
An Interpolating Decision Procedure for Transitive
Relations with Uninterpreted Functions

Georg Weissenbacher ()

University of Oxford and ETH Zurich

UNU IIST, Macau, 6th of January, 2010

Motivation

Prevent bad things from happening

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 2 / 44

Safety Properties, Assertions

A certain bad thing is not supposed to happen
≡

assert(¬bad thing)
≡

safety / reachability property

Assertions:

Supported by main-stream languages such as ANSI-C, C++, Java

Widely accepted by programmers

Easy to generate (buffer overflows, division by 0, etc.)

Prove safety of program or find counterexample using Model Checking

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 3 / 44

Safety Properties, Assertions

A certain bad thing is not supposed to happen
≡

assert(¬bad thing)
≡

safety / reachability property

Assertions:

Supported by main-stream languages such as ANSI-C, C++, Java

Widely accepted by programmers

Easy to generate (buffer overflows, division by 0, etc.)

Prove safety of program or find counterexample using Model Checking

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 3 / 44

Safety Properties, Assertions

A certain bad thing is not supposed to happen
≡

assert(¬bad thing)
≡

safety / reachability property

Assertions:

Supported by main-stream languages such as ANSI-C, C++, Java

Widely accepted by programmers

Easy to generate (buffer overflows, division by 0, etc.)

Prove safety of program or find counterexample using Model Checking

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 3 / 44

Outline

Part I: Interpolant-based model checking
Background (predicate transformers, interpolants, safety invariants)
Example

Part II: An interpolating decision procedure
A proof-generating decision procedure
Deriving interpolants from proofs

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 4 / 44

Hoare Triples

Program assertions represented by predicates

{P} instruction {Q}

“if P holds, Q will hold after instruction terminates”

Example of a Hoare rule:

{P[x/expr]} x:=expr {P}
assignment

Alternative view: Instructions represented by predicates

P(x) ∧ T (x , x ′) ⇒ Q(x ′)
(x = 5) ∧ (x ′ = x + 1) ⇒ (x ′ 6= 5)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 5 / 44

Hoare Triples

Program assertions represented by predicates

{P} instruction {Q}

“if P holds, Q will hold after instruction terminates”

Example of a Hoare rule:

{P[x/expr]} x:=expr {P}
assignment

Alternative view: Instructions represented by predicates

P(x) ∧ T (x , x ′) ⇒ Q(x ′)
(x = 5) ∧ (x ′ = x + 1) ⇒ (x ′ 6= 5)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 5 / 44

Predicate Transformers

Strongest post-condition:

{P} x := expr; {Q} Q ≡ (∃x .P ∧ x ′ = expr)
{P} [expr] {Q} Q ≡ P ∧ expr

Weakest pre-condition:

{P} x := expr; {Q} P ≡ Q[x/expr]
{P} [expr] {Q} P ≡ expr ⇒ Q

Composition rule for two sub-paths π1 and π2:

{P} π1 {Q}, {Q} π2 {R}
{P} π1;π2 {R}

composition

Loops: Fixed-point computation (cf. Dijkstra)
“good invariants” are hard to find

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 6 / 44

Feasible paths

SP

WP

assert(x>y)

x:=y+1

y:=x[x>0]

SP: (x > 0) ∧ y = x WP: y + 1 > y

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 7 / 44

Infeasible paths

SP

WP

assert(x=y)x:=zz:=y+1[x>0]

SP: (x > 0)∧ z = y +1 WP: z = y

(z = y +1)∧ (z = y) ⇒ false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 8 / 44

Infeasible paths

SP

WP

assert(x=y)x:=zz:=y+1[x>0]

SP: (x > 0)∧ z = y +1 WP: z = y (z = y +1)∧ (z = y) ⇒ false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 8 / 44

Infeasible paths (continued)

SP

WP

assert(x=y)[x>0] z:=y+1 x:=z

z≠y

SP: (x > 0) ∧ z = y + 1

⇒ z 6= y

WP: z = y

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 9 / 44

Infeasible paths (continued)

SP

WP

assert(x=y)[x>0] z:=y+1 x:=z

z≠y

SP: (x > 0) ∧ z = y + 1 ⇒ z 6= y WP: z = y

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 9 / 44

What is a Craig interpolant?

