < k . F_i \Rightarrow F_{i+1}$ \hspace{1cm} (2)

$\forall 0 \leq i \leq k . F_i \Rightarrow P$ \hspace{1cm} (3)

$\forall 0 \leq i < k . F_i \land T \Rightarrow F'_{i+1}$ \hspace{1cm} (4)

(1) F_0 represents the initial states

(2+4) F_i over-approximates states reachable in $\leq i$ steps
Approach: Construct sequence F_0, F_1, \ldots, F_k of candidates

\[
\begin{align*}
I & \Leftrightarrow F_0 & (1) \\
\forall 0 \leq i < k . F_i & \Rightarrow F_{i+1} & (2) \\
\forall 0 \leq i \leq k . F_i & \Rightarrow P & (3) \\
\forall 0 \leq i < k . F_i \land T & \Rightarrow F_{i+1}' & (4)
\end{align*}
\]

(1) F_0 represents the initial states

(2+4) F_i over-approximates states reachable in $\leq i$ steps

(3) All F_i are safe
Sequence F_0, F_1, \ldots, F_k of candidates for invariant

\[
\begin{align*}
I & \iff F_0 \quad (1) \\
\forall 0 \leq i < k. F_i & \Rightarrow F_{i+1} \quad (2) \\
\forall 0 \leq i \leq k. F_i & \Rightarrow P \quad (3) \\
\forall 0 \leq i < k. F_i \land T & \Rightarrow F'_i \quad (4)
\end{align*}
\]

Important properties of algorithm:
- New frame F_{k+1} is added if F_k is “safe”, k increased
- Over-approximation F_0, F_1, \ldots, F_k is refined \textit{incrementally}
- Inductiveness is primary goal
\(I \Leftrightarrow F_0 \) \hspace{1cm} (1)
\(\forall 0 \leq i < k . F_i \Rightarrow F_{i+1} \) \hspace{1cm} (2)
\(\forall 0 \leq i \leq k . F_i \Rightarrow P \) \hspace{1cm} (3)
\(\forall 0 \leq i < k . F_i \land T \Rightarrow F'_i \) \hspace{1cm} (4)
\[I \iff F_0 \quad (1) \]
\[\forall 0 \leq i < k . F_i \Rightarrow F_{i+1} \quad (2) \]
\[\forall 0 \leq i \leq k . F_i \Rightarrow P \quad (3) \]
\[\forall 0 \leq i < k . F_i \land T \Rightarrow F'_{i+1} \quad (4) \]

Step 1: Check whether \(I \Rightarrow P \) and \(I \land T \Rightarrow P' \)
Step 1: Check whether $I \Rightarrow P$ and $I \land T \Rightarrow P'$
$I \Leftrightarrow F_0$ \hfill (1)

$\forall 0 \leq i < k . F_i \Rightarrow F_{i+1}$ \hfill (2)

$\forall 0 \leq i \leq k . F_i \Rightarrow P$ \hfill (3)

$\forall 0 \leq i < k . F_i \land T \Rightarrow F_{i+1}'$ \hfill (4)

Step 1: Check whether $I \Rightarrow P$ and $I \land T \Rightarrow P'$

✓ *Expand:* Add $F_1 \Leftrightarrow P$ to sequence of frames F_0, \ldots
Step 2: Check whether $F_1 \land T \Rightarrow P'$
$I \Leftrightarrow F_0$ \hspace{1cm} (1)

$\forall 0 \leq i < k . F_i \Rightarrow F_{i+1}$ \hspace{1cm} (2)

$\forall 0 \leq i \leq k . F_i \Rightarrow P$ \hspace{1cm} (3)

$\forall 0 \leq i < k . F_i \land T \Rightarrow F'_{i+1}$ \hspace{1cm} (4)

Step 2: Check whether $F_1 \land T \Rightarrow P'$

\textbf{✗} There’s a state s such that $F_1 \land s \land T \land \neg P'$
IC3: Consecution

What do we know about s?

- $s \not\in F_0$, otherwise would have discovered s earlier

$$F_0 \land \neg s \land T \Rightarrow \neg s'$$

If this doesn't hold, s has a predecessor in F_0.

