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Motivation

Prevent bad things from happening

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 2 / 44



Safety Properties, Assertions

A certain bad thing is not supposed to happen
≡

assert(¬bad thing)
≡

safety / reachability property

Assertions:

Supported by main-stream languages such as ANSI-C, C++, Java

Widely accepted by programmers

Easy to generate (buffer overflows, division by 0, etc.)

Prove safety of program or find counterexample using Model Checking
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Outline

Part I: Interpolant-based model checking
Background (predicate transformers, interpolants, safety invariants)
Example

Part II: An interpolating decision procedure
A proof-generating decision procedure
Deriving interpolants from proofs
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Hoare Triples

Program assertions represented by predicates

{P} instruction {Q}

“if P holds, Q will hold after instruction terminates”

Example of a Hoare rule:

{P[x/expr ]} x:=expr {P}
assignment

Alternative view: Instructions represented by predicates

P(x) ∧ T (x , x ′) ⇒ Q(x ′)
(x = 5) ∧ (x ′ = x + 1) ⇒ (x ′ 6= 5)
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Predicate Transformers

Strongest post-condition:

{P} x := expr; {Q} Q ≡ (∃x .P ∧ x ′ = expr)
{P} [expr] {Q} Q ≡ P ∧ expr

Weakest pre-condition:

{P} x := expr; {Q} P ≡ Q[x/expr]
{P} [expr] {Q} P ≡ expr ⇒ Q

Composition rule for two sub-paths π1 and π2:

{P} π1 {Q}, {Q} π2 {R}
{P} π1;π2 {R}

composition

Loops: Fixed-point computation (cf. Dijkstra)
“good invariants” are hard to find
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Feasible paths

SP

WP

assert(x>y)

x:=y+1

y:=x[x>0]

SP: (x > 0) ∧ y = x WP: y + 1 > y
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Infeasible paths

SP

WP

assert(x=y)x:=zz:=y+1[x>0]

SP: (x > 0)∧ z = y +1 WP: z = y

(z = y +1)∧ (z = y) ⇒ false
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Infeasible paths

SP

WP

assert(x=y)x:=zz:=y+1[x>0]

SP: (x > 0)∧ z = y +1 WP: z = y (z = y +1)∧ (z = y) ⇒ false
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Infeasible paths (continued)

SP

WP

assert(x=y)[x>0] z:=y+1 x:=z

z≠y

SP: (x > 0) ∧ z = y + 1

⇒ z 6= y

WP: z = y
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Infeasible paths (continued)

SP

WP

assert(x=y)[x>0] z:=y+1 x:=z

z≠y

SP: (x > 0) ∧ z = y + 1 ⇒ z 6= y WP: z = y
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What is a Craig interpolant?

“Traditional” definition [William Craig, 57]:
A ⇒ I ⇒ C
all non-logical symbols in I occur in A as well as in C

A

C

I

B=¬C
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What is a Craig interpolant?

Common definition for automated verification:
A ⇒ I and I ∧ B inconsistent
all non-logical symbols in I occur in A as well as in B

C

I

B=¬C

“bad 
     states”

“reachable”
A
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. . . and how can we apply it for verification?

Over-approximation of reachable safe states in a program:

T`: transition function for each location ` ∈ {1, 2, 3, . . .}

T1(x1, x2) ∧ T2(x2, x3) symbolic representation of (infeasible) path

T1(x1, x2) ⇒ I(x2) I(x2)∧ T2(x2, x3) inconsistent

T1

T2 T3
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Safety Invariant, Covered Nodes

Safety Invariant: I ∧ T ⇒ I′ and “bad” locations are labelled “false”
If I3 ⇒ I2 then the node labelled “I3” and its successors are covered

I3

I1

I2

I4
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A small example: Wegner’s bit-counting algorithm.

y:=x; c:=0;
while (y 6= 0) {

y:=y & (y-1);
c:=c+1;
assert(x ≥ y);

}

Representation as control flow graph (CFG):

y:=x c:=0

[y6=0]

[y=0]

y:=y&(y-1)

c:=c+1

assert(y≤x)
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Unwinding the loop once. . .

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]
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An inconsistent formula representing an infeasible path

x=y [y≠0] y’=y&(y-1) [¬(x≥y’)]

(x = y) ∧ (y 6= 0) ∧ (y ′ = y&(y − 1)) ∧ (¬(x ≥ y ′))

Step SP ITP ¬WP
1 x = y x = y (x ≥ y&(y − 1)) ∨ (y = 0)

2

x = y ∧ y 6= 0 x = y (x ≥ y&(y − 1))

3

y ′ = x&(x − 1) ∧ x 6= 0 x ≥ y ′ x ≥ y ′

4

false false false
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An inconsistent formula representing an infeasible path
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A small example (now with interpolants)

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]

x=y

x≥y’

true

false
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Unwinding the CFG further. . .