“Traditional” definition [William Craig, 57]:
A ⇒ I ⇒ C
all non-logical symbols in I occur in A as well as in C

A

C

I

B=¬C

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 10 / 44

What is a Craig interpolant?

Common definition for automated verification:
A ⇒ I and I ∧ B inconsistent
all non-logical symbols in I occur in A as well as in B

C

I

B=¬C

“bad
 states”

“reachable”
A

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 11 / 44

. . . and how can we apply it for verification?

Over-approximation of reachable safe states in a program:

T`: transition function for each location ` ∈ {1, 2, 3, . . .}

T1(x1, x2) ∧ T2(x2, x3) symbolic representation of (infeasible) path

T1(x1, x2) ⇒ I(x2) I(x2)∧ T2(x2, x3) inconsistent

T1

T2 T3

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 12 / 44

Safety Invariant, Covered Nodes

Safety Invariant: I ∧ T ⇒ I′ and “bad” locations are labelled “false”
If I3 ⇒ I2 then the node labelled “I3” and its successors are covered

I3

I1

I2

I4

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 13 / 44

A small example: Wegner’s bit-counting algorithm.

y:=x; c:=0;
while (y 6= 0) {

y:=y & (y-1);
c:=c+1;
assert(x ≥ y);

}

Representation as control flow graph (CFG):

y:=x c:=0

[y6=0]

[y=0]

y:=y&(y-1)

c:=c+1

assert(y≤x)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 14 / 44

Unwinding the loop once. . .

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 15 / 44

An inconsistent formula representing an infeasible path

x=y [y≠0] y’=y&(y-1) [¬(x≥y’)]

(x = y) ∧ (y 6= 0) ∧ (y ′ = y&(y − 1)) ∧ (¬(x ≥ y ′))

Step SP ITP ¬WP
1 x = y x = y (x ≥ y&(y − 1)) ∨ (y = 0)

2

x = y ∧ y 6= 0 x = y (x ≥ y&(y − 1))

3

y ′ = x&(x − 1) ∧ x 6= 0 x ≥ y ′ x ≥ y ′

4

false false false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 16 / 44

An inconsistent formula representing an infeasible path

x=y [y≠0] y’=y&(y-1) [¬(x≥y’)]

(x = y) ∧ (y 6= 0) ∧ (y ′ = y&(y − 1)) ∧ (¬(x ≥ y ′))

Step SP ITP ¬WP
1 x = y x = y (x ≥ y&(y − 1)) ∨ (y = 0)

2 x = y ∧ y 6= 0 x = y (x ≥ y&(y − 1))

3

y ′ = x&(x − 1) ∧ x 6= 0 x ≥ y ′ x ≥ y ′

4

false false false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 16 / 44

An inconsistent formula representing an infeasible path

x=y [y≠0] y’=y&(y-1) [¬(x≥y’)]

(x = y) ∧ (y 6= 0) ∧ (y ′ = y&(y − 1)) ∧ (¬(x ≥ y ′))

Step SP ITP ¬WP
1 x = y x = y (x ≥ y&(y − 1)) ∨ (y = 0)

2 x = y ∧ y 6= 0 x = y (x ≥ y&(y − 1))

3 y ′ = x&(x − 1) ∧ x 6= 0 x ≥ y ′ x ≥ y ′

4

false false false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 16 / 44

An inconsistent formula representing an infeasible path

x=y [y≠0] y’=y&(y-1) [¬(x≥y’)]

(x = y) ∧ (y 6= 0) ∧ (y ′ = y&(y − 1)) ∧ (¬(x ≥ y ′))

Step SP ITP ¬WP
1 x = y x = y (x ≥ y&(y − 1)) ∨ (y = 0)

2 x = y ∧ y 6= 0 x = y (x ≥ y&(y − 1))