$P \iff F_1$
IC3: Consecution

What do we know about s?

- $s \notin F_0$, otherwise would have discovered s earlier

Try to show that s is unreachable from F_0:

- $F_0 \land \neg s \land T \Rightarrow \neg s'$

 consecution check

![Diagram showing F_0, F_1, and s]
IC3: Consecution

What do we know about s?

- $s \not\in F_0$, otherwise would have discovered s earlier

Try to show that s is unreachable from F_0:

- $F_0 \land \neg s \land T \Rightarrow \neg s'$
 - consecution check

- If this doesn’t hold, s has a predecessor in F_0
IC3: Consecution

What do we know about s?

- $s \not\in F_0$, otherwise would have discovered s earlier

Try to show that s is unreachable from F_0:

- $F_0 \land \neg s \land T \Rightarrow \neg s'$

 consecution check

- If this holds, s is *inductive relative to F_0*
IC3: Relative Inductiveness

\[F_0 \land \neg s \land T \Rightarrow \neg s' \]

- We can replace \(F_1 \) with \(F_1 \land \neg s \)
IC3: Relative Inductiveness

$$F_0 \land \neg s \land T \Rightarrow \neg s'$$

- We can replace F_1 with $F_1 \land \neg s$
- But that would only eliminate one state!
IC3: Generalization

Could eliminate s from F_1. But we can do better!

- Try to generalize s:
 - $F_0 \land \neg s \land T \Rightarrow \neg s'$
 - Find $c \subseteq \neg s$ such that $F_0 \land c \land T \Rightarrow c'$
 (consider subsets of clause $\neg s$)
IC3: Generalization

Could eliminate \(s \) from \(F_1 \). But we can do better!

- Try to generalize \(s \):
 - \(F_0 \land \lnot s \land T \Rightarrow \lnot s' \)
 - Find \(c \subseteq \lnot s \) such that \(F_0 \land c \land T \Rightarrow c' \)
 (consider subsets of clause \(\lnot s \))
 - \(F_1 := F_1 \land c \)
\[
\begin{align*}
I & \Leftrightarrow F_0 \quad (1) \\
\forall 0 \leq i < k . \ F_i & \Rightarrow F_{i+1} \quad (2) \\
\forall 0 \leq i \leq k . \ F_i & \Rightarrow P \quad (3) \\
\forall 0 \leq i < k . \ F_i \land T & \Rightarrow F_{i+1}' \quad (4)
\end{align*}
\]

Once no more bad states reachable from F_1, expand...
\[I \iff F_0 \quad (1) \]

\[\forall 0 \leq i < k . F_i \Rightarrow F_{i+1} \quad (2) \]

\[\forall 0 \leq i \leq k . F_i \Rightarrow P \quad (3) \]

\[\forall 0 \leq i < k . F_i \land T \Rightarrow F'_{i+1} \quad (4) \]

Once no more bad states reachable from \(F_2 \), expand…
$I \iff F_0$ \hfill (1)

\[\forall 0 \leq i < k . F_i \Rightarrow F_{i+1} \] \hfill (2)

\[\forall 0 \leq i \leq k . F_i \Rightarrow P \] \hfill (3)

\[\forall 0 \leq i < k . F_i \wedge T \Rightarrow F'_{i+1} \] \hfill (4)

Once no more bad states reachable from F_2, expand...
\(I \iff F_0 \) \hspace{1cm} (1)
\[\forall 0 \leq i < k . F_i \Rightarrow F_{i+1} \] \hspace{1cm} (2)
\[\forall 0 \leq i \leq k . F_i \Rightarrow P \] \hspace{1cm} (3)
\[\forall 0 \leq i < k . F_i \land T \Rightarrow F'_{i+1} \] \hspace{1cm} (4)

Until we eventually reach a fixed point.
Does this work for software?
Yes; simply replace SAT solver with SMT solver, but:

- State space much larger or infinite
- Will painstakingly eliminate single/small sets of states
- High risk of divergence
Part II: Predicate Abstraction
Predicate Abstraction: A Form of Abstract Interpretation

