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Abstract

This dissertation discusses novel techniques for interpolation-based software
model checking, an approximate method which uses Craig interpolation to com-
pute invariants of programs. Our work addresses two aspects of program analy-
ses based on model checking: verification (the construction of correctness proofs
for programs) and falsification (the detection of counterexamples that violate
the specification).

In Hoare’s calculus, a proof of correctness comprises assertions which establish
that a program adheres to its specification. The principal challenge is to derive
appropriate assertions and loop invariants. Contemporary software verification
tools use Craig interpolation (as opposed to traditional predicate transformers
such as the weakest precondition) to derive approximate assertions. The perfor-
mance of the model checker is contingent on the Craig interpolants computed.

We present novel interpolation techniques which provide the following advan-
tages over existing methods. Firstly, the resulting interpolants are sound with
respect to the bit-level semantics of programs, which is an improvement over
interpolation systems that use linear arithmetic over the reals to approximate
bit-vector arithmetic and/or do not support bit-level operations. Secondly, our
interpolation systems afford us a choice of interpolants and enable us to fine-
tune their logical strength and structure. In contrast, existing procedures are
limited to a single ad hoc choice of an interpolant.

Interpolation-based verification tools are typically forced to refine an initial ap-
proximation repeatedly in order to achieve the accuracy required to establish
or refute the correctness of a program. The detection of a counterexample con-
taining a repetitive construct may necessitate one refinement step (involving
the computation of additional interpolants) for each iteration of the loop. We
present a heuristic that aims to avoid the repeated and computationally expen-
sive construction of interpolants, thus enabling the detection of deeply buried
defects such as buffer overflows.

Finally, we present an implementation of our techniques and evaluate them on
a set of standardised device driver and buffer overflow benchmarks.
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Chapter 1

Introduction

This dissertation is concerned with the automated verification of software. The main focus

of our work is interpolation-based model checking, an approximate method for computing

invariants of symbolic transition systems.

We start this chapter with a brief overview of the history of automated software ver-

ification. This historical account explains the motivation of our work and introduces the

specific techniques which we discuss in this dissertation.

We then present our mission statement and identify the specific class of verification

problems we address. This is followed by a discussion of two instances of such problems,

serving as motivating examples. We then summarise our contributions and present an

outline of our thesis.

1.1 A Brief History of Automated Software Verification

We do not make the bold claim that the following narration is an objective or holistic

account of the historic events in the field of software verification. It ignores entire lines of

research, such as type theory and theorem proving, and only mentions others, such as static

analysis and abstract interpretation, in passing. Our intention is to put the contribution

of this thesis into an historical perspective and context. To this aim, we recap the story

leading up to predicate abstraction and interpolation-based model checking.

Furthermore, as befits a proper tale, it is passed on and modified in the process of doing
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so. The first part of our historic account is loosely based on Vijay Victor D’Silva’s talk

“Tales from Verification History”.1

The beginning of the history of automated software verification notably predates the

invention of the program-controlled computer as we know it and is paradoxically marked by

a negative result. In 1936, Alan M. Turing introduced the notion of computing machines

(later to be known as Turing machines) and showed that there is no general algorithm

to decide whether a calculation performed by such a machine will eventually terminate

and yield a result [Tur36]. An immediate corollary of this finding is that the validity of

correctness assertions about a program cannot be checked automatically in general.

This observation did not curb the enthusiasm of the early software pioneers. Turing as

well as his contemporaries recognised the importance of correctness arguments. Herman

Goldstine and John von Neumann proposed the use of assertion boxes to “indicate the

logical situation at selected points” in the flow diagram describing a program [GvN47].

Turing himself later published a paper on verifying the correctness of software routines in

which he emphasised the importance of annotating programs with assertions [Tur49]. The

full potential of assertions was unveiled by Robert W. Floyd, who used them to attach logical

interpretations to programs [Flo67]. He argued that the rigorous annotation of programs

with assertions enables one to prove “by induction on the number of commands executed”

whether or not a certain assertion holds upon completion of the execution. This work was a

direct precursor to Tony Hoare’s system of axioms and inference rules for the verification of

programs, which has attained considerable fame under the name of “Hoare Logic” [Hoa69].

Hoare Logic links assertions and programming constructs by means of Hoare triples. A

Hoare triple comprises a precondition, a command, and a postcondition, and states that

whenever the precondition is met a terminating execution of the command establishes the

postcondition. Edsger W. Dijkstra developed this idea further and introduced the notion

of predicate transformers such as the weakest precondition (later to be complemented by

the strongest postcondition), which are total function mappings between preconditions and

postconditions [Dij75].

Owing to Turing’s undecidability result, neither Hoare logic nor Dijkstra’s calculus en-
1http://www.comlab.ox.ac.uk/publications/publication3240-abstract.html
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able fully mechanised program verification. In both systems, reasoning about iterative

language constructs depends on the choice of appropriate invariant assertions, i.e., asser-

tions that hold before and after each iteration of the repetitive construct. Given these

inductive assertions, an automated program verifier (such as the one presented by James

Cornelius King in his dissertation [Kin70]) can infer the intermediate assertions by means of

symbolic simulation [HK76] and check the consistency of the resulting Hoare triples using a

sufficiently powerful theorem prover [KF70]. Finding the invariants, however, often requires

considerable insight.

Dijkstra’s recursive definition of predicate transformers for repetitive commands (cf.

[Dij75], Section 3.3), however, suggests that these invariants can be computed for at least

certain instances of programs. Edmund Melson Clarke discovered that the completeness

of a Floyd-Hoare axiom system depends on the existence of a fixed point for Dijkstra’s

predicate transformers [Cla77].

