
Counterexample to Induction-Guided
Abstraction-Refinement (CTIGAR)

Johannes Birgmeier1?, Aaron R. Bradley2??, and Georg Weissenbacher1?

1 Vienna University of Technology
2 Mentor Graphics

Abstract. Typical CEGAR-based verification methods refine the ab-
stract domain based on full counterexample traces. The finite state model
checking algorithm IC3 introduced the concept of discovering, gener-
alizing from, and thereby eliminating individual state counterexamples
to induction (CTIs). This focus on individual states suggests a simpler
abstraction-refinement scheme in which refinements are performed rela-
tive to single steps of the transition relation, thus reducing the expense
of refinement and eliminating the need for full traces. Interestingly, this
change in refinement focus leads to a natural spectrum of refinement
options, including when to refine and which type of concrete single-step
query to refine relative to. Experiments validate that CTI-focused ab-
straction refinement, or CTIGAR, is competitive with existing CEGAR-
based tools.

1 Introduction

IC3 [10, 9] constructs an inductive proof of an invariance property by reacting
to individual states. These states, called counterexamples to induction (CTIs),
arise as counterexample models to one-step consecution queries: a CTI is not yet
known to be unreachable and has at least one successor that either is or can lead
to an error state. In focusing on states and single steps of the transition relation,
IC3 differs from the k-induction [23] and interpolation [35, 36] extensions of BMC
[7], which fundamentally rely on unrolling the transition relation. IC3’s practical
value is now widely appreciated.

This paper suggests a similar refocusing from sequences to single steps of
the transition relation when performing predicate abstraction-refinement-based
analysis of infinite state systems. The new method is referred to as CTIGAR,

? Supported by the Austrian National Research Network S11403-N23 (RiSE) of the
Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund
(WWTF) through grants PROSEED, ICT12-059, and VRG11-005.

?? This material is based upon work supported in part by the National Science Founda-
tion under grants No. 0952617 and No. 1219067 and by the Semiconductor Research
Corporation under contract GRC 1859. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

2

for counterexample to induction-guided abstraction-refinement, to contrast with
CEGAR’s focus on counterexample traces [18, 19].

Injecting predicate abstraction into IC3 is straightforward: an abstract CTI
is a conjunction of the predicates that are satisfied by the corresponding con-
crete CTI. This straightforward and inexpensive abstraction contrasts with pre-
vious adaptations of IC3 to infinite state analysis that put excessive effort into
computing non-trivial underapproximations of preimages [16, 31]. Because IC3’s
inductive generalization procedure typically expands the (abstract) CTI cube
well beyond a preimage, there is little point in making such an effort.3

In CEGAR, failure to concretize an abstract counterexample trace of arbi-
trary length is the trigger for domain refinement. In CTIGAR, there are two
triggering situations for domain refinement, both over single-step queries: for
lifting or for consecution. This focus on single-step queries rather than traces
contrasts with a recent attempt at combining CEGAR with IC3 [17].

Lifting [15] a full state to a partial assignment is an important generalization
mechanism in state-of-the-art IC3 implementations. The partial assignment de-
scribes similar states that also step into the same target as the original full state.
With a concrete CTI, the one-step lifting query must succeed [15]; however, with
an abstract CTI, it can fail. A failure is one possible point for refinement.

Consecution relative to frame Fi, which over-approximates the set of states
reachable in at most i steps, for CTI s checks whether any s-state is reachable
from an Fi-state other than an s-state. It can happen that an abstract CTI ŝ
fails consecution while its corresponding concrete CTI s passes consecution. This
situation is another possible point for refinement.

In both scenarios, one can eagerly address the failure or lazily ignore it and
continue. Lazy operation allows the introduction of spurious transitions into the
partially constructed traces. The corresponding CTIs are marked as having al-
lowed such transitions and can be revisited later if necessary. Morever, in both
cases, addressing a failure requires only looking at a one-step concrete query,
not an arbitrarily long unwinding of the transition relation. When the underly-
ing theory admits interpolation, an interpolant derived from the concrete query
enriches the domain sufficiently so that the refined abstract CTI passes its query.

Overall, then, the characteristics of CTIGAR are as follows:

1. straightforward abstraction: an abstract CTI is derived from a concrete CTI
by evaluating the available predicates over the (possibly partial) assignment
of the concrete CTI;

2. intermediate refinement triggers: refinement is suggested either when lifting
an abstract CTI fails or when consecution against an abstract CTI fails but
against the corresponding concrete CTI succeeds;

3 Abstract CTIs constitute underapproximate preimages whenever the abstract do-
main is sufficiently precise (Section 3.1), which can be enforced. Our experiments in
Section 4, however, show that abstract CTIs that are not underapproximate preim-
ages can be eliminated without costly refinement in many cases. In fact, the best
experimental configurations do not enforce preimages.

3

3. lazy or eager modes: a suggested refinement can be addressed immediately
(eager), ignored in hopes that the overall analysis succeeds or until the dis-
covery of a counterexample trace (lazy), or delayed until an intermediate
trigger, such as encountering a threshold number of suggested refinements;

4. simple refinement : refinement considers one step of the transition relation
rather than an arbitrarily long unwinding;

5. explicit concrete states: the concrete CTIs that are derived from SMT models
can be useful for some types of predicate synthesis; see Section 4.1.

CTIGAR otherwise operates identically to finite state IC3, except that an SMT
solver is used in place of a SAT solver, and atoms are predicates.

This paper is organized as follows. In Section 2, basic concepts and IC3 are
recalled. Section 3 presents CTIGAR; Section 4 evaluates CTIGAR empirically.
Finally, Section 5 discusses CTIGAR in a broader context.