- Map concrete states to abstract states
- Reduce size of state space
 - Obtain finite representation

Abstract domain

Concrete domain

\[s_0, s_1, s_2 \]

\[a_0, a_1 \]
Abstract Domain: Set of Predicates

Map concrete states to abstract states by evaluating predicates:

- Concrete variable: i
- Predicates: $b_1 \equiv (i \neq 0)$ and $b_2 \equiv (i \leq 10)$
Example: Abstraction of $i++$ and $b_1 \equiv (i \neq 0)$

- We have to account for all possibilities!
Example: Abstraction of $i++$ and $b_1 \equiv (i \neq 0)$

- We have to account for all possibilities!
 - Even if there is just a single transition from $i \neq 0$ to $i = 0$!
Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation
- requires many calls to SMT solver
- is computationally expensive
Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation

- requires many calls to SMT solver
- is computationally expensive
- contrary to the spirit of IC3 (focus on single states)
Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation
 ▶ requires many calls to SMT solver
 ▶ is computationally expensive
 ▶ contrary to the spirit of IC3 (focus on single states)

Abstraction of single states is computationally cheap!
 ▶ Predicates: $b_1 \equiv (i \neq 0)$, $b_2 \equiv (i \leq 10)$

Abstract domain

Concrete domain
Predicate Abstraction IC3 Style

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
Predicate Abstraction IC3 Style

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state

![Diagram showing predicate abstraction in IC3 style]

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state
Predicate Abstraction IC3 Style

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state

Check consecution for s:

$$F_1 \land \neg s \land T \Rightarrow \neg s'$$
Predicate Abstraction IC3 Style

- $F_0, F_1, \ldots F_k$: CNF over *predicates*
- Transition relation T: program as SMT formula
- state s: *concrete* predecessor of bad state

Check consecution for s:

$$F_1 \land \neg s \land T \Rightarrow \neg s'$$

If s *not* relative inductive, proceed with predecessor t
Predicate Abstraction / Abstract Consecution

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state

Consecution:

$$F_1 \land \neg s \land T \Rightarrow \neg s'$$
Predicate Abstraction / Abstract Consecution

- \(F_0, F_1, \ldots F_k \): CNF over predicates
- Transition relation \(T \): program as SMT formula
- state \(s \): concrete predecessor of bad state

Abstract Consecution:

\[
F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}'
\]

\[
F_1 \land \neg s \land T \Rightarrow \neg s'
\]
Predicate Abstraction / Abstract Consecution

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state

Abstract Consecution:

\[F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}' \]

\[F_1 \land \neg s \land T \Rightarrow \neg s' \]

\[P \]

\[I \]

\[F_1 \]

\[F_2 \]

\[F_3 \]
Predicate Abstraction / Abstract Consecution

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state

Check abstract consecution (instead of concrete):

$$F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}'$$

![Diagram showing abstraction and transition]
Predicate Abstraction / Abstract Consecution

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state

Check *abstract* consecution (instead of concrete):

$$F_1 \land \neg \mathbf{s} \land T \Rightarrow \neg \mathbf{s}'$$

Replace F_2 with $F_2 \land c$, where clause $c \subseteq \neg \mathbf{s}$
Abstract Consecution Failure

- $F_0, F_1, \ldots F_k$: CNF over predicates
- Transition relation T: program as SMT formula
- state s: concrete predecessor of bad state

Check consecution:

$$F_1 \land \neg s \land T \Rightarrow \neg s'$$

But what if abstract consecution fails?

But what if abstract consecution fails?
Abstract Consecution Failure

\[F_1 \land \lnot \hat{s} \land T \Rightarrow \lnot \hat{s}' \ \times \]

\[F_1 \land \lnot s \land T \Rightarrow \lnot s' \ \checkmark \]

Then \(\hat{s} \) has a concrete predecessor \(t \in F_1 \) that does not lead to \(s \) in one step.
Abstract Consecution Failure

\[F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}' \quad \text{X} \]

\[F_1 \land \neg s \land T \Rightarrow \neg s' \quad \text{✓} \]

Then \(\hat{s} \) has a concrete predecessor \(t \in F_1 \) that does not lead to \(s \) in one step.