Clarke’s observation of the relation between program invariants and fixed points later

led to a major breakthrough in the field of automated program verification: In 1981, Clarke

and his student E. Allen Emerson presented “a model checking algorithm which can be

applied to mechanically verify that a finite state concurrent program meets a particular

Temporal Logic specification” [CE81]. A similar result was presented independently by

Jean-Pierre Queille and Joseph Sifakis [QS82]. The algorithm exhaustively explores the

state space of a program by iteratively growing the set of explored reachable states until a

fixed point is reached. Model checking enables fully automated program verification (albeit

only of finite state programs) and earned its inventors the prestigious Turing award (placing

them in good company with Dijkstra, Floyd, and Hoare).

The next milestone in the history of automated verification was Kenneth L. McMillan’s

invention of symbolic model checking [BCM+90, McM93]. McMillan applied Randal E.

Bryant’s binary decision diagrams [Bry86] (BDDs) as an efficient data structure to symbol-

ically represent finite sets of program states. This new approach enabled the verification of

hardware designs with state spaces ten orders of magnitude larger than could be handled

by means of explicit state enumeration at that time.

A central feature of model checking algorithms is their ability to report execution traces
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that falsify assertions which do not hold. The direct correspondence of such counterexamples

to failed test cases makes their value to engineers evident. The utility of counterexamples for

software verification, however, goes far beyond falsification: their main additional merit lies

in their applications in automated abstraction (a detailed survey can be found in [CV03]).

The combination of model checking and abstraction [CC77], the latter a technique which

had long since been applied in the field of static analysis, finally enabled the verification

of real world software programs. The advent of predicate abstraction [GS97] brought the

worlds of model checking and Hoare logic together. Predicate abstraction made it possible

to mechanise the creation of approximate finite state models of software by constructing

Hoare triples over a fixed and finite set of assertions. The success or failure of this technique

is still determined by the choice of an appropriate set of assertions. A poorly chosen set

of assertions which is insufficient to prove the property in question results in spurious

counterexamples.

Counterexample-guided abstraction refinement [BSV93, Kur94, CGJ+00] (CEGAR) is

based on the observation that the information provided by a spurious counterexample can

be used to improve the accuracy of the abstract model. In the context of predicate abstrac-

tion, this is achieved by extracting assertions from counterexamples which are sufficient

to eliminate the corresponding execution trace from the current abstraction [BR02a]. In

the CEGAR approach, the approximate model is repeatedly refined until the property in

question can be either falsified by a genuine counterexample or verified using a sufficiently

accurate set of assertions. A number of successful automated software verification tools

implement this approach (e.g., [BCLR04, HJMS02, CKSY05]).

At the same time, the significant advances in the field of automated decision proce-

dures for propositional logic (and SAT solvers in particular) raised the incentive to replace

BDDs with efficient Boolean decision procedures. This led to symbolic bounded model

checking [BCCZ99] (BMC), an algorithm which inspects execution traces up to a bounded

length only. This technique generates counterexamples much faster than BDD-based algo-

rithms, but, due to its limited scope, typically fails to conclusively show the correctness of

programs. Accordingly, its focus lies on falsification rather than on verification.

The success of BMC pinnacled in software verification tools that do away with ab-
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straction entirely and inspect programs by symbolically simulating all execution traces of

a program up to a certain, user-defined length (e.g., [CKSY04, IYG+08]). Despite its ob-

vious limitations and its inability to reveal bugs that are deeply hidden in a program, this

technique is widely (and successfully) applied in industry.

An inherent deficiency (or rather, intentional design decision) of BMC is the lack of

an adequate mechanism to detect when a program has been exhaustively explored. The

proposed estimates for a sufficient bound are either not tight enough or computationally

expensive to derive from the model. In particular, they are typically not applicable to soft-

ware. While k-induction [SSS00], an approach to compute invariants by means of induction

has been successfully applied for hardware models, the first attempts to apply this technique

to software are only very recent [DKR10].

McMillan presented a promising approach to derive invariants by means of Craig inter-

polation [McM03]. Interpolant-based model checking is an approximate method for comput-

ing invariants of symbolic transition systems. Intuitively, interpolants over-approximate the

safe states reached by program executions that do not violate the property being checked.

An interpolant can be efficiently extracted from a proof of safety (generated by a deci-

sion procedure) for a finite length execution trace. While the technique has its origins in

hardware model checking, it was soon realised that it can also be applied in a predicate-

abstraction based CEGAR framework to derive refinement predicates from spurious coun-

terexamples [HJMM04]. These predicates were found to be more “sparse” and concise than

the assertions computed using traditional techniques such as the weakest precondition. A

conceptually similar approach, which also uses interpolation to derive assertions but does

not rely on predicate abstraction was presented by McMillan [McM06].

The utility of Craig interpolants in verification was noticed only recently, though the

notion of interpolation was introduced by William Craig over half a century ago [Cra57a].

Initially, the generation of Craig interpolants was based on specialised, proof-generating,

decision procedures (such as [McM05]). This role is increasingly taken over by Satisfiability

Modulo Theory (SMT) decision procedures [NOT06], which appear to be superseding SAT

solvers and BDDs as the driving force powering modern model checking tools. Interpolation-

based model checking and interpolating decision procedures are an evolving field, and many
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issues are still not well understood. So far, interpolation seems to be a promising direction

to take us one step further along the path towards finding better invariants.

1.2 A Mission Statement

Despite the numerous advances outlined in the previous section, the following facts have

invariably remained unchanged throughout the history of software verification:

� Programmers only provide incomplete specifications for their code. Even modern

programming languages still rely on assertions as the primary (and often only) means

of specifying correct behaviour.

� The pivotal problem of automating the verification of these assertions is to find ap-

propriate invariants.

� If an assertion does not hold, counterexamples (or failed test cases) are indispensable

when it comes to understanding why this is the case.

Academic programming languages such as Eiffel [Mey92] address the first two issues

by allowing software engineers to annotate their programs with invariants. In practice,

however, this methodology has not yet reached wide acceptance (partially due to the lack

of automated verification tools for these annotations). Modal formalisms, such as temporal

logic (the lingua franca of hardware verification engineers) have no equivalent in the world

of software engineering.

