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Prevent bad things from happening

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF + <, < Macau, 6" of January, 2010



Safety Properties, Assertions

A certain bad thing is not supposed to happen

assert(—bad thing)

safety / reachability property
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Safety Properties, Assertions

A certain bad thing is not supposed to happen

assert(—bad thing)

safety / reachability property

Assertions:
@ Supported by main-stream languages such as ANSI-C, C++, Java

@ Widely accepted by programmers
@ Easy to generate (buffer overflows, division by 0, etc.)
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Safety Properties, Assertions

A certain bad thing is not supposed to happen

assert(—bad thing)

safety / reachability property

Assertions:

@ Supported by main-stream languages such as ANSI-C, C++, Java
@ Widely accepted by programmers
@ Easy to generate (buffer overflows, division by 0, etc.)

Prove safety of program or find counterexample using Model Checking
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@ Part I: Interpolant-based model checking
o Background (predicate transformers, interpolants, safety invariants)
o Example

@ Part Il: An interpolating decision procedure

o A proof-generating decision procedure
o Deriving interpolants from proofs
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Hoare Triples

@ Program assertions represented by predicates
@ {P} instruction {Q}

“if P holds, Q will hold after instruction terminates”
@ Example of a Hoare rule:

{P[X/expr]} x:=expr {P} ass'gnment
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Hoare Triples

@ Program assertions represented by predicates
@ {P} instruction {Q}

“if P holds, Q will hold after instruction terminates”
@ Example of a Hoare rule:

{P[X/expr]} x:=expr {P} ass'gnment

@ Alternative view: Instructions represented by predicates

P(x) A T(x,x") =  Qx)
(x=5) AN (X=x+1) = (X' #5)
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Predicate Transformers

@ Strongest post-condition:
{P} x:=expr; {Q} Q= (Ix.PAX =expr)
{P} [expr] {Q} Q= P Aexpr
@ Weakest pre-condition:
{P} x:=expr; {Q} P = Q[x/expr]
{P} [expr] {Q} P=expr=Q

@ Composition rule for two sub-paths 7y and mo:

{P} m {Q}, {Q} m2 {R}
{P} m1;m2 {R}

@ Loops: Fixed-point computation (cf. Dijkstra)
“good invariants” are hard to find

composition
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Feasible paths

[x>0] Y=Xx assert(x>y)

SP:(x>0)Ay=x WP:y+1>y
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Infeasible paths

[x>0] Z=y+1 SP =z assert(x=y)

SP:(x >0)Az=y+1 WP:z=y
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Infeasible paths

[x>0] Z=y+1 SP =z assert(x=y)

SP:(x >0)Az=y+1 WP:z=y (z=y+1)A(z=y) = false
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Infeasible paths (continued)

[x>0]

SP:(x>0)Az=y+1 WP:z=y
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Infeasible paths (continued)

[x>0]

SP:(x>0)ANz=y+1=>2z#y WP:z=y
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What is a Craig interpolant?

“Traditional” definition [William Craig, 57]:
e A=1=2C
@ all non-logical symbols in / occur in A as well asin C
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What is a Craig interpolant?

Common definition for automated verification:
@ A= and [|A Binconsistent
@ all non-logical symbols in / occur in A as well asin B
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....and how can we apply it for verification?

Over-approximation of reachable safe states in a program:
@ T,: transition function for each location ¢ € {1,2,3,...}
@ Ti(x1,X2) A T2(x2, X3) symbolic representation of (infeasible) path

o T (X1 , Xg) = I(Xg) /(Xg) VAN T2(X2, X3) inconsistent
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Safety Invariant, Covered Nodes

e Safety Invariant: / A T = I’ and “bad” locations are labelled “false”
o If k = L then the node labelled “/s” and its successors are covered
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A small example: Wegner’s bit-counting algorithm.

y:=x; c:=0;
while (y # 0) {

yi=y& (y-1);
1=c+1;
assert(x > y);

¥
Representation as control flow graph (CFG):

y:=y&(y-1)
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Unwinding the loop once. ..

y’=y&(y-
“

[02y)], 24 9 WL ®
¥,

(o] (O ®=
*2s®
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An inconsistent formula representing an infeasible path