3 y ′ = x&(x − 1) ∧ x 6= 0 x ≥ y ′ x ≥ y ′

4 false false false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 16 / 44

An inconsistent formula representing an infeasible path

x=y [y≠0] y’=y&(y-1) [¬(x≥y’)]

x=y x=y x≥y’ false

(x = y) ∧ (y 6= 0) ∧ (y ′ = y&(y − 1)) ∧ (¬(x ≥ y ′))

Step SP ITP ¬WP
1 x = y x = y (x ≥ y&(y − 1)) ∨ (y = 0)

2 x = y ∧ y 6= 0 x = y (x ≥ y&(y − 1))

3 y ′ = x&(x − 1) ∧ x 6= 0 x ≥ y ′ x ≥ y ′

4 false false false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 17 / 44

A small example (now with interpolants)

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]

x=y

x≥y’

true

false

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 18 / 44

Unwinding the CFG further. . .

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]

x=y

x≥y’

true

false

x=y

y’’=y’&(y’-1)

[y’≠0]

[¬(x≥y’’)]

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 19 / 44

Unwinding the CFG further (continued)

Path prefix:

(x = y)∧(y 6= 0)∧(y ′ = y&(y−1))∧(x ≥ y ′)∧(y ′ 6= 0)∧(y ′′ = y ′&(y ′−1))

Assertion:
¬(x ≥ y ′′)

Interpolant:
x ≥ y ′′

follows from:

x ≥ y ′, (y ′′ = y ′&(y ′ − 1)) implies (y ′ ≥ y ′′), and transitivity

Strongest post-condition: (by means of substitution)

y ′′ = (x&(x − 1))& ((x&(x − 1))− 1) ∧ (x 6= 0) ∧ (x & (x − 1) 6= 0)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 20 / 44

Succeeded to prove safety!

x=y

[y=0]

exit

[y≠0]

y’=y&(y-1)

[¬(x≥y’)][(x≥y’)]

x=y

x≥y’

true

false

x=y

y’’=y’&(y’-1)

[y’≠0]

[¬(x≥y’’)]

false

x≥y’’
G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 21 / 44

Conditions on Interpolants

Given a sequence of transitions T0 ∧ T1 ∧ . . . ∧ Tn

let Ii be the interpolant for

T0 ∧ T1 ∧ . . . ∧ Ti−1 and Ti ∧ . . . ∧ Tn−1 ∧ Tn

then it has to hold that

I0 = true

In+1 = false

∀i ∈ {1, n} . Ii ∧ Ti ⇒ Ii+1

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 22 / 44

How is the transition function T encoded?

Currently:

Boolean connectives

Equality

Uninterpreted functions

Difference logic, linear arithmetic

Problem: Programs have bit-vector semantics and bit-vector operations.

a > b + 2 ∧ a ≤ b

{a 7→ 2, b 7→ 2}

Unsatisfiable in the theory of linear arithmetic (R, Z, . . .)

Satisfiable if a and b are 2-bit bit-vectors

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 23 / 44

How is the transition function T encoded?

Currently:

Boolean connectives

Equality

Uninterpreted functions

Difference logic, linear arithmetic

Problem: Programs have bit-vector semantics and bit-vector operations.

a > b + 2 ∧ a ≤ b {a 7→ 2, b 7→ 2}

Unsatisfiable in the theory of linear arithmetic (R, Z, . . .)

Satisfiable if a and b are 2-bit bit-vectors

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 23 / 44

Proposed solution

Provide proof-generating decision procedure for conjunctions of
Strict and weak inequalities (<,≤)
Equalities and dis-equalities (=, 6=)
both with uninterpreted functions (UF)

Deal with theory specific terms in an ad-hoc manner
Constant propagation
Simplify ground terms (bit-level accurate)
Limited application of theory axioms

Propositional structure can be dealt with using SMT and [Yorsh + Musuvathi, 05]

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 24 / 44

Content of the rest of this talk (Part II)

A graph-based
decision procedure
for ≥, >, =, ≠

and
uninterpreted
functions

Ad-hoc support for
selected
theory axioms

Construction of
interpolants from
proofs

x≠x+2

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 25 / 44

Overview: Proof-generating Decision Procedure

x=z
y=z+x

f(y)=f(z+z)