The kind of properties that can be specified using assertions are known as safety and

reachability properties. Since this dissertation does not have the ambition to change the

established practices of an entire industry, its focus is on the verification of safety properties

only. It should be noted, though, that for finite state models the verification of liveness

properties can be reduced to safety checking [BAS02]. Accordingly, tools that check program

termination (see, for instance [CPR05]) can benefit directly from the contributions of this

dissertation.

Testing is currently the predominant verification technique for software. It owes its

popularity to its scalability and the ability to produce counterexamples. The latter feature
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is also provided by software model checking tools. However, the presence of loops in the

program under test may have a strong negative effect on the performance of CEGAR-based

model checking tools [KW06]. Part of this dissertation is therefore dedicated to accelerating

the detection of counterexamples.

Counterexamples are a result of failed verification attempts [Pop34]. In the case of

model checking, verification and falsification are two sides of the same coin and are strongly

intertwined. It is therefore appropriate to address both aspects in one dissertation. The

aim of this dissertation is to improve over the state of the art in the field of CEGAR-based

software model checking for verification as well as falsification. In particular, the main

agenda items are:

� Generating inductive invariants by means of Craig interpolation. We present a tech-

nique that is able to provide a range of different interpolants and allows us to fine-tune

their logical strength.

� Accelerating the detection of counterexamples. We present an approach that, for

a certain class of programs, efficiently finds counterexamples which contain a large

number of loop iterations.

Before we detail our contributions in Section 1.4, we present motivating examples for

the points listed above.

1.3 Two Motivating Examples

This section contains two exemplary verification problems illustrating the challenges that

arise in automated verification. For the sake of understandability we keep the examples

small and simple. We emphasise, however, that they are motivated by realistic scenarios

that may occur in real programs – bit-vector operations and buffer overflows.

The examples we present are small enough to be amenable to paper-and-pencil reasoning.

For larger examples, however, manual verification is arguably neither feasible nor desirable.

Therefore, we present and apply machinery to mechanise this tedious task (in particular,

the model checking tools Wolverine and SatAbs [CKSY05]) in this dissertation.
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y:=x c:=0

[y6=0]

[y=0]

y:=y&(y-1)

c:=c+1

assert(y6=x)

Figure 1.1: Wegner’s algorithm to count ones [Weg60].

We present one correct program and one program which does not satisfy its specifica-

tion, establishing a balance between verification and falsification which we aim to maintain

throughout this dissertation. Both concepts are, in our opinion, equally important.

We use control-flow-automata (CFA) [HJM+02] to represent programs (see, for instance,

Figure 1.1). The transitions (or edges, respectively) of a CFA are annotated with assignment

statements, conditions, and assertions. The latter constitute the specification the program

is supposed to satisfy. To avoid confusion with the assertions in Hoare triples, we refer to

Hoare’s pre- and postconditions as predicates from now on. We defer a formal definition of

CFA and their semantics to Chapter 2.

The goal of the verification process is to annotate each node in the CFA with a predicate

such that each annotation of an edge forms a Hoare triple with the predicates of the adjacent

nodes. If such an annotation does not exist, we desire a justification for the failure of the

verification process in form of a counterexample.

1.3.1 Verification

The program in Figure 1.1 computes the number of bits set to one in the binary repre-

sentation of variable x. This is achieved by clearing the least significant bit set in each

iteration of the loop [Weg60]. While the assertion x6=y represents an invariant at the re-

spective program location, the invariant is not inductive, i.e., the condition x6=y alone is not

sufficient to guarantee that the assertion still holds after an additional iteration of the loop.

In the following, we attempt three different techniques to derive an appropriate inductive

invariant: Computing the strongest postcondition and weakest precondition of a path, and

Craig interpolation.

8



Table 1.1: Predicate transformers for statements in control-flow-automata
Statement Strongest Postcondition Weakest Precondition

stmt sp(stmt, P ) wp(stmt, Q)
x:=e ∃x′ . (x = e[x/x′]) ∧ P [x/x′] Q[x/e]
[R] P ∧R R⇒ Q

assert(R) P ∧R Q ∧R

stmt1; stmt2 sp(stmt2, sp(stmt1, P )) wp(stmt1, wp(stmt2, Q))

y:=x c:=0 [y6=0] y:=y&(y-1) c:=c+1 assert(y6=x)
1 2 3

Figure 1.2: A path in the control flow graph in Figure 1.1

Predicate Transformers

Dijkstra’s predicate transformers ([Dij75], cf. Section 1.1) are, at least for the restricted set

of program statements we allow as annotations of CFA edges, purely syntactical operations

on predicates. Table 1.1 introduces the strongest postcondition and weakest precondition

for assignment statements, conditions, and assertions. We use x and x′ to denote variables

and e to denote an expression in a not yet further specified first-order language. The term

e[x/x′] denotes the expression e with all free occurrences of x replaced by x′.

Hantler and King [HK76] states that “if a program contains no branches, symbolic

execution can be used to show that the truth of the initial assertion upon entry guarantees

the truth of the final assertion upon exit”. In particular, the predicate transformers in

Table 1.1 are sufficient to perform a symbolic execution of CFA-paths of finite length.

The strongest postcondition enables us to compute a symbolic representation of the

program states reachable at each location of the path. We refer to this technique as forward

simulation. For a path which ends in an assertion which it does not violate, the weakest

precondition allows us to determine the set of safe states for each location of the path. This

approach is known as backward simulation. In both cases, the simulation starts from the

predicate true, indicating that there are no constraints on the initial program states or the

states after the assertion.