Xzy gpg [y#01 s y’=y&(y-1) [T (x2y’)]

r;o—rﬁ»o—ﬁ—a:o‘—-—a‘»o

*as?® *as®

X=YAY#OANY =y&(y—1))A(=(x>y))

"Step | sp ] WP |
3 X—y X=y | (x=y&({y—1))V(y=0)
2
3
4
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An inconsistent formula representing an infeasible path

Xzy gpg [y#01 s y’=y&(y-1) [T (x2y’)]

r;o—rﬁ»o—ﬁ—a:o‘—-—a‘»o

*as?® *as®

X=YAY#OANY =y&(y—1))A(=(x>y))

| Step | SP | ITP_ | -WP |
1 X=y x=y | (x>y&({y—-1))V(y=0)
X=yAy#0 X=y (x > y&(y —1))

2
3
4
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An inconsistent formula representing an infeasible path

Xzy gpg [y#01 s y’=y&(y-1) [T (x2y’)]

cr+§hrr€a$a4r€535€rresaio

*as?® *as®

X=YAY#OANY =y&(y—1))A(=(x>y))

| Step | SP | ITP | -WP |
1 X=y x=y | (x>y&(y—-1))V(y=0)
2 X=yANy#0 X=y (x > y&(y —1))
3 | Y =x&(x—1)AX#0 | x>y x=y
4
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An inconsistent formula representing an infeasible path

&(y-1) [C(x2y’)]
X<y gn Iy#0]1 o, =y .
r;o—l—go—ﬁ'a»o—-—a»o
*as? *ae® . ,'

X=YAY#OANY =y&(y—1))A(=(x>y))

| Step | SP | ITP | -WP |
1 x=y =y | (x>y&(y—-1)V(y=0)
2 X=yANy#0 =y (x = y&(y — 1))
3 | Y =x&Kx—-1)Ax#£0| x>y x>y
4 false false false
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An inconsistent formula representing an infeasible path

y'=y&(y-1 ) ["(X>y’)]
X<y gn [Y#)] .o R
*a ‘v *ae® . ,'
X=y xX=y x2y’ false

X=YAY#OANY =y&(y—1))A(=(x>y))

| Step | SP | ITP | -WP |
1 x=y =y | (x>y&(y—-1)V(y=0)
2 X=yANy#0 =y (x = y&(y — 1))
3 | Y =x&(x—-1)Ax#£0| x>y x>y
4 false false false
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A small example (now with interpolants)

et
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Unwinding the CFG further. ..

y’=y&(y-1)

®
‘] (I
as’ O N
X2y’ ¢ % \
“
[02y)], 7y $_ [0V ®
“ v, false
n o (O =
v#ol Te) .

o RIN
‘s

yr=y'&(y-1)’ 8 "["(XZY”)]' as?

el
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Unwinding the CFG further (continued)

Path prefix:

(x = YIANY # OAY = y&(y—1)A(x = Y INY # A" = y'&(y'-1))

Assertion:
(x> y")
Interpolant:
X > y//
follows from:

x>y, (Y =y'&(y —1))implies (y' > y"), and transitivity
Strongest post-condition: (by means of substitution)

Y= (x&(x = 1)) & ((x&(x — 1)) = 1) A(x £ 0) A (x& (x — 1) #0)

6! of January, 2010 20/44
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Succeeded to prove safety!

<
> L 9 -
=y &(y-1 exit
y y, 1) 725* *as
X2y’ o9
n

6‘ “ l‘ false
n % o=
‘s >

yr=ya(y-1)’ 8 2 xzyma e
x2y”
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Conditions on Interpolants

@ Given a sequence of transitions To ATy A ... A Ty
@ let /; be the interpolant for

ToANTIA . ..NANTi—4 and TiN...NTh_1 ATy
@ then it has to hold that

Iy = true
Iny1 = false
Vi e {1,[’7}./,'/\ Ti = liyq
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How is the transition function T encoded?

Currently:
@ Boolean connectives
@ Equality
@ Uninterpreted functions
@ Difference logic, linear arithmetic

Problem: Programs have bit-vector semantics and bit-vector operations.

a>b+2na<b

@ Unsatisfiable in the theory of linear arithmetic (R, Z, ...)
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How is the transition function T encoded?