2 Preliminaries

2.1 Formulas and Transition Relations

The term formula refers to either a propositional logic formula or a formula in
first-order logic.

Propositional Formulas. A propositional formula is defined as usual over a set X
of propositional atoms, the logical constants > and ⊥ (denoting true and false,
respectively), and the standard logical connectives ∧, ∨, →, and ¬ (denoting
conjunction, disjunction, implication, and negation, respectively). A literal is an
atom x ∈ X or its negation ¬x. A clause C is a set of literals interpreted as a
disjunction. A cube is the negation of a clause.

First-Order Logic. The logical connectives from propositional logic carry over
into first-order logic. First-order terms are constructed as usual over a set of
variables V , functions, and constant symbols. An atom in first-order logic is a
predicate symbol applied to a tuple of terms.

Semantics and Satisfiability. A model of a formula consists of a non-empty do-
main and an interpretation that assigns a denotation to the predicate, function,
and constant symbols. A formula is satisfiable if there is some model under which
it is true, and unsatisfiable otherwise. A formula F implies another formula G,
denoted F ⇒ G, if every model of F is a model of G. Given a conjunction, an
unsatisfiable core is a subset of the conjuncts that is unsatisfiable.

Theories. A first-order theory is defined by a signature, which is a fixed set of
function and predicate symbols, and a set of axioms restricting the models under
consideration to those that satisfy the axioms. Symbols that do not occur in the
axioms are called uninterpreted and interpreted otherwise. Quantifier free linear
arithmetic (QFLIA/QFLRA) is the theory for the first order language over the
functions +, −, the predicates < and =, and the constants 0, 1, . . . interpreted
over either the integers Z or the rational numbers Q.

4

Transition Systems. Let X be a fixed set of uninterpreted symbols representing
the state variables or registers (in either propositional or first-order logic). A
state s is an interpretation mapping X to elements of the domain. The symbolic
representation of the state s is a cube that is true under s but false in all
other states. Depending on the context, s may denote a state or its symbolic
counterpart. A formula represents the set of states in which it evaluates to true.
I(X) and P (X) are used to represent the initial and the safe states of a transition
system, respectively. Given X, let X ′ be a corresponding set of primed symbols,
and let A′ be the formula obtained by replacing the symbols X in a formula
A with the corresponding symbols in X ′. Z is a set of symbols used to encode
primary inputs (which may be introduced to “determinize” a non-deterministic
choice). A transition relation T : (X ∪ Z) × X ′ associates states s to their
successor states t′ under an input assignment z.

A formula S (representing a set of states) satisfies consecution if S∧T ⇒ S′.
S satisfies consecution relative to a formula G if G ∧ S ∧ T ⇒ S′. A formula S
satisfies initiation if I ⇒ S, i.e., if the corresponding set of states contains all
initial states.

2.2 IC3 for Finite State Transition Systems

IC3 maintains a growing sequence of
frames F0(X), . . . , Fk(X) satisfying the
four invariants to the right. Each frame
Fi over-approximates the states reachable
from I in i or fewer steps (due to invari-
ants 1, 2, and 4).

I ⇔ F0 (1)

∀0 ≤ i < k . Fi ⇒ Fi+1 (2)

∀0 ≤ i ≤ k . Fi ⇒ P (3)

∀0 ≤ i < k . Fi ∧ T ⇒ F ′
i+1 (4)

IC3 aims at finding either a counterexample to safety or an inductive invari-
ant Fi such that Fi ⇔ Fi+1 for some level 0 ≤ i < k. Until this goal is reached,
the algorithm alternates between two phases:
– If no bad state is reachable from the frontier Fk (i.e., Fk∧T ⇒ P), then k is

increased, and the new frontier is initialized to P . Furthermore, consecution
is checked for each clause in each frame, and passing clauses are pushed
forward. Otherwise, IC3 adds a ¬P -predecessor s as proof obligation 〈s, k−1〉.

– IC3 processes a queue of proof obligations 〈s, i〉, attempting to prove that
the state s that is backwards reachable from ¬P is unreachable from Fi.
This attempt succeeds if IC3 finds a clause c ⊆ ¬s satisfying consecution
relative to Fi (i.e., Fi∧c∧T ⇒ c′), in which case the frames F1, . . . , Fi+1 are
strengthened by adding c.4 Otherwise, the failed consecution query reveals
a predecessor t of s. If i = 0 and t ∧ I is satisfiable, then t provides the
initial state of a counterexample. Otherwise, a new proof obligation 〈t, i−1〉
is added.
For a more detailed introduction to IC3, the reader is referred to [10, 11].

Proof obligations are the focus of the extension of IC3 to infinite state transition
systems, presented in the next section.

4 To initiate forward propagation and in anticipation that s will be rediscovered at a
higher level, 〈s, i + 1〉 is added as a proof obligation unless i = k.

5

3 CTIGAR

CTIGAR is the natural abstraction-refinement extension of IC3 to infinite state
systems. Not only does much of the algorithmic flow remain the same, but the
extra abstraction-refinement machinery follows IC3 in spirit: it performs one-
step incremental refinements in response to CTIs. This section presents CTIGAR
within the known framework of IC3, first expanding IC3 concepts as necessary,
then presenting CTIGAR’s handling of extended proof obligations, and finally
discussing when and how domain refinement is accomplished.

3.1 CTIGAR Extensions of IC3 Concepts

Concrete counterexample to induction (CTI). Central to IC3 is the evaluation
of many consecution queries. Each has the form Fi ∧ ¬s ∧ T ⇒ ¬s′ and tests
for the inductiveness of formula ¬s relative to frame Fi. When the query is not
valid, the counterexample reveals a predecessor, t, of s. CTI t explains why s is
not inductive relative to Fi: t can reach s, and it is not known to be unreach-
able within i steps. A CTI can be expressed in any theory as a conjunction of
equations between state variables and values. In CTIGAR, t is called a concrete
CTI to distinguish it from an abstract CTI, introduced next.