Figure 1.2 shows a path of the program in Figure 1.1. We label three of the nodes with

ordinals. Table 1.2 lists the respective strongest postconditions and weakest preconditions

for each of these nodes. For convenience and readability, we have eliminated the existential
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y:=x c:=0 [y6=0] y:=y&(y-1) c:=c+1

assert(y6=x)

[y6=0] y:=y&(y-1) c:=c+1 assert(y6=x)

1

4

2 3

Figure 1.3: A path in the control flow graph in Figure 1.1.

quantifiers introduced by the sp-transformations. Furthermore, we ignore statements up-

dating the counter c, since they do not affect the correctness of the program (this approach

is known as slicing [Wei81]). By construction, the predicates listed in Table 1.2 are sufficient

to prove that the path in Figure 1.2 does not violate the assertion.

The predicates derived using sp and wp, however, are not inductive. The predicate

y = x&(x− 1) ∧ x 6= 0 is too strong to be useful for proving the correctness of the program

in Figure 1.1. To see this, consider the path in Figure 1.3. This path iterates the loop in

Figure 1.1 a second time. We use the strongest postcondition of the predicate at location

Â to construct a predicate for node Ã :

sp([y 6= 0], (y = x&(x− 1) ∧ x 6= 0)) = (y = x&(x− 1) ∧ x 6= 0) ∧ (y 6= 0) , (1.1)

sp(y := y&(y− 1), (y = x&(x− 1) ∧ x 6= 0) ∧ (y 6= 0)) =

(x&(x− 1) 6= 0) ∧ (x 6= 0) ∧ y = (x&(x− 1))&((x&(x− 1))− 1) .
(1.2)

The assertion is redundant and can therefore be ignored. The predicate derived in (1.2)

does not imply the predicate at location Â. In fact, it contradicts y = (x&(x− 1)).

Conversely, it can be shown that the predicate x 6= y derived for location Â using wp is

too weak to be an inductive invariant. In order to obtain an inductive invariant by means

of the predicate transformers discussed in this section, we need to iteratively unwind the

loop in the example program until the disjunction of all predicates for the node following

the statement x:=y&(y-1) reaches a fixed point. If the bit-width of the variables x and y

is n, this happens after n iterations.

10



Step Strongest Postcondition Interpolant Weakest Precondition
À x = y y ≤ x (x 6= y&(y− 1)) ∨ (y = 0)
Á x = y ∧ y 6= 0 y ≤ x ∧ y 6= 0 (x 6= y&(y− 1))
Â y = x&(x− 1) ∧ x 6= 0 x 6= 0 ∧ y ≤ (x− 1) x 6= y

Table 1.2: Strongest postconditions, interpolants, and weakest preconditions for the path
in Figure 1.2

Craig Interpolation

As the names of the predicate transformers discussed in the previous section indicate, the

predicates derived by means of sp and wp are the most extremal choices possible. Typi-

cally, there is a whole range of alternatives above and below (in the implication order) the

predicates generated using sp and wp, respectively. The art of software verification boils

down to choosing appropriate candidates from this range.

In the following, we describe Craig interpolants [Cra57a], adapted to our setting, in an

intuitive manner. We formalise and generalise this notion in Chapters 2 and 3. Let À be

a node in a CFA-path of finite length ending in an assertion which it does not violate. A

Craig interpolant for À is a predicate I such that

� I is implied by the predicate for À generated using the strongest postcondition.

� I implies the predicate for À generated using the weakest precondition.

� I refers only to symbols which are in the syntactical scope at the node À.

In our setting, we require furthermore that interpolants for the nodes of a path are

inductive in the sense that

� if I and J are interpolants for the nodes preceding and following (respectively) an

edge of the path annotated with a statement stmt, then sp(stmt, I) implies J .

The middle column of Table 1.2 shows such a set of interpolants for the labelled

nodes of the path in Figure 1.2. Given an adequate set of logical inference rules (such

as (x = y&z) ` (x ≤ y) ∧ (x ≤ z)), it is possible to verify that the conditions above hold.

For a number of logical languages commonly used in program verification, it is possible to

derive interpolants from a proof of safety for a path (cf., for instance, [McM05]). By “proof
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(y′=x) y′ 6= 0
(x6= 0)

∃y′ . y = y′&(y′ − 1) ∧ y′ = x

y = x&(x− 1)
x 6= 0 ∧ (y ≤ (x− 1))

y 6= x

Figure 1.4: A proof of safety for the path in Figure 1.2

of safety for a path” we denote a rule-based derivation establishing that the assertion at the

end of the path cannot be violated. For this purpose, we use the sp predicate transformer

to construct a formula corresponding to the prefix of the path up to the assertion, and show

that this formula implies the assertion.

Figure 1.4 shows such a proof of safety for the path presented in Figure 1.2. (A discussion

of the inference rules used in this proof is provided in Section 3.5.) The antecedents of the

proof derive immediately from the strongest postconditions at the nodes À, Á, and Â of

the path. The intermediate results in the proof are obtained by means of logical inference

rules of the kind mentioned above. The final step in the proof establishes that the assertion

y6=x must hold.

Note that all subformulae of the interpolants listed in Table 1.2 occur in the proof in

the antecedents or inferred predicates. Kovács and Voronkov [KV09b] shows that this is no

coincidence. Given a proof that has a certain structure such as the one in Figure 1.4, there

is always an interpolant which is a Boolean combination of the conclusions of the inferences

(cf. [KV09b], Lemma 10).