► Our abstract domain is too imprecise
Part III: Craig Interpolation
What is a Craig Interpolant?

Craig interpolant I for formula $A \Rightarrow B$:

- $A \Rightarrow I$ and $I \Rightarrow B$
- all non-logical symbols in I occur in A as well as in B
What is a Craig Interpolant?

Craig interpolant I for formula $A \implies B$:

- $A \implies I$ and $I \implies B$
- all non-logical symbols in I occur in A as well as in B

Can be provided by contemporary SMT solvers for many theories
Refinement for Abstract Consecution Failure

\[F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}' \ x \]

\[F_1 \land \neg s \land T \Rightarrow \neg s' \ \checkmark \]

How to save the day with interpolants:
Refinement for Abstract Consecution Failure

\[F_1 \land \neg \hat{s} \land T \implies \neg \hat{s}' \]

How to save the day with interpolants:
Refinement for Abstract Consecution Failure

\[F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}' \]

How to save the day with interpolants:

1. Compute interpolant \(R' \)
 - \(F_1 \land \neg s \land T \Rightarrow R' \)
 - \(R' \Rightarrow \neg s' \)
Refinement for Abstract Consecution Failure

\[F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}' \]

How to save the day with interpolants:

1. Compute interpolant \(R' \)
 - \(F_1 \land \neg s \land T \Rightarrow R' \)
 - \(R' \Rightarrow \neg s' \)

2. Add \(\neg R \) to the abstract domain
 - Note: \(s \Rightarrow \neg R \), therefore \(\hat{s} \land \neg R \) is new abstraction of \(s \)
Refinement for Abstract Consecution Failure

\[F_1 \land \neg \hat{s} \land T \Rightarrow \neg \hat{s}' \]

\[\begin{array}{c}
A \\
F_1 \land \neg s \land T \Rightarrow \neg s' \\
B
\end{array} \]

How to save the day with interpolants:

1. Compute interpolant \(R' \)
 - \(F_1 \land \neg s \land T \Rightarrow R' \)
 - \(R' \Rightarrow \neg s' \)

2. Add \(\neg R \) to the abstract domain
 - Note: \(s \Rightarrow \neg R \), therefore \(\hat{s} \land \neg R \) is new abstraction of \(s \)
Refinement for Abstract Consecution Failure

\[F_1 \land (\neg \hat{s} \lor R) \land T \Rightarrow (\neg \hat{s}' \lor R') \]

\[F_1 \land \neg s \land T \Rightarrow \neg s' \]

How to save the day with interpolants:

1. Compute interpolant \(R' \)
 - \(F_1 \land \neg s \land T \Rightarrow R' \)
 - \(R' \Rightarrow \neg s' \)

2. Add \(\neg R \) to the abstract domain
 - Note: \(s \Rightarrow \neg R \), therefore \(\hat{s} \land \neg R \) is new abstraction of \(s \)
Refinement IC3 Style

Refinement via Craig Interpolation

▶ without unrolling! (unlike most other SMC approaches)
▶ therefore extremely light-weight
Refinement IC3 Style

Refinement via Craig Interpolation
 ▶ without unrolling! (unlike most other SMC approaches)
 ▶ therefore extremely light-weight

Also: Refinement can be *delayed!*
 ▶ Spurious state may be eliminated later without refinement
Conclusion: IC3 + Predicate Abstraction + Interpolation
Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:
- on INVGEN, DAGGER, “Beautiful Interpolants” benchmarks
 - using mostly linear arithmetic
- solve substantially more problems than CPAChecker
 - details in our CAV’14 paper!
- delaying refinement pays off (evaluated several strategies)
Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:
- on INVGEN, DAGGER, “Beautiful Interpolants” benchmarks
 - using mostly linear arithmetic
 - solve substantially more problems than CPAChecker
 - details in our CAV’14 paper!
- delaying refinement pays off (evaluated several strategies)

Lessons learned:
- Induction focus of IC3 successfully transferred to software
- Predicate abstraction in this setting is cheap
- Refinement doesn’t require unrolling!