
LOOP DETECTION -
choosing the short track
Instead of performing the tedious process of iterative un-
rolling we detect loops in a single step:

Student: Georg Weissenbacher
Supervisor: Daniel Kroening

L OP DETECTION
Advances in Counterexample Guided Abstraction-Refinement

The concrete program contains
a buffer overflow that occurs

after n iterations
of the loop.

Counterexample-guided abstraction-refinement based on predicate abstraction enables
model checking large C programs (such as Windows device drivers). However, the technique
is extremely inefficient on programs that contain deep loops. The first intermediate result
of our research is a technique that solves this problem.

i=0

i=1

i=2

i=3

i=4

i=... i=n-1

i=n

do {
 t[i] = s[i++];
} while (s[i]);

i=0

i++;N ×

i=0

¬(i=0)∧(i≤n)
States of the abstract
model represent sets
of states of the origi-
nal program.

1

2

...

THE TRADITIONAL APPROACH
A model checker exhaustively
examines the abstract model
and finds an abstract counter-
example. The counterexample
cannot be replayed on the ori-
ginal program and therefore
the abstract model is refined,
leading to another spurious
counter-example. The abstract
model is refined hundreds of
times before the buffer over-
flow is finally detected.

i=0

i=1

(i>1)∧(i≤n)

i=0

¬(i=0)∧(i≤n)

i=0

i=1

(i>1)∧(i≤n)

3 4 5

i=0

¬(i=0)∧(i≤n)

Potential loops
are detected in
the abstract
counterexam-
ple

The simulation in-
stance is paramete-
rized in the number
of iterations

Using a SAT
solver, we find
the number of
iterations that
triggers the
bug

THE GORY DETAILS
In a post-processing step, we detect po-
tential loops in the abstract counterexa-
mple, which consists of a sequence of
abstract states (denoted by si):

The algorithm searches for transitions
that can be taken to jump back to an ab-
stract state that the trace has already
traversed. The counterexample is anno-
tated accordingly.
The annotated counterexample is map-
ped back to the original program. We
construct a recurrence equation for the
loop induction variable (i(N)=i(N-1)+1 in the
example from above), put it in its closed

form (i(N)=i(0)+N) and subsitute the corre-
sponding occurrences in the loop body.
Using a SAT-solver, we determine if there
is a N that makes this parameterized
execution trace feasible. If this is not the
case, we proceed with the traditional ab-
straction-refinement algorithm.
Otherwise, we simulate the unrolled
counterexample. Feasible counterexa-
mples constitute bugs and are reported
to the user. Spurious counterexamples
are used to refine the abstract model the
usual way.

WORK IN PROGRESS
With the support of Byron Cook, we have
integrated a model checker for asynchro-
nous abstract models into Microsoft‘s
abstraction-refinement toolkit SLAM.
Achieving scalability results comparable
to sequential analysis is still an on-going
effort.

i=0

N

i++;

FindLoops(ŝ1, . . . , ŝn)
1 foreach i ∈ {1, . . . , n}, j < i:
2 if ∃ŝ

j , . . . , ŝ
i. ∀k ∈ {j, . . . , i}.(ŝ

k) = (ŝk)∧
3 ∀k ∈ {j, . . . , i− 1}.ŝ

k
a→ ŝ

k+1∧ ŝ
j = ŝj ∧ ŝ

i
a→ ŝ

j

4 then insert ||: ŝ
j , . . . , ŝ

i :||
5 return counterexample ŝ1, . . . , ŝn with loops

^

http://www.inf.ethz.ch/personal/daniekro/satabs/