>, ≥

=, ≠

f(x)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 26 / 44

Weak and strong inequalities

Add all facts s < t and s ≤ t to directed graph G
Compute Strongly Connected Components (SCCs)

≥≥

≥

≥≥
≥

>

>

>

A B

x y

x y

u v

≥

≥

≥

≤

=

=

If SCC contains an edge s < t :
find shortest path from s to t
report contradictory cycle

Otherwise: For each s ≤ t in SCC
add s = t as a fact

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 27 / 44

Equalities and Dis-Equalities

Add all facts s = t to graph-based Union-Find data structure U
Modify Find-operation / path-compression:

remember the 2 edges entailing shortcut

Modify Union-operation:
triangulate sub-graph s – rep(s) – rep(t) – t

Perform query for each s 6= t

s

u

v
rep(s, u, v)

2

1

1

3

2

s

rep(s) rep(t)

t

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 28 / 44

Uninterpreted Functions

Proof-producing congruence closure [Nieuwenhuis, Oliveras 05]

Observation:

t s

c

⇒ f(t) = f(s)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 29 / 44

Uninterpreted Functions (continued)

Based on Union-Find data structure U :
Maintain a use list of encountered terms f (t) that “use” c

t s

c≡ rep(s, t)

use list[c]=[f(t), g(s), . . .]

For each f (c)

lookup(f , c) =

{
f (t) an element which maps to f (c)
⊥ otherwise

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 30 / 44

Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:

add (f (t) = f (s)) to U if lookup(f , c′) = f (s)

lookup(f , c′)
def
= f (t) if lookup(f , c′) = ⊥

Update use list accordingly.

Example:

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 31 / 44

Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:

add (f (t) = f (s)) to U if lookup(f , c′) = f (s)

lookup(f , c′)
def
= f (t) if lookup(f , c′) = ⊥

Update use list accordingly.

Example:
f(x)

f(y)

z

x

use list[z] = [f(z)]

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 31 / 44

Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:

add (f (t) = f (s)) to U if lookup(f , c′) = f (s)

lookup(f , c′)
def
= f (t) if lookup(f , c′) = ⊥

Update use list accordingly.

Example:
f(x)

f(y)

z

x

use list[z] = [f(z)]

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 31 / 44

Uninterpreted Functions (continued)

If the representative constant c changes to c′

For all f (t) ∈ use list[c]:

add (f (t) = f (s)) to U if lookup(f , c′) = f (s)

lookup(f , c′)
def
= f (t) if lookup(f , c′) = ⊥

Update use list accordingly.

Example:
f(x)

f(y)

f(z)
z

x

use list[z] = []

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 31 / 44

Constant Propagation and Simplification

For each equivalence class in U
Track theory-specific constants (e.g., numerical) in U
W.l.o.g., one constant per equivalence class (otherwise contradictory)

For sub-term-closed pool of expressions encountered so far:
substitute constants for sub-terms
simplify and add respective equivalence, e.g., (x&0) = 0

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 32 / 44

Limited Term Rewriting, Application of Axioms

Apply term-rewriting rules, e.g.,

c 6= 0 mod 2m

(x + c) 6= x
c = 0 mod 2m

(x + c) = x
1 ≤ c < m

(t<<c) = (2c · t)

(for m-bit variables x) if respective terms are encountered.

Apply theory-specific axioms, e.g.,

t1 = t2 & t3
t1 ≤ t2 t1 ≤ t3

t1 = t2 | t3
t1 ≥ t2 t1 ≥ t3

t1 + t2 = t1
t2 = 0

Important: These rules do not introduce non-logical symbols

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 33 / 44

Derived edges, Proof of inconsistency

Keep track of premises for inferred equivalences!

f(x) f(y)

x y=

x y

x y

u v

≥

≥

≥

≤

=

=

A proof of inconsistency consists of

a contradictory cycle (contains ≤ and < or = and exactly one 6=)

premises for all derived edges

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 34 / 44

Interpolation

Intuition: Split proof into facts contributed by A and B, respectively!