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]

x=y

x≥y’

true

false

x=y

y’’=y’&(y’-1)

[y’≠0]

[¬(x≥y’’)]
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Unwinding the CFG further (continued)

Path prefix:

(x = y)∧(y 6= 0)∧(y ′ = y&(y−1))∧(x ≥ y ′)∧(y ′ 6= 0)∧(y ′′ = y ′&(y ′−1))

Assertion:
¬(x ≥ y ′′)

Interpolant:
x ≥ y ′′

follows from:

x ≥ y ′, (y ′′ = y ′&(y ′ − 1)) implies (y ′ ≥ y ′′), and transitivity

Strongest post-condition: (by means of substitution)

y ′′ = (x&(x − 1))& ((x&(x − 1))− 1) ∧ (x 6= 0) ∧ (x & (x − 1) 6= 0)
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Succeeded to prove safety!

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]

x=y

x≥y’

true

false

x=y

y’’=y’&(y’-1)

[y’≠0]

[¬(x≥y’’)]

false

x≥y’’
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Conditions on Interpolants

Given a sequence of transitions T0 ∧ T1 ∧ . . . ∧ Tn

let Ii be the interpolant for

T0 ∧ T1 ∧ . . . ∧ Ti−1 and Ti ∧ . . . ∧ Tn−1 ∧ Tn

then it has to hold that

I0 = true

In+1 = false

∀i ∈ {1, n} . Ii ∧ Ti ⇒ Ii+1

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 22 / 44



How is the transition function T encoded?

Currently:

Boolean connectives

Equality

Uninterpreted functions

Difference logic, linear arithmetic

Problem: Programs have bit-vector semantics and bit-vector operations.

a > b + 2 ∧ a ≤ b

{a 7→ 2, b 7→ 2}

Unsatisfiable in the theory of linear arithmetic (R, Z, . . . )

Satisfiable if a and b are 2-bit bit-vectors
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Proposed solution

Provide proof-generating decision procedure for conjunctions of
Strict and weak inequalities (<,≤)
Equalities and dis-equalities (=, 6=)
both with uninterpreted functions (UF)

Deal with theory specific terms in an ad-hoc manner
Constant propagation
Simplify ground terms (bit-level accurate)
Limited application of theory axioms

Propositional structure can be dealt with using SMT and [Yorsh + Musuvathi, 05]
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Content of the rest of this talk (Part II)

A graph-based
decision procedure
for ≥, >, =, ≠ 

and 
uninterpreted
functions

Ad-hoc support for
selected 
theory axioms

Construction of
interpolants from
proofs

x≠x+2
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Overview: Proof-generating Decision Procedure

x=z
y=z+x

f(y)=f(z+z)

>, ≥

=, ≠

f(x)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 26 / 44



Weak and strong inequalities

Add all facts s < t and s ≤ t to directed graph G
Compute Strongly Connected Components (SCCs)

≥≥

≥

≥≥
≥

>

>

>

A B

x y

x y

u v

≥

≥

≥

≤

=

=

If SCC contains an edge s < t :
find shortest path from s to t
report contradictory cycle

Otherwise: For each s ≤ t in SCC
add s = t as a fact
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Equalities and Dis-Equalities

Add all facts s = t to graph-based Union-Find data structure U
Modify Find-operation / path-compression:

remember the 2 edges entailing shortcut

Modify Union-operation:
triangulate sub-graph s – rep(s) – rep(t) – t

Perform query for each s 6= t

s

u

v
rep(s, u, v)

2

1

1

3

2

s

rep(s) rep(t)

t
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Uninterpreted Functions

Proof-producing congruence closure [Nieuwenhuis, Oliveras 05]

Observation:

t s

c

⇒ f(t) = f(s)
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Uninterpreted Functions (continued)

Based on Union-Find data structure U :
Maintain a use list of encountered terms f (t) that “use” c

t s

c≡ rep(s, t)

use list[c]=[ f(t), g(s), . . . ]

For each f (c)

lookup(f , c) =

{
f (t) an element which maps to f (c)
⊥ otherwise

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 30 / 44



Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:

add (f (t) = f (s)) to U if lookup(f , c′) = f (s)

lookup(f , c′)
def
= f (t) if lookup(f , c′) = ⊥

Update use list accordingly.

Example:
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Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:

add (f (t) = f (s)) to U if lookup(f , c′) = f (s)

lookup(f , c′)
def
= f (t) if lookup(f , c′) = ⊥

Update use list accordingly.

Example:
f(x)

f(y)

z

x

use list[z] = [ f(z) ]
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Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:
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Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:

add (f (t) = f (s)) to U if lookup(f , c′) = f (s)

lookup(f , c′)
def
= f (t) if lookup(f , c′) = ⊥

Update use list accordingly.