We proceed to show that the interpolant x 6= 0∧ (y ≤ (x−1)) for node Â is an inductive

invariant for the loop in Figure 1.1. Recall the path in Figure 1.3. We compute accordingly

sp([y 6= 0], x 6= 0 ∧ (y ≤ (x− 1))) = x 6= 0 ∧ (y ≤ (x− 1)) ∧ (y 6= 0) , (1.3)

sp(y := y&(y− 1), x 6= 0 ∧ (y ≤ (x− 1)) ∧ (y 6= 0) =

∃y′ . x 6= 0 ∧ (y′ ≤ (x− 1)) ∧ (y′ 6= 0) ∧ (y = y′&(y′ − 1)) .
(1.4)

From (1.4) we can derive by means of inference rules such as (x = y&z) ` (x ≤ y) and

transitivity that x 6= 0 ∧ (y ≤ (x − 1)) must hold at node Ã. The proof is outlined in

Figure 1.5. The predicate x 6= 0 ∧ (y ≤ (x − 1)) is an inductive invariant. It is also
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∃y′ . x 6= 0 ∧ (y′ ≤ (x− 1)) ∧ (y′ 6= 0) ∧ (y = y′&(y′ − 1))
x 6= 0 ∧ ∃y′ . (y′ ≤ (x− 1)) ∧ (y = y′&(y′ − 1))

x 6= 0 ∧ ∃y′ . (y′ ≤ (x− 1)) ∧ (y ≤ y′)�� ��x6= 0 ∧ (y≤ (x−1))
x ≤ y ∧ y ≤ z ` x ≤ z

(x = y&z) ` (x ≤ y)

Figure 1.5: Proof of inductivity for the invariant x 6= 0 ∧ (y ≤ (x− 1))

an interpolant for node Ã, since the proof in Figure 1.5 can easily be extended to show

that x 6= y (cf. Figure 1.4). Since this new interpolant implies a previously encountered

interpolant for the same program location, we can conclude that we have reached a fixed

point and that the program is safe.

This completes the argument that the interpolants in Table 1.2 can be used to construct

valid Hoare triples for all edges in the program in Figure 1.1, proving the assertion y6=x

correct. Before we proceed to the next example, we note that the proofs in Figures 1.4

and 1.5 make repeated use of inference rules from the theory of bit-vectors. This is crucial

to guarantee the soundness of the verification process. Computers store values of variables

using a binary representation. The semantics of the operations on these binary values is

determined by their gate-level implementation in the central processing unit (as indicated

for the decrement in Figure 1.6). This means that the range of variables is limited and that

an arithmetic operation can result in an overflow. In particular, the predicate (y ≤ (x− 1))

does not imply that x6=y: Let x and y be unsigned 2-bit variables represented by 〈x1x0〉 and

〈y1y0〉, respectively. Consider that x is zero, i.e., 〈x1x0〉 = 〈00〉. For this input, the result

of the decrement operation in Figure 1.6 is 〈s1s0〉 = 〈11〉, i.e., three. Therefore, x=0 and

x=y satisfies (y ≤ (x− 1)), and a decision procedure that concludes otherwise may possibly

result in an invalid correctness argument for a program. In such a case, the verification tool

must not conclude that the program is correct.

Many efficient decision procedures for bit-vector logic are (at least partially) based

on a propositional encoding of the formula. This approach is known as bit-blasting and

enables the deployment of efficient, off-the-shelf SAT solvers. While it is possible to extract

Craig interpolants from the propositional resolution proofs generated by these solvers, the

resulting interpolants are propositional formulae rather than instances of the word-level
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c2

x1 1

s1

x0 0

s0

c1 1

Figure 1.6: The semantics of the 2-bit bit-vector decrement-by-one operation [BKWW08].

language in which the original problem was formulated. The propositional encoding of a

formula such as (y ≤ (x−1)) is based on the gate-level implementation of the binary relation

≤ and the decrement operation (Figure 1.6). Such a bit-level encoding is unwieldy and hard

to interpret for a human. Accordingly, it is preferable to avoid such predicates in Hoare

proofs. Chapter 3 presents a technique that allows us to achieve this goal by combining

bit-level and word-level reasoning.

1.3.2 Falsification

The mere information that the verification tool failed to prove an assertion safe is of little to

no use to the programmer. The failure to prove the correctness of the program under test

does not necessarily indicate the presence of a bug. If a bug is present, the existence of an

actual violation of the assertion needs to be demonstrated by means of a counterexample.

Finding a counterexample is not a trivial task. A programming fault may only manifest

itself under very particular conditions. The main challenge for verification tools based on

symbolic simulation is that bugs are not necessarily “shallow”. For instance, an execu-

tion trace triggering a buffer overflow may require a several hundred loop iterations. In

a CEGAR-framework, this may result in repeated, computationally expensive refinement

attempts until the bug is eventually unveiled.

The structure of the CFA in Figure 1.7 is that of a typical program containing a buffer

overflow. The assertion replaces the access to an array or a buffer large enough to hold

100 elements and checks whether the index j exceeds the upper bound. The search for an

inductive invariant establishing that the assertion j < 100 holds must necessarily fail, since
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[i≤10] j:=i

[i<100]

[i≥100]

i:=i+1
j:=j+1

assert(j<100)

Figure 1.7: A program with a loop and an upper bound on j

such an invariant does not exist.

The iterative verification approach outlined in Section 1.3.1 effectively performs a sym-

bolic forward simulation in this case. If the program contains branches, this technique

results in a reachability tree [HK76], which contains all unwindings of the loop up to the

point where the violation of the assertion is found. Figure 1.8 shows the shortest path which

possibly violates the assertion. The repeat symbols indicate that the enclosed sequence of

statements should be replaced by a concatenation of 89 copies of itself. If we compute the

strongest postconditions for the nodes À, Á, and Â we obtain:

sp([i ≤ 10]; j := i, true) = (i ≤ 10) ∧ (j = i) À

sp([i < 100]; i := i + 1, (i ≤ 10) ∧ (j = i)) = (j ≤ 10) ∧ (i ≤ 11) ∧ (i < 101) Á

sp(j := j + 1, (j ≤ 10) ∧ (i ≤ 11) ∧ (i < 101)) = (j ≤ 11) ∧ (i ≤ 11) ∧ (i < 101) Â

Accordingly, the assertion j < 100 following node Â holds. Simulating an additional

iteration of the loop up to node Ã yields

sp([i < 100]; i := i + 1; j := j + 1, (j ≤ 11) ∧ (i ≤ 11) ∧ (i < 101)) =

(j ≤ 12) ∧ (i ≤ 12) ∧ (i < 101) ,

still short of violating the assertion. (Note that we also did not reach a fixed point.)