Abstract CTI. As in standard predicate abstraction, the abstraction domain is
a set of first-order atoms X over state variables V . An abstract CTI ŝ = α(s)
corresponding to a given concrete CTI s is an over-approximation of s that is
expressed as a Boolean combination of the predicates of the domain.

For a concrete state s that assigns values to every state variable in V , α(s)
is a cube obtained by evaluating the atoms X over s, and it is the most precise
abstraction. Expressing the most precise abstraction of a partial assignment re-
quires, in general, a disjunction of cubes (obtained by an AllSAT query [34]).
However, a “best effort” cube abstract CTI can be derived more simply by includ-
ing only first-order literals that are equivalent to > under the partial assignment.
The latter abstraction method is used in this work.5

For example, consider concrete CTI s : x = 1 ∧ y = −1 ∧ z = 0 and abstract
domain {x < y, x < z}. The corresponding abstract CTI is ŝ : ¬(x < y)∧¬(x <
z). If w were also a state variable, making s partial, and the domain were to
include the predicate y < w, then the abstract CTI would remain the same:
y < w is equivalent to neither > nor ⊥ under the partial assignment s.

Lifted CTI. A failed consecution query Fi∧¬t∧T ⇒ ¬t′ reveals a concrete CTI
s as well as an assignment z to the primary inputs. “Lifting” the full assignment
s to a partial one is an important generalization mechanism in state-of-the-art
IC3 implementations. In the original paper on IC3, static lifting was accom-
plished by considering the k-step cone of influence [10]; a dynamic approach

5 Both methods were implemented, and the “best effort” cube-based one was found
to be both simpler to implement and faster: experiments show that AllSAT-derived
(DNF) abstract CTIs fare no better than “best effort” (cube) abstract CTIs.

6

s

ŝ

t

t̂

T

T

(a) Lifting failure

s

ŝ

Fi

t T

(b) Consecution failure

Fig. 1: Single-step abstraction failures

based on ternary simulation was then proposed [24]; and a SAT-based approach
was described in [15]. The SAT-based approach extends to the theory setting in
a straightforward manner and is thus appropriate for CTIGAR.

The lifting query takes the form s∧z∧T ∧¬t′, which asks whether an s-state
has a successor other than t under input assignment z. Since this is not the case
by construction, the query yields an unsatisfiable core that typically reveals a
significantly reduced partial assignment that can replace s.

Assuming that T is total, lifting the concrete CTI always succeeds. However,
in CTIGAR it is the abstract CTI rather than the concrete CTI that is impor-
tant. In the corresponding query ŝ ∧ z ∧ T ∧ ¬t′, the abstract state ŝ replaces
s. If this query is unsatisfiable, both ŝ and the lifted abstract state revealed by
the unsatisfiable core constitute an underapproximate preimage of the successor
CTI. The query, however, may be satisfiable, since ŝ over-approximates s and
may therefore include states that transition to ¬t-states under input assignment
z in addition to those—s at minimum—that transition to t-states. Failed lifting
may eventually result in a spurious CTI, as discussed in Section 3.2 below.

3.2 The CTIGAR Flow

IC3 with CTIGAR is, as in propositional IC3, centered around the handling of
proof obligations in lowest-frame-first order. Recall from Sections 2.2 and 3.1
that two types of queries are performed in relation to proof obligation 〈s, i〉:
À A lifting query u∧z∧T ⇒ t′ is performed to eliminate non-essential symbols

from the original predecessor cube u to obtain cube s.
Á A consecution query Fi∧¬s∧T ⇒ ¬s′ tests if ¬s is inductive relative to Fi.

– If it succeeds, the argument is generalized to produce a stronger clause
c ⊆ ¬s that is inductive relative to Fi.

– If it fails, the assignment to unprimed state variables provides a CTI v,
which is lifted to cube t ⊆ v and enqueued as proof obligation 〈t, i− 1〉.

Abstraction failures. The presence of abstract states complicates the situation
in the sense that the following abstraction failures may arise:

7

À Lifting Abstraction Failure (LAF). The formula ŝ∧ z ∧ T ∧¬t̂′ is satisfiable,
i.e., ŝ contains at least one concrete state that has a successor outside of t̂
under the inputs z, as indicated in Figure 1(a).

Á Consecution Abstraction Failure (CAF). The formula Fi ∧ ¬ŝ ∧ T ∧ ŝ′ is
satisfiable when Fi ∧ ¬s ∧ T ∧ s′ is not. In this setting, Fi contains at least
one concrete state t outside ŝ which has successor(s) in ŝ that are not s, as
illustrated in Figure 1(b). The transition from t to ŝ is spurious: ¬s is strong
enough to be relatively inductive, while ¬ŝ is not.

Proof Obligations. In CTIGAR, the components of a proof obligation reflect the
possibility of abstraction failures. A proof obligation 〈ŝ, [s,] i, n〉 comprises:

– an abstract CTI ŝ (reduced from α(s) if abstract lifting succeeded);
– an optional concrete CTI s present if an LAF occurred;
– the frame index i, as in propositional IC3;
– the number n of spurious transitions encountered along the trace.

A trace is a sequence of proof obligations in which the last element is a CTI
to the property P ; and for each two consecutive elements, the CTI of the first
element stems from a failed consecution query of the second. In this context, ta
denotes a CTI derived from the unprimed state variables V of a failed abstract
consecution query Fi ∧ ¬ŝ ∧ T ∧ ŝ′, and tc a CTI derived from a failed concrete
consecution query Fi ∧ ¬s ∧ T ∧ s′.