x y

x y

u v

≥

≥

≥

≤

=

=

6=
(x ≥ y) ∧ (y ≥ v) (v ≥ u) ∧ (u ≥ x) ∧ (x 6= y)

A fact is a maximal path in which all edges have the same colour:

x ≥ v , v ≥ x , x = y , x 6= y

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 35 / 44

Interpolation (continued)

An interpolant can be seen as assume-guarantee reasoning:

A guarantees x = y iff B does not violate v ≥ x

x y

x y

u v

≥

≥

≥

≤

=

=

6=

Interpolant:

x = y ∨ ¬(v ≥ x)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 36 / 44

Interpolation (continued)

Split the proof of inconsistency into two components I and J :
J : A set of tuples 〈P, t = s〉

P contains “all A-coloured facts needed to justify t = s”
P ⊆ I

I: A set of A-”coloured” facts.
J contains “all B-coloured facts needed to justify (t = s) ∈ I”

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 37 / 44

Interpolation and Premises

B-premise of (t = s):

“all B-coloured facts needed to justify (t = s)”

Example:

= 6=
v

f(x) f(g(y))

x g(y)
u g(z)

z
yw

B-premise(f(x)=f(g(y))) = {u = g(z), w = y}
Definition of A-premise is symmetric

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 38 / 44

Interpolation and Premises (continued)

Conditions:

f(x) f(y)

x y=

x y

x y

u v

≥

≥

≥

≤

=

=

Premises:

A-premise (vi
=→ vj)

def
=

(A-condition for vi
=→ vj) ∪⋃

{A-premise (vn → vm) | vn → vm ∈ (B-condition for vi
=→ vj)}

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 39 / 44

Interpolant for I and J

I def
=

∧
vi

B→vj∈I

(ti B tj) ∨
∨

〈P,vn
B→vm〉∈J

 ∧
(vi

BP→vj)∈P

(ti BP tj)

 ∧ ¬(tn B tm)

︸ ︷︷ ︸
“challenges” B to “break the contract”

B can either

try to pretend that one ¬(tn B tm) holds and contradict itself

admit that all (tn B tm) hold and contradict
∧

vi
B→vj∈I

(ti B tj)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 40 / 44

Example revisited

(x = y)∧(y 6= 0)∧(y ′ = y&(y−1))∧(x ≥ y ′)∧(y ′ 6= 0)∧(y ′′ = y ′&(y ′−1))

¬(x ≥ y ′′)

y′′ y′

y′′ y′&(y′ − 1)

≥>

≤

x

Interpolant: x ≥ y ′′ ∨ x ≥ y ′′

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 41 / 44

Conclusion

New interpolating decision procedure
algorithmic description (vs. axiomatic in [McMillan 05])
based on work by [Nieuwenhuis, Oliveras 05], McMillan, [Fuchs, Goel,
Grundy, Krstić, Tinelli 09].

Sound for bit-vector semantics (not a bit-vector decision procedure!)

“Good-enough” philosophy:
Avoid using a complete decision system for arithmetic in favour of
ad-hoc treatment of ground terms

Implemented interpolation-based model checker WOLVERINE

Decision procedure is sufficient for typical Windows device driver
examples (kbfiltr, floppy, mouclass, . . .)

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 42 / 44

Outlook

Interpolant Strength
V. D’Silva, D. Kroening, M. Purandare, G. Weissenbacher
VMCAI, January 2010, Madrid (co-located with POPL)

Generating interpolants of different strength wrt. the implication order

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 43 / 44

Computing I and J

1: let G(VA ∩ VB, EA ∪ EB) be the factorised and contracted proof
2: let EC be the facts in the contradictory cycle of G
3: W := EC , I := ∅, J := ∅
4: while (W 6= ∅) do
5: remove vi → vj from W
6: if vi → vj is B-coloured then
7: P := A-premise (vi → vj)
8: J := J ∪ {〈P, vi → vj〉}
9: else

10: P := B-premise (vi → vj)
11: I := I ∪ {vi → vj}
12: end if
13: W := W ∪ P
14: end while

G. Weissenbacher (Oxford, ETHZ) Interpolation for EUF +≤, < Macau, 6th of January, 2010 44 / 44