Only after 88 additional iterations of the loop we obtain a strongest postcondition of

(i ≤ 100) ∧ (j ≤ 100). Since this predicate does not rule out a violation of the assertion

(j < 100), we are finally in a position to report a counterexample.

The reason for the repeated and wasteful iteration is that the verification technique
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[i≤10] j:=i [i<100] i:=i+1 j:=j+1

assert(j<100)

||: [i<100] i:=i+1 j:=j+1 assert(j<100)
:||894

1 2 3

Figure 1.8: A long counterexample violating the upper bound

[i≤10] j:=i [i<100] i:=i+1 j:=j+1

assert(j<100)

[i<100] i:=i+n j:=j+n assert(j<100)
4

1 2 3

Figure 1.9: A parametrised counterexample violating the upper bound

ignores the structure of the program. In Chapter 4 we propose a technique to accelerate

the detection of counterexamples. The underlying idea is to detect loops which, if iterated

sufficiently often, potentially violate an assertion. We then parametrise the number of

iterations in the strongest postcondition.

Consider the path in Figure 1.9. After simulating the first few steps of the path, we

revisit the entry node of the loop in the program in Figure 1.7. Since we anticipate that

the loop will be executed repeatedly, we replace the assignments i:=i+1 and j:=j+1 by a

parametric version i:=i+n and j:=j+n. Computing the strongest postcondition for node Ã

yields

sp([i < 100]; i := i + n; j := j + n, (j ≤ 11) ∧ (i ≤ 11) ∧ (i < 101)) =

(j ≤ (11 + n)) ∧ (i ≤ (11 + n)) .

Using a constraint solver, we can now determine a value for n such that the strongest

postcondition (j ≤ 11 + n) ∧ (i ≤ 11 + n) allows for a violation of the assertion (j < 100).

It turns out that 89 is the smallest candidate for such an n. This result represents an

educated guess for the number of loop iterations required to violate the assertion. For our

example, we can immediately determine that initialising i to 10 and iterating the loop 90

times does indeed trigger the assertion.
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Finally, we want to stress that this technique is also able to accelerate the generation

of inductive invariants. In case the constraint solver is unable to find a value for n which

invalidates the assertion, we can extract an interpolant directly from a proof of safety for the

parametrised path. We discuss this technique in further detail in Chapter 4 and demonstrate

how it allows us to verify programs for which the approach outlined in Section 1.3.1 would

fail.

1.4 Contributions

This dissertation presents contributions to the field of interpolation-based software model

checking, an approach which has recently been the subject of significant research activity

(see, for instance, [HJMM04, McM06, EKS06, HHP10]). The dissertation presents theoret-

ical results as well as empirical results obtained by integrating some of the techniques we

discuss into the automated verification tools Wolverine and SatAbs.

Theoretical Results

We divide our theoretical contributions into techniques related to verification and falsifica-

tion, respectively.

Verification. We present novel techniques to derive Craig interpolants from refutation

proofs. Craig interpolants can be efficiently extracted from proofs that adhere to certain

structural restrictions (see, for instance, [Mae61, Hua95, Pud97, Kra97, McM05, KV09b]).

Many modern decision procedures (such as SAT and SMT solvers) are able to generate refu-

tation proofs of this kind. We distinguish between “bit-level” decision procedures, which

operate on a propositional encoding of the original problem instance and generate proposi-

tional resolution proofs, and “word-level” decision procedures, which treat variables as an

entity and apply theory specific inference rules to derive a contradiction. The interpola-

tion systems presented in this dissertation cover both approaches (as well as combinations

thereof) and enable the generation of a wider range of interpolants than currently possible

with existing techniques:
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� We present a technique to fine-tune the logical strength of propositional interpolants

derived from resolution proofs. Our technique generalises existing propositional in-

terpolation systems (in particular [Hua95, Pud97, Kra97, McM05]) and enables the

generation of a wider range of interpolants.

� We relate propositional reasoning and word-level decision procedures by showing how

resolution proofs of a certain structure can be lifted to word-level proofs in the theory

of bit-vectors. This contribution

– exposes a structural relation of propositional resolution proofs and word-level

proofs from which we are able to extract interpolants, and

– enables the combination of bit-level and word-level reasoning for the purpose of

generating word-level interpolants.

The technique differs from traditional SMT techniques in the sense that it is an ex

post facto approach, i.e., it is applied only after the SAT solver has reached its final

verdict.

� The common practice of modelling the behaviour of bit-vector operations using arith-

metic over the unbounded integers or reals introduces a discrepancy between the

bit-level semantics of program variables and the domain of the resulting interpolants.

Therefore, we propose an interpolating decision procedure which is sound for reason-

ing over the bit-vectors and can therefore be used in the context of the proof-lifting

approach we present. It extends existing graph-based algorithms for deciding equality

logic with uninterpreted functions with limited support for theory specific inference

rules (as illustrated in Figures 1.4 and 1.5). Moreover, we present two instances of

our interpolation technique allowing us to generate word-level interpolants of different

logical strength.

Falsification. We present an approach to accelerate the detection of counterexamples

containing a large number of iterations of loop constructs. The underlying idea is to detect

potential loops in the reachability tree generated by means of symbolic simulation. This

approach has two aspects:
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� It attempts an educated guess regarding the number of iterations required to violate

an assertion. The technique may thus avoid computationally expensive refinement

attempts (including the repeated computation of interpolants using the verification

techniques discussed above).

� We show that, if the attempt to find a counterexample fails, the detection of loops

can also have a positive impact on the verification process. By taking the program

structure into account when computing interpolants we are able to verify classes of

programs for which an uninformed verification technique would fail.