The concrete CTI s is not included if abstract lifting succeeds because the
lifted abstract CTI ŝ describes only states that transition into the successor. In
other words, the lifted abstract cube ŝ is as good as s in a concrete counterex-
ample trace when abstract lifting succeeds.

Because of the possibility of abstraction failures when lifting (LAF) or testing
consecution (CAF), the operations of lifting to construct a new proof obligation
and of handling a proof obligation are tightly coupled:

À Lifting in CTIGAR. Let s be either the concrete CTI sa, derived via a failed
abstract consecution query, or sc, derived via a failed concrete consecution query.
The cube t (t̂, respectively), represents the successor of s, and z describes the
primary input assignment from the failed query. The new proof obligation is
constructed as follows:

1. Construct the abstract CTI ŝ = α(s);

2. Perform abstract lifting via the query

{
ŝ ∧ z ∧ T ⇒ t′ if s = sc
ŝ ∧ z ∧ T ⇒ t̂′ if s = sa

:

(a) if lifting succeeds, let ŝ` be the lifted abstract CTI and enqueue
new obligation 〈ŝ`, i − 1,m〉, where m = n + 1 if s is the result
of a CAF (see Á) and therefore spurious, and m = n otherwise;

(b) if lifting fails, enqueue the new obligation 〈ŝ, s, i− 1,m〉, where
the presence of s indicates an LAF and the value of m is as
above.

8

Table 1: Overview of Lifting and Consecution in CTIGAR
À Lifting Á Consecution

ŝ ∧ z ∧ T ⇒ t′ / ŝ ∧ z ∧ T ⇒ t̂′ Fi ∧ ¬ŝ ∧ T ⇒ ¬ŝ′
succeeds: fails (LAF): succeeds: fails for 〈ŝ, i, n〉:

Proof obligation Proof obligation generalize and Extract and consider CTI ta
〈ŝ`, i− 1,m〉, 〈ŝ, s, i− 1,m〉, add c ⊆ ¬ŝ fails for 〈ŝ, s, i, n〉:
where m = n + 1 in case of CAF to F1,. . . , Fi+1 query Fi ∧ ¬s ∧ T ⇒ ¬s′
and m = n otherwise succeeds: fails:

Extract CTI tc CTI ta (CAF)

Case 2b indicates the occurrence of an LAF, which will be discussed in Sec-
tion 3.3. Analogously to propositional IC3, CTIGAR uses consecution queries
to discharge proof obligations.

Á Consecution in CTIGAR. Let 〈ŝ, [s,] i, n〉 be an extended proof obligation.
A failure of consecution when i = 0 indicates a counterexample trace. This
situation is addressed in Section 3.3. Consecution is checked as follows:

Abstract consecution is checked via the query Fi ∧ ¬ŝ ∧ T ⇒ ¬ŝ′;
1. if consecution succeeds, an SMT solver is used to generalize ŝ in

standard IC3 fashion ([28, 12]), resulting in a clause c ⊆ ¬ŝ that is
inductive relative to Fi.

2. if consecution fails, the CTI ta is extracted;
(a) if concrete CTI s is present, then concrete consecution is checked

via the query Fi ∧ ¬s ∧ T ⇒ ¬s′;
i. if concrete consecution succeeds, then ta triggers a new proof

obligation (see À)—this situation constitutes a CAF;
ii. if concrete consecution fails, CTI tc is extracted, and tc trig-

gers a new proof obligation (see À).
(b) if s is absent, then ta is not spurious, and ta triggers a new proof

obligation (see À).

The CAF in step 2(a)i is addressed Section 3.3. Table 1 summarizes the
scenarios that can arise in CTIGAR.

The following section addresses abstraction lifting (LAF) and consecution
(CAF) failures and counterexample traces.

3.3 Refinement

During lifting and the handling of proof obligations in Section 3.2, abstraction
failures of type LAF or CAF may occur. This section presents a range of refine-
ment strategies to address these failures. CTIGAR can react to LAFs and CAFs
eagerly (immediately when they occur), lazily, or on a spectrum in between. In
the latter two cases, refinement is postponed until a possible counterexample

9

trace is discovered (which cannot be ignored), or until the number of spurious
transitions exceeds a threshold.

Refinement can take many forms depending on the abstract domain. In the
context of predicate abstraction, Craig interpolation [21, 36] (popularized by [29])
is widely used to obtain refinement predicates. An interpolant for a pair of for-
mulas (A,B), where A⇒ B is valid, is a formula J whose uninterpreted symbols
occur in both A and B, such that A⇒ J and J ⇒ B. Interpolants always exist
in first-order logic, and efficient interpolating decision procedures are available
for a wide range of theories (e.g., [13, 22]).

À Lifting refinement. Recall from Section 3.2 (Figure 1(a)) that an LAF arises
when the domain is too weak for abstract lifting. An LAF occurs when s∧z∧T ⇒
t′ holds, where t is the successor of s and z is the assignment to the inputs, while
ŝ∧z∧T ⇒ t′ fails. Refinement ensures that the lifting query will succeed for the
newly computed abstraction ŝ. When interpolation is possible, one can extract
from the valid query s ∧ z ∧ T ⇒ t′ an interpolant R:

s⇒ R and R⇒ (z ∧ T → t′) .