Currently:
@ Boolean connectives
@ Equality
@ Uninterpreted functions
@ Difference logic, linear arithmetic

Problem: Programs have bit-vector semantics and bit-vector operations.

a>b+2Na<b {a—2b—2}

@ Unsatisfiable in the theory of linear arithmetic (R, Z, ...)
@ Satisfiable if a and b are 2-bit bit-vectors
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Proposed solution

@ Provide proof-generating decision procedure for conjunctions of
e Strict and weak inequalities (<, <)
e Equalities and dis-equalities (=, #)
@ both with uninterpreted functions (UF)
@ Deal with theory specific terms in an ad-hoc manner
e Constant propagation
e Simplify ground terms (bit-level accurate)
e Limited application of theory axioms

Propositional structure can be dealt with using SMT and [Yorsh + Musuvathi, 05]
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Content of the rest of this talk (Part II)

G. Weissenbacher (Oxford, ETHZ)

Interpolation for EUF +

D¢

Macau, 6 of January, 2010
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Overview: Proof-generating Decision Procedure
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Weak and strong inequalities

@ Add all facts s < tand s < t to directed graph G
@ Compute Strongly Connected Components (SCCs)

@ If SCC contains an edge s < t:
o find shortest path from sto t
e report contradictory cycle

@ Otherwise: For each s < tin SCC
@ add s =t as a fact

elh
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Equalities and Dis-Equalities

@ Add all facts s = t to graph-based Union-Find data structure U/
@ Modify Find-operation / path-compression:
e remember the 2 edges entailing shortcut
@ Modify Union-operation:
o triangulate sub-graph s —rep(s) —rep(f) — t
@ Perform query for each s # t

ep(s) 3 rep(t)

v

P
u
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Uninterpreted Functions

@ Proof-producing congruence closure [Nieuwenhuis, Oliveras 05]
@ Observation:
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Uninterpreted Functions (continued)

@ Based on Union-Find data structure U:
e Maintain a use_list of encountered terms f(t) that “use” ¢

c=rep(s,t)

use_list[c]=[{(t),g(s),...]
t S
e For each f(c)

f(t) an element which maps to f(c
Lookup(f, ¢) = { JE : otherwise ©
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Uninterpreted Functions (continued)

@ If the representative constant ¢ changes to ¢/
e Forall f(t) € use_list[c]:

add (f(t) = f(s)) toU if Lookup(f,c’) = f(s)
lookup(f, c’) 4 f(t) if lookup(f,c’) =L

Update use_list accordingly.
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Uninterpreted Functions (continued)

@ If the representative constant ¢ changes to ¢’
o Forall f(t) € use_list[c]:

add (f(t) = f(s)) toU if Lookup(f,c’) = f(s)
lookup(f,c’) o f(t)  if Lookup(f,c’) = L

Update use_1ist accordingly.
@ Example:

®
() use_list[z] = [ f(2)]
f()

2@
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Uninterpreted Functions (continued)

@ If the representative constant ¢ changes to ¢’
o Forall f(t) € use_list[c]:

add (f(t) = f(s)) toU if Lookup(f,c’) = f(s)
lookup(f,c’) o f(t)  if Lookup(f,c’) = L

Update use_1ist accordingly.

() g use_list[z] = [ f(2)]
fy) &

@ Example:
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Uninterpreted Functions (continued)

@ If the representative constant ¢ changes to ¢’
o Forall f(t) € use_list[c]:

add (f(t) = f(s)) toU if Lookup(f,c’) = f(s)
lookup(f,c’) o f(t)  if Lookup(f,c’) = L

Update use_1ist accordingly.

@ Example:
f(z) z
ﬁ/f@ g use list[z] = ]
f) *
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Constant Propagation and Simplification

@ For each equivalence class in

o Track theory-specific constants (e.g., numerical) in U
e W.l.o.g., one constant per equivalence class (otherwise contradictory)

@ For sub-term-closed pool of expressions encountered so far:

@ substitute constants for sub-terms
e simplify and add respective equivalence, e.g., (x&0) = 0
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Limited Term Rewriting, Application of Axioms

@ Apply term-rewriting rules, e.g.,

¢ # 0mod2™ ¢ =0mod2™ 1<ec<m
(x+c)#x (x+c)=x (t<<c) = (2¢-t)

(for m-bit variables x) if respective terms are encountered.