Tools and Empirical Evaluation

We implemented and evaluated some of the techniques presented in the previous section

in our software verification tools Wolverine and SatAbs [CKSY05]. The Wolverine

tool is an implementation of the interpolation-based algorithm presented in [McM06] and

relies on the interpolating word-level decision procedure presented in our dissertation. The

Wolverine tool has been implemented in the scope of our doctoral work and is successfully

applied to verify a benchmark set consisting of a number of Windows and Linux device

drivers.

We emphasise that, while verification and falsification are strongly intertwined, the im-

provements achieved by means of the techniques presented in this thesis are orthogonal.

Therefore, we evaluate our counterexample detection approach separately by making ap-

propriate adjustments to the predicate-abstraction based model checking tool SatAbs. We

apply the modified version of SatAbs to an open source mail delivery agent and the buffer

overflow benchmark presented in [KHCL07]. We observe a performance improvement of up

to 400% for some of these benchmarks.

The verification tools Wolverine and SatAbs are available from the websites

� http://www.cprover.org/wolverine and

� http://www.cprover.org/satabs,

respectively.
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1.5 Significance of Contributions

The philosopher Thomas Samuel Kuhn distinguishes between paradigm-shifting revolution-

ary science and normal science [Kuh62]. He describes the latter as “puzzle solving”, an

attempt to enlarge the paradigm of a field and to corroborate the confidence in its under-

lying techniques. This dissertation is a specimen of the latter class.

Our work on interpolating decision procedures generalises several existing approaches.

Existing techniques generate exactly one interpolant per refutation proof and partition. Our

techniques lift this restriction and enable the generation of a whole range of interpolants.

Thus, we can provide the verification tool with a choice of candidates for invariants. While

this increases the potential that an appropriate inductive invariant can actually be generated

by means of interpolation, we have not yet investigated heuristics to identify promising

candidates.

The falsification technique presented in our thesis has the potential to increase the per-

formance of model checking tools by several orders of magnitude without adding a significant

overhead to the verification process.

This dissertation is based on a number of previously published and peer-reviewed ar-

ticles. It restates and extends the results presented in these publications. It presents a

number of novel contributions to the field of automated software verification, which have

been acknowledged by expert reviewers in the verification community. We provide a de-

tailed survey of this field in [DKW08]. The discussion of the state of the art in this field

(Section 2 of this dissertation) draws extensively on this publication.

In the following, we map the contributions listed in Section 1.4 to the respective publi-

cations:

Verification.

� The technique to generate a range of propositional interpolants of varying strength is

presented in [DPWK10]. The complete proofs of the theorems stated in this publica-

tion are provided in an extended technical report [DKPW09].

� The relation between propositional resolution proofs and proofs based on theory-
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specific inference rules is covered in our publication on lifting propositional proofs to

the word-level [KW07].

� In [KW09a], we present an interpolating decision procedure which supports equality

logic, uninterpreted functions and transitive relations and provides ad-hoc support for

axioms of the bit-vector theory.

Falsification. Our approach to accelerate falsification by detecting potential loops in

counterexamples is presented in [KW06]. Its benefits for verification are discussed in [KW10].

1.6 Organisation of this Dissertation

Chapter 2 provides an introduction to predicate abstraction and interpolation-based model

checking. First, it introduces the basic concepts underlying these verification techniques:

It briefly discusses Hoare logic and uses this concept to define the semantics of control

flow automata (CFA). It then carries on to explain how Hoare logic can also be used

to define abstractions of CFA. Then, we describe how abstractions can be automatically

constructed using predicate abstraction or Craig interpolation. We present two state-of-

the-art model checking techniques based on counterexample-guided abstraction refinement,

predicate abstraction and interpolation, and highlight the similarities of these approaches.

The structure of the remaining part of this dissertation is dictated by the outline of our

contributions presented in Section 1.4.

Chapter 3 covers the generation of Craig interpolants. It fixes a quantifier-free fragment

of first order logic with bit-vector operations (Section 3.1), which serves as our assertion lan-

guage for Hoare triples. Furthermore, it provides a general introduction to the mechanisms

underlying our interpolation techniques (Section 3.2).

The remaining chapter is subdivided into three sections, each corresponding to one of

our main contributions in this category. Section 3.3 briefly discusses propositional encodings

of bit-vector logic. It introduces resolution proofs and presents an interpolation system for

resolution refutations enabling the generation of a range of interpolants of different logical

strength. Furthermore, we discuss how it is possibly to vary the logical strength of the
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resulting interpolants by modifying the refutation proofs. Section 3.4 relates propositional

resolution proofs and theory specific word-level refutation proofs. We explain how to lift

propositional proofs to proofs over the bit-vector language defined at the beginning of the

chapter. In Section 3.5, we demonstrate how interpolants can be constructed from word-

level refutation proofs. We present two different interpolation systems for word-level proofs

which allow us to generate interpolants of different strength. Section 3.6 is dedicated to the

experimental evaluation of our interpolation techniques.

Chapter 4 covers falsification and the generation of counterexamples. In Section 4.1, we

introduce an algorithm to detect potential loops in counterexamples. Then we discuss how

to derive from parametrised paths an educated guess for the number of iterations required

to violate an assertion. We continue with an exposition of how information about the

structure of counterexamples can be exploited for the purpose of finding inductive invariants

(Section 4.2). Section 4.3 provides a panopticon of example programs which can be verified

more efficiently using this approach. In Section 4.4 we provide a relative completeness

argument for our approach. Section 4.5 is dedicated to the experimental evaluation of our

implementation.

Finally, we provide some concluding remarks and a discussion of open issues and poten-

tial future work.

Appendix A discusses implementation-specific issues of the Wolverine verification tool

and describes the implementation of our decision procedure for bit-vector arithmetic. Ap-

pendix B contains a number of proofs for theorems presented in Chapters 2 and 3.

22



Chapter 2

Interpolation-based Verification

Techniques

This chapter starts with a summary of the preliminary concepts used throughout this disser-

tation. It revisits Hoare logic and Dijkstra’s predicate transformers (based on [Hoa69, Dij75]

and Greg Nelson’s excellent exposition of Dijkstra’s calculus [Nel89]). These systems for

formal reasoning over programs have a twofold purpose in our setting:

� They are used to define the semantics of control flow automata (CFA) [HJM+02] and

abstractions thereof.

� They serve as the primary tool to generate and to refine abstractions for the aim of

constructing safety proofs for programs.

We introduce Craig interpolants [Cra57a] and discuss how interpolation can be used to define

alternative predicate transformers. We show that interpolants satisfy the requirements for

the predicates of Hoare triples.

We use predicate transformers to define the semantics of programs and introduce the

concept of reachability trees, which can be obtained using symbolic simulation [HK76].

For programs of realistic size, the construction of reachability trees is made feasible

by analysing an abstraction of the CFA. (This approach is an instance of the abstract

interpretation framework [CC79].) We discuss predicate abstraction [GS97] as one means
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to obtain such abstractions and define this concept in terms of Hoare logic (cf. [Bal05],

where predicates transformers are used). Furthermore, we show that interpolants represent

a sound approximation of safely reachable states. This property makes interpolation a

useful technique for refining abstractions in a counterexample-guided abstraction refinement

framework.

We proceed to integrate the techniques presented in this section into a verification

framework: we present two state-of-the-art interpolation-based model checking techniques,

which constitute instances of the framework outlined in this section, namely the predi-

cate abstraction-based CEGAR framework (incarnations of which are presented in [BR02b,

HJMS02] and [CKSY05]) and lazy abstraction with interpolants [McM06]. These techniques

enable us to construct safety proofs for programs.

We conclude by providing a brief overview of existing verification tools and related work

(Section 2.6). For detailed comparison of these tools, we refer the reader to Section 3 of

[DKW08], the author’s main contribution to this survey of automated software verification.

Contribution. This chapter presents existing interpolation-based techniques using a uni-

fied formalism.1 Furthermore, it provides a self-contained tutorial for software model check-

ing with interpolants.

2.1 Hoare Logic and Dijkstra’s Predicate Transformers

Hoare logic is based on predicates representing assertions about program states. Let C be

a concrete domain of program states. A set of program states S ⊆ C is characterised using

a predicate P which maps a state s to true (denoted by P (s) = true) if and only if s ∈ S.

We assume these predicates to be instances of a first-order language L and defer a formal

definition of this language to Section 3. In our notation, x is a (program) variable, e a

quantifier-free expression (or term, respectively), and P , Q, R are Boolean predicates, all

well-formed members of L. In our setting, predicates are typically either quantifier-free or

amenable to quantifier elimination. We consider only expressions and predicates that have

a well-defined meaning in the context of the program.
1Based on our publication on predicate-abstraction based verification of programs with loops [KW10].
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{P [x/e]} x:=e {P}
assignment

{P ⇒ Q} [P ] {Q}
condition

{P ⇒ Q} assert (P ) {Q}
assertion

{P} π1 {Q} {Q} π2 {R}
{P} π1;π2 {R}

composition

P ⇒ Q {Q} π {R} R⇒ S

{P} π {S}
consequence

Figure 2.1: A selection of Hoare logic rules for simple programming language constructs

Definition 2.1.1 (Hoare Triple). A Hoare triple comprises a precondition, a statement,

and a postcondition. The Hoare Triple {P} stmt {Q} means that if the statement stmt

is executed in a state in which P holds, then Q is true in any state in which stmt may

halt [Nel89]. We refer to P as the precondition and to Q as the postcondition of the Hoare

Triple.

An alternative definition of {P} stmt {Q} (also given in [Nel89]) states that for all

states s and s′, if stmt is executed in s and yields s′, then P (s) implies Q(s′).

Hoare logic provides axioms and inferences rules for reasoning about imperative pro-

gramming language constructs. In our setting, a program statement is either a condition,

i.e., a total map from the concrete domain of program states C to the Boolean domain B,

or an assignment mapping C into C [CC79]. Furthermore, since we are concerned with the

safety of programs, we assume that programs are annotated with assertions. We use [P]

to denote conditions, x:= e to denote assignments, and assert(P) to represent assertions,

where P is always an unquantified predicate. A path π is either the empty sequence ε, a

program statement, or the concatenation π1;π2 of two paths.

Figure 2.1 shows a set of axioms and inference rules for these constructs. We illustrate

their application in the Examples 2.1.1 and 2.2.1 below.

Dijkstra’s predicate transformers [Dij75] are an extension of Hoare logic. In Dijkstra’s

calculus, statements are total functions associating preconditions to postconditions. Com-

pared to Hoare triples, Dijkstra imposes “tighter” conditions on preconditions and post-

conditions. The following definition of the weakest liberal precondition exposes the relation
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Table 2.1: Predicate transformers for simple program statements
Statement Strongest Postcondition Weakest (Liberal) Precondition

stmt sp(stmt, P ) w(l)p(stmt, Q)
x:=e ∃x′ . (x = e[x/x′]) ∧ P [x/x′] Q[x/e]
[R] P ∧R R⇒ Q

assert(R) P ∧R Q ∧R (R⇒ Q)
stmt1; stmt2 sp(stmt2, sp(stmt1, P )) w(l)p(stmt1, w(l)p(stmt2, Q))

between Hoare logic and Dijkstra’s calculus.

Definition 2.1.2 (Weakest Liberal Precondition). The weakest liberal precondition (deno-

ted as wlp(stmt, Q)) for a statement stmt with respect to a postcondition Q is the weakest

predicate P (in the implication order) such that {P} stmt {Q} holds, i.e., {P ′} stmt {Q}

is equivalent to P ′ ⇒ wlp(stmt, Q).

Hoare