The conjuncts of the formula R are added as first-order atoms to the abstract
domain. Since s ⇒ R, the new precise abstraction of s is ŝ ∧ R, where ŝ is the
old abstraction of s. Furthermore, because R ⇒ (z ∧ T → t′), the new abstract
lifting query (ŝ∧R)∧ z ∧T ⇒ t′ is valid. Abstract lifting succeeds in the refined
domain, thus eliminating this particular LAF.

Á Consecution refinement. Recall from Section 3.2 that a CAF introduces a
spurious transition (Figure 1(b)). In other words, the abstract domain is too
weak for ¬ŝ to be relatively inductive even though ¬s is. A CAF occurs when
Fi∧¬s∧T ⇒ ¬s′ holds but Fi∧¬ŝ∧T ⇒ ¬ŝ′ fails. Refinement ensures that the
abstract consecution query will succeed for the newly computed abstraction ŝ.
When interpolation is possible, one can extract from the valid query Fi∧¬s∧T ⇒
¬s′ an interpolant R:

Fi ∧ ¬s ∧ T ⇒ R′ and R′ ⇒ ¬s′ .

The formula ¬R is added to the abstract domain. Since R′ ⇒ ¬s′, s ⇒ ¬R, so
that the new cube abstraction of s is ŝ ∧ ¬R, where ŝ is the old abstraction of
s. Furthermore, because s⇒ ŝ ∧ ¬R,

Fi ∧ (¬ŝ ∨R) ∧ T ⇒ Fi ∧ ¬s ∧ T ⇒ R′

so that the new abstract consecution query

Fi ∧ (¬ŝ ∨R) ∧ T ⇒ (¬ŝ′ ∨R′)

is valid. Under the refined domain, abstract consecution thus succeeds, eliminat-
ing this particular CAF.

10

P

I

F1 F2 F3

s
ŝ

t̂ t

(a) Lifting failure

P

I
F1

F2 F3

ŝ s
t

(b) Consecution failure

Fig. 2: Lazy refinement of abstraction failures

Eager and Lazy Refinement. In the flow described in Section 3.2, CAFs merely
trigger an incrementation of the spurious transition count (STC). When a po-
tential new obligation’s STC reaches some threshold controlling the degree of
laziness, a consecution refinement is triggered. The STC indicates the number
of spurious transitions on the trace rooted at that obligation. In this setting, a
refinement can be triggered for four reasons:

– A counterexample trace is discovered, but the trace has at least one CAF
anywhere (Figure 2(b)), triggering a consecution refinement.6

– A CTI s is disjoint from the initial states I, its abstraction ŝ is not, and
abstract lifting fails (a LAF). This situation triggers a lifting refinement.

– An obligation’s STC reaches a threshold, triggering either a consecution
refinement or a lifting refinement.7

– The trace rooted at an obligation has reached a threshold number of LAFs
(Figure 2(a)), triggering a lifting refinement.8

Any (even multiple) CAF or LAF points can be analyzed during refinement.
Addressing any one blocks the current arrangement of the obligation queue.

4 Implementation and Experimental Evaluation

4.1 Implementation

The experimental evaluation in this section is performed using a prototype of
CTIGAR based on the IC3 reference implementation [8]. It uses linear integer
arithmetic as the background theory and a combination of MathSAT 5 [2] and
Z3 [22] as SMT solvers. The implementation includes a simple ANTLR 4 [39]
parser that does not perform any optimizations at all on the resulting control
flow graphs.

6 Otherwise, the trace is a witness to the failure of the property.
7 CAFs only occur for obligations for which LAFs occurred, so both are useful.
8 If lifting refinements are triggered eagerly, CAFs never occur.

11

Abstract Domain. The abstract domain is initialized with the the atom I (encod-
ing the initial program location), and inequalities of the form x < y for all pairs
of program variables x, y; additionally, the initial domain is enriched according
to the equations discovered by a Karr analysis [32, 38] of the whole program.

Refinement predicates of the form
∑

i bixi = c are replaced by
∑

i bixi ≤ c
and

∑
i bixi ≥ c, and conjunctions are split into their arguments. Interpolants

used for refinement are usually conjunctions in practice. Otherwise, the entire in-
terpolant can be treated as a new predicate; additionally, atoms can be extracted
and added as predicates as well.

Refinement State Mining. Orthogonal to interpolation-based refinement, refine-
ment state mining (RSM) is a predicate discovery scheme deriving linear equali-
ties from CTIs. The concrete cubes encountered in lifting and consecution queries
are partitioned into sets Sl according to their program location l (represented by
dedicated program counter variable pc). If the size of an Sl exceeds a threshold,
a solver is deployed to discover a linear equality

∑
k bkxk = c (where all bk and

c are coefficients, and xk are program variables in Sl) covering as many states
in Sl as possible while minimizing the number of coefficients that are zero. If
the query succeeds, the covered states are removed from Sl and the resulting
predicate is added to the abstract domain.

Similar to the Daikon tool [25], the discovered predicates are not necessarily
invariants or guaranteed to eliminate spurious CTIs. Alternatively, invariant
finding algorithms such as the one described in [40] could be used.

4.2 Benchmarking

The prototype CTIGAR implementation was run on a collection of 110 lin-
ear integer arithmetic benchmarks from various sources: The InvGen bench-
mark suite as found in [27] , the Dagger benchmarks suite as found in [26],
and the benchmark suite as found in [1]. Duplicates were only run once. Some
benchmarks were omitted from this collection. The benchmarks crawl cbomb.c,
fragtest.c, linpack.c, SpamAssassin-loop*.c and p*-*.c contain point-
ers or other C constructs that the prototype does not handle. The bench-
marks half.c, heapsort*.c, and id trans.c contain truncating integer di-
visions, which the prototype does not handle. The benchmarks puzzle1.c,
sort instrumented.c, and test.c do not contain assert statements. The bench-
marks spin*.c rely on functions that provide mutex functionality, which the
prototype does not handle. All benchmarks are safe.