Example:
f(x)

f(y)

f(z)
z

x

use list[z] = [ ]
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Constant Propagation and Simplification

For each equivalence class in U
Track theory-specific constants (e.g., numerical) in U
W.l.o.g., one constant per equivalence class (otherwise contradictory)

For sub-term-closed pool of expressions encountered so far:
substitute constants for sub-terms
simplify and add respective equivalence, e.g., (x&0) = 0
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Limited Term Rewriting, Application of Axioms

Apply term-rewriting rules, e.g.,

c 6= 0 mod 2m

(x + c) 6= x
c = 0 mod 2m

(x + c) = x
1 ≤ c < m

(t<<c) = (2c · t)

(for m-bit variables x) if respective terms are encountered.

Apply theory-specific axioms, e.g.,

t1 = t2 & t3
t1 ≤ t2 t1 ≤ t3

t1 = t2 | t3
t1 ≥ t2 t1 ≥ t3

t1 + t2 = t1
t2 = 0

Important: These rules do not introduce non-logical symbols
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Derived edges, Proof of inconsistency

Keep track of premises for inferred equivalences!

f(x) f(y)

x y=

x y

x y

u v

≥

≥

≥

≤

=

=

A proof of inconsistency consists of

a contradictory cycle (contains ≤ and < or = and exactly one 6=)

premises for all derived edges

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 34 / 44



Interpolation

Intuition: Split proof into facts contributed by A and B, respectively!

x y

x y

u v

≥

≥

≥

≤

=

=

6=
(x ≥ y) ∧ (y ≥ v) (v ≥ u) ∧ (u ≥ x) ∧ (x 6= y)

A fact is a maximal path in which all edges have the same colour:

x ≥ v , v ≥ x , x = y , x 6= y
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Interpolation (continued)

An interpolant can be seen as assume-guarantee reasoning:

A guarantees x = y iff B does not violate v ≥ x

x y

x y

u v

≥

≥

≥

≤

=

=

6=

Interpolant:

x = y ∨ ¬(v ≥ x)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 36 / 44



Interpolation (continued)

Split the proof of inconsistency into two components I and J :
J : A set of tuples 〈P, t = s〉

P contains “all A-coloured facts needed to justify t = s”
P ⊆ I

I: A set of A-”coloured” facts.
J contains “all B-coloured facts needed to justify (t = s) ∈ I”
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Interpolation and Premises

B-premise of (t = s):

“all B-coloured facts needed to justify (t = s)”

Example:

= 6=
v

f(x) f(g(y))

x g(y)
u g(z)

z
yw

B-premise(f(x)=f(g(y))) = {u = g(z), w = y}
Definition of A-premise is symmetric
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Interpolation and Premises (continued)

Conditions:

f(x) f(y)

x y=

x y

x y

u v

≥

≥

≥

≤

=

=

Premises:

A-premise (vi
=→ vj)

def
=

(A-condition for vi
=→ vj) ∪⋃

{A-premise (vn → vm) | vn → vm ∈ (B-condition for vi
=→ vj)}
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Interpolant for I and J

I def
=

∧
vi

B→vj∈I

(ti B tj) ∨
∨

〈P,vn
B→vm〉∈J

 ∧
(vi

BP→vj)∈P

(ti BP tj)

 ∧ ¬(tn B tm)

︸ ︷︷ ︸
“challenges” B to “break the contract”

B can either

try to pretend that one ¬(tn B tm) holds and contradict itself

admit that all (tn B tm) hold and contradict
∧

vi
B→vj∈I

(ti B tj)
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Example revisited

(x = y)∧(y 6= 0)∧(y ′ = y&(y−1))∧(x ≥ y ′)∧(y ′ 6= 0)∧(y ′′ = y ′&(y ′−1))

¬(x ≥ y ′′)

y′′ y′

y′′ y′&(y′ − 1)

≥>

≤

x

Interpolant: x ≥ y ′′ ∨ x ≥ y ′′
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Conclusion

New interpolating decision procedure
algorithmic description (vs. axiomatic in [McMillan 05])
based on work by [Nieuwenhuis, Oliveras 05], McMillan, [Fuchs, Goel,
Grundy, Krstić, Tinelli 09].

Sound for bit-vector semantics (not a bit-vector decision procedure!)

“Good-enough” philosophy:
Avoid using a complete decision system for arithmetic in favour of
ad-hoc treatment of ground terms

Implemented interpolation-based model checker WOLVERINE

Decision procedure is sufficient for typical Windows device driver
examples (kbfiltr, floppy, mouclass, . . . )
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Outlook

Interpolant Strength
V. D’Silva, D. Kroening, M. Purandare, G. Weissenbacher
VMCAI, January 2010, Madrid (co-located with POPL)

Generating interpolants of different strength wrt. the implication order
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Computing I and J

1: let G(VA ∩ VB, EA ∪ EB) be the factorised and contracted proof
2: let EC be the facts in the contradictory cycle of G
3: W := EC , I := ∅, J := ∅
4: while (W 6= ∅) do
5: remove vi → vj from W
6: if vi → vj is B-coloured then
7: P := A-premise (vi → vj)
8: J := J ∪ {〈P, vi → vj〉}
9: else

10: P := B-premise (vi → vj)
11: I := I ∪ {vi → vj}
12: end if
13: W := W ∪ P
14: end while
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