@ Apply theory-specific axioms, e.g.,

h=bé&ts f1=t2’t3 h+b=1t
h<t H<Hh h>t t>10h =0

Important: These rules do not introduce non-logical symbols

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF + <, < Macau, 6 of January, 2010



Derived edges, Proof of inconsistency

@ Keep track of premises for inferred equivalences!

<
U v
:c./\.y =
AN ~ T %5 ¥ Y
\. ./ \ /
f(x) f(y) v y

A proof of inconsistency consists of

@ a contradictory cycle (contains < and < or = and exactly one #)
@ premises for all derived edges
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Interpolation

@ Intuition: Split proof into facts contributed by A and B, respectively!

xzy)nlyzv)  (vzuruzx)A(x#y)

@ A factis a maximal path in which all edges have the same colour:

X>V, V>X, X=VY, XF£Y
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Interpolation (continued)

@ An interpolant can be seen as assume-guarantee reasoning:

’ A guarantees x = y iff B does not violate v > x‘

@ Interpolant:

x=y V (v>x)
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Interpolation (continued)

Split the proof of inconsistency into two components 7 and 7:
@ J:Asetoftuples (P,t=s)
@ P contains “all A-coloured facts needed to justify t = s”
e PCT

@ 7: A set of A-"coloured” facts.
e 7 contains “all B-coloured facts needed to justify (t = s) € Z”
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Interpolation and Premises

@ B-premise of (f = s):
“all B-coloured facts needed to justify (t = s)”

@ Example:

B-premise(f(x)=f(g(y)) = {u=g(2), w =y}
@ Definition of A-premise is symmetric
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Interpolation and Premises (continued)

@ Conditions:

@ Premises:
def

A-premise (v; = v;
(A-condition for v;
U{A-premise (Vn

) U

— Vp) | Vh —

<
u v
Vv N
=
v \ /' y
=%

Vm € (B-condition for v; = v})}

elh
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Interpolant for and

1€ A (tet) v \ AN (tispt) | A (th > tn)

V,'E)V/'EI <P,VnZVm>€j (V,'TV]’)EP

N /

“challenges” B to “break the contract”

B can either
@ try to pretend that one — (¢, > t,) holds and contradict itself
@ admit that all (f, > tn) hold and contradict A\ - veI(ti > t)
i—Vi
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Example revisited

(x> y")
y//./_\.y/&(y/ _ 1)
v v

Interpolant: x > y" v x > y”
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Conclusion

@ New interpolating decision procedure
e algorithmic description (vs. axiomatic in [McMillan 05])
e based on work by [Nieuwenhuis, Oliveras 05], McMillan, [Fuchs, Goel,
Grundy, Krsti¢, Tinelli 09].

@ Sound for bit-vector semantics (not a bit-vector decision procedure!)
@ “Good-enough” philosophy:
Avoid using a complete decision system for arithmetic in favour of
ad-hoc treatment of ground terms

o Implemented interpolation-based model checker WOLVERINE
o Decision procedure is sufficient for typical Windows device driver
examples (kbfiltr, floppy, mouclass, ...)
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Outlook

@ Interpolant Strength
V. D’Silva, D. Kroening, M. Purandare, G. Weissenbacher

VMCAI, January 2010, Madrid (co-located with POPL)
@ Generating interpolants of different strength wrt. the implication order
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Computing and

1: let G(Va N Vi, E4 U Eg) be the factorised and contracted proof
2: let E¢ be the facts in the contradictory cycle of G

3W:i=Ec, T:=0,7:=0

4: while (W # 0) do

5 remove v; — v; from W

6: if vi — v; is B-coloured then
7
8

P := A-premise (v; — vj)
J =T U{P,vi — v}

9: else

10: P := B-premise (v; — Vv;)
11: IT:=7U{vi— v}

12: end if

13: W =WUP
14: end while

el
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