4.3 Evaluation Configurations

CTIGAR was run in multiple configurations. All configurations that use lazy
refinement permit at most three spurious transitions in a single trace to the
error. We chose 3 based on a manual analysis: three spurious transitions seem
sufficient for lazy refinement while avoiding long irrelevant trace postfixes.

12

À Configurations using lifting refinement:

(a) LLE: Eager refinement, triggered by a LAF.
(b) LLL: Lazy refinement, triggered by a LAF.
(c) LCE: Eager refinement, triggered by a CAF.
(d) LCL: Lazy refinement, triggered by a CAF.

Á Configurations using consecution refinement:

(a) CCE: Eager refinement. Refinement is triggered by every CAF, regard-
less of whether the abstract state is lifted or not.

(b) CCL: Lazy refinement. Refinement is triggered as above.
(c) CAE: Eager refinement. Refinement is triggered by a CAF only if the

abstract state is unlifted.
(d) CAL: Lazy refinement. Refinement is triggered as above.

These versions of the prototype implementation of CTIGAR were compared
against CPAChecker [6], the winner of the second software verification compe-
tition. The last column in Table 2 refers to the performance of CPAChecker in
its competition configuration:
config/sv-comp13--combinations-predicate.properties.

The measurements were performed on AMD Opteron(TM) 6272 CPUs at
2100 MHz. No memory threshold was set. The timeout set for the benchmarks
was 1200 seconds, wall time. However, if CTIGAR or CPAChecker did not run
into the timeout, the run time is reported in the operating systems’s user mode
used for the benchmark, which is more accurate than the wall time.

4.4 Discussion of Runtime Results

All configurations solved substantially more benchmarks than CPAChecker.9

CPAChecker was typically faster on benchmarks that were solved by both the
prototype CTIGAR implementation and CPAChecker. However, there were 16-
20 benchmarks in each configuration that were solved faster by our prototype.

The consecution refinement strategies proved be be somewhat more success-
ful and faster than the lifting refinement strategies. In general, lazy refinement
strategies seem to be slightly more successful than eager refinement strategies.

Deploying the interpolation procedure presented in [1] increased the compu-
tational overhead of interpolation while not providing measurable improvement
of the abstract domain.

9 CPAChecker returned UNSAFE on MADWiFi-encode ie ok.c, but it assigns non-
integer values to some integer variables in its error path assignment. A manual
inspection of the benchmark reveals that it is in fact safe; nonetheless, the benchmark
is counted as solved by CPAChecker. In addition to the 64 solved benchmarks,
CPAChecker returned with the message Analysis incomplete: no errors found,

but not everything could be checked. on 16 benchmarks.

13

Table 2: Runtime results for CTIGAR and CPAChecker. All times are in seconds.

Lifting refinement LLE LLL LCE LCL CPAChecker

Number of solved benchmarks 87 86 83 87 64
Cumulative time 7061.68 7547.85 8516.06 7745.06 1170.85

Solved — unsolved by CPA 29 31 30 34
Cumulative time 1134.49 2702.17 5425.5 5113.44

Solved — faster than CPA 16 16 18 20
Cumulative time (CTIGAR) 12.38 17.35 14.68 29.24
Cumulative time (CPA) 53.34 848.99 59.14 860.31

Consecution refinement CCE CCL CAE CAL CPAChecker

Number of solved benchmarks 86 91 91 92 64
Cumulative time 5414.57 8150.29 6154.33 5880.74 1170.85

Solved — unsolved by CPA 31 36 34 36
Cumulative time 2010.26 5149.72 2033.03 2247.59

Solved — faster than CPA 19 20 20 20
Cumulative time (CTIGAR) 18.03 34.34 18.92 21.06
Cumulative time (CPA) 62.05 863.98 65.34 863.98

Figure 3 to the right presents a
comparison of the number of predi-
cates in the abstraction domain vs.
the runtime for all terminating in-
stances across all configurations in
a log-log-plot. It shows that perfor-
mance only degrades polynomially
with the number of predicates in the
domain rather than exponentially.

Figure 4(a) depicts the percent-
age of successful abstract lifting calls
across different configurations (both
in consecution and lifting refine-
ment). Abstract lifting succeeds in
around 60% to 80% of all cases, pro-
viding CTIs that are underapproxi-
mate preimages.

10 20 50 100 500

1e
-0
1

1e
+
01

1e
+
03

Num. Abstraction Domain Predicates

R
u
n
ti
m
e
[s
ec
on

d
s]

Fig. 3: Number of abstraction domain pred-
icates vs. runtime for terminating instances.

As evident from Figure 4(b), the best configurations (notably CAL) do not
immediately address lifting failures but instead lazily proceed with abstract
CTIs that do not underapproximate preimages. Strictly using underapproximate
preimages is, apparently, not essential. This observation contrasts with previous
approaches [16, 31]. The experiments also show that a large portion of abstract
CTIs are not underapproximate preimages yet are successfully generalized and
eliminated, avoiding the cost of computing non-trivial underapproximate preim-
ages.

14

-20 20 60 100

0.
00

0.
01

0.
02

0.
03

0.
04

Percentage

D
en
si
ty

LLE
LLL
LCE
LCL
CCE
CCL
CAE
CAL

(a) Percentage of successful abstract
liftings of all abstract lifting tries.
(The implementation lifts abstract
states repeatedly after refinement.)

0 50 100

0.
00

0.
02

0.
04

Percentage

D
en
si
ty

LLE
LLL
LCE
LCL
CCE
CCL
CAE
CAL

(b) Percentage of abstract states that
are still unlifted after having been suc-
cessfully used for strengthening up to
the frontier level.

Fig. 4

5 Related Work

Since the inception of the original IC3 [10, 9] numerous attempts have been made
to lift the approach to richer logics and infinite domains. Welp and Kühlmann [42]
propose interval simulation as a means of generalizing proof obligations in the
domain of bit-vectors. Refinement is not required in this setting, as intervals
approximate values in the finite concrete domain conservatively. The same holds
for region abstraction applied in the context of timed systems [33].

A more general approach applicable to infinite state transition systems and
a wider set of theories is to replace the SAT engine underlying IC3 with an
SMT solver. In an attempt to avoid a diverging sequence of proof obligations
in the infinite concrete domain, Cimatti and Griggio [16] suggest a non-trivial
under-approximation of the pre-image (an effort countermanded by the subse-
quent generalization step). To avert the overhead of the pre-image computation,
the algorithm in [16] relies on the Lazy Abstraction with Interpolants (LAwI)
refinement scheme [37] as long as the resulting interpolants can be converted
into clausal form efficiently, effectively using IC3 as a fallback only.

An inherent drawback of the path-wise unwinding deployed in [16] is that
the generalized clauses are not relatively inductive. A recent follow-up publica-
tion [17] therefore uses a monolithic transition relation (previously dismissed as
inefficient in [16]), replacing the pre-image computation with (implicit) predicate
abstraction. Unlike in CTIGAR, refinement is triggered by an abstract coun-

15

terexample trace and based on an unwinding of the transition relation. Hoder
and Bjørner [31] uses Horn clauses to represent recursive predicate transform-
ers. Proof obligations are generalized using a specialized interpolation procedure
for linear arithmetic. Effectively, this amounts to an eager refinement step po-
tentially introducing new literals that are linear combinations of the atoms in
the consecution query. Vizel et al. [41] implement lazy abstraction for finite state
systems by projecting the frames to a sequence of variable sets (of monotonically
increasing size), which are refined if a spurious counterexample trace is found.

The following discussion represents an attempt to put CTIGAR into a broader
context. Unlike CTIGAR, conventional predicate abstraction tools [4, 20] con-
struct an explicit abstract transition relation. Most of these tools, however, use
Cartesian abstraction rather than computing the most precise abstraction [5]
and refine spurious abstract transitions using a focus operation [3]. SatAbs [20]
in particular prioritizes transition refinement (triggered by a spurious abstract
counterexample trace) over refining the abstract domain, resulting in a succession
of relatively simple single-step SAT queries. In contrast, CTIGAR, following IC3,
strengthens frames (rather than the abstract transition relation) using single-
step consecution queries triggered by single states, and only refines the domain
in case of abstraction failures. CTIGAR as well as [17] deploy implicit predicate
abstraction. Similarly, lazy abstraction [30, 37] does not maintain an explicit ab-
stract transition relation, but uses traces and sequence interpolation to refine the
safely reachable states. The fact that CTIGAR derives interpolants from single
transition steps instead may have advantages beyond the resulting simplicity
of the SMT queries: Cabodi’s work suggests that—at least in the propositional
case—sequential interpolation is inferior to standard interpolation [14].

6 Conclusion

The impact of using abstract CTIs on lifting and consecution queries is in-
evitable: abstraction introduces spurious transitions. Focusing on that impact
within the IC3 algorithm, rather than outside of it, naturally leads to a
CTI-guided, rather than a counterexample trace-guided, abstraction-refinement
scheme—CTIGAR rather than CEGAR. The potential benefits of CTIGAR over
CEGAR are obvious: faster and more focused refinement triggers, explicit states
for state-mining-based predicate synthesis, and one-step interpolation queries
for interpolation-based refinement. More broadly, CTIGAR continues the trend
started by IC3 of focusing on individual states and single-step queries instead of
traces and multi-step queries (BMC and its derivatives).

The prototype implementation of CTIGAR performs competitively against
a state-of-the-art CEGAR-based tool in terms of number of solved benchmarks,
confirming its potential. Results vary but are robust across parameter settings:
lazy vs. eager, lifting- vs. consecution-based refinement. It is expected that fur-
ther experience with CTIGAR will reveal implementation techniques that close
the performance gap between our CTIGAR prototype implementation and well-
tuned checkers like CPAChecker.

16

References

1. Aws Albarghouthi and Kenneth L. McMillan. Beautiful Interpolants. In Computer
Aided Verification (CAV), volume 8044 of Lecture Notes in Computer Science,
pages 313–329. Springer, 2013.

2. Alessandro Cimatti and Alberto Griggio and Bastiaan Schaafsma and Roberto
Sebastiani. The MathSAT5 SMT Solver. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 7795 of Lecture Notes in
Computer Science. Springer, 2013.

3. Thomas Ball, Byron Cook, Satyaki Das, and Sriram K. Rajamani. Refining Ap-
proximations in Software Predicate Abstraction. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 2988 of Lecture Notes in
Computer Science. Springer, 2004.

4. Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and
Static Driver Verifier: Technology Transfer of Formal Methods inside Microsoft.
In Integrated Formal Methods, volume 2999 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2004.

5. Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. Software Tools for Technology Transfer
(STTT), 5(1):49–58, 2003.

6. Dirk Beyer and M. Erkan Keremoglu. CPAChecker: a Tool for Configurable Soft-
ware Verification. In Computer Aided Verification (CAV), volume 6806 of Lecture
Notes in Computer Science, pages 184–190. Springer, 2011.

7. Armin Biere. Bounded Model Checking. In Handbook of Satisfiability, pages 457–
481. IOS Press, 2009.

8. Aaron R. Bradley. IC3 reference implementation.
https://github.com/arbrad/IC3ref/.

9. Aaron R. Bradley. k-Step Relative Inductive Generalization. The Computing
Research Repository, abs/1003.3649, 2010.

10. Aaron R. Bradley. SAT-Based Model Checking Without Unrolling. In Verification,
Model Checking and Abstract Interpretation (VMCAI), volume 6538 of Lecture
Notes in Computer Science, pages 70–87. Springer, 2011.

11. Aaron R. Bradley. Understanding IC3. In Theory and Applications of Satisfiability
Testing (SAT), volume 7317 of Lecture Notes in Computer Science, pages 1–14.
Springer, 2012.

12. Aaron R. Bradley and Zohar Manna. Checking Safety by Inductive Generalization
of Counterexamples to Induction. In Formal Methods in Computer-Aided Design
(FMCAD), pages 173–180. IEEE, 2007.

13. Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and
Roberto Sebastiani. The MathSAT 4 SMT solver. In Computer Aided Verifica-
tion (CAV), volume 5123 of Lecture Notes in Computer Science, pages 299–303.
Springer, 2008.

14. Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Interpolation sequences revis-
ited. In Design Automation and Test in Europe (DATE), pages 316–322. IEEE,
2011.

15. Hana Chockler, Alexander Ivrii, Arie Matsliah, Shiri Moran, and Ziv Nevo. Incre-
mental Formal Verification of Hardware. In Formal Methods in Computer-Aided
Design (FMCAD), pages 135–143. IEEE, 2011.

16. Alessandro Cimatti and Alberto Griggio. Software Model Checking via IC3. In
Computer Aided Verification (CAV), Lecture Notes in Computer Science, pages
277–293. Springer, 2012.

17

17. Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. IC3
Modulo Theories via Implicit Predicate Abstraction. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), Lecture Notes in Computer
Science, 2014. To appear.

18. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-Guided Abstraction Refinement. In Computer Aided Verification
(CAV), volume 1855 of Lecture Notes in Computer Science, pages 154–169, 2000.

19. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-Guided Abstraction Refinement for Symbolic Model Checking.
Journal of the ACM, 50(5), September 2003.

20. Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking
ANSI-C Programs. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 168–176. Springer, 2004.

21. William Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem.
Journal of Symbolic Logic, 22(3):250–268, 1957.

22. Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

23. Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.
Software Verification Using k-Induction. In Static Analysis Symposium (SAS),
volume 6887 of Lecture Notes in Computer Science, pages 351–368. Springer, 2011.

24. Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient Implementation of
Property Directed Reachability. In Formal Methods in Computer-Aided Design
(FMCAD), pages 125–134. IEEE, 2011.

25. Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon System for Dynamic
Detection of Likely Invariants. Science of Computer Programming, 69(1-3):35–45,
December 2007.

26. Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and Sriram K.
Rajamani. Dagger Benchmarks Suite. http://www.cfdvs.iitb.ac.in/ bhar-
gav/dagger.php.

27. Ashutosh Gupta and Andrey Rybalchenko. InvGen Benchmarks Suite.
http://pub.ist.ac.at/ agupta/invgen/.

28. Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Better Generalization in IC3.
In Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2013.

29. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
Abstractions from Proofs. In Principles of Programming Languages (POPL), pages
232–244. ACM, 2004.

30. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
Abstraction. In Principles of Programming Languages (POPL), pages 58–70. ACM,
2002.

31. Kryštof Hoder and Nikolaj Bjørner. Generalized Property Directed Reachability.
In Theory and Applications of Satisfiability Testing (SAT), volume 7317 of Lecture
Notes in Computer Science, pages 157–171. Springer, 2012.

32. Michael Karr. Affine Relationships Among Variables of a Program. Acta Infor-
matica, 6:133–151, 1976.

33. Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. SMT-Based Induction
Methods for Timed Systems. In Formal Modeling and Analysis of Timed Systems
(FORMATS), volume 7595 of Lecture Notes in Computer Science, pages 171–187.
Springer, 2012.

18

34. Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. SMT Techniques
for Fast Predicate Abstraction. In Computer Aided Verification (CAV), volume
4144 of Lecture Notes in Computer Science, pages 424–437. Springer, 2006.

35. Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In Computer
Aided Verification (CAV), volume 2725 of Lecture Notes in Computer Science,
pages 1–13. Springer, 2003.

36. Kenneth L. McMillan. An Interpolating Theorem Prover. Theoretical Computer
Science, 345(1):101–121, 2005.

37. Kenneth L. McMillan. Lazy Abstraction with Interpolants. In Computer Aided
Verification (CAV), volume 4144 of Lecture Notes in Computer Science, pages
123–136. Springer, 2006.

38. Markus Müller-Olm and Helmut Seidl. A Note on Karr’s algorithm. In Automata,
Languages and Programming (ICALP), volume 3142 of Lecture Notes in Computer
Science, pages 1016–1028. Springer, 2004.

39. Terence Parr. ANTLR4. http://www.antlr.org/.
40. Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and

Aditya V. Nori. A Data Driven Approach for Algebraic Loop Invariants. In Pro-
ceedings of the 22Nd European Conference on Programming Languages and Sys-
tems, Proceedings of the European Symposium on Programming, pages 574–592.
Springer, 2013.

41. Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy Abstraction and SAT-
Based Reachability in Hardware Model Checking. In Formal Methods in Computer-
Aided Design (FMCAD), pages 173–181. IEEE, 2012.

42. Tobias Welp and Andreas Kuehlmann. QF BV Model Checking with Property
Directed Reachability. In Design Automation and Test in Europe (DATE), pages
791–796. EDA Consortium, 2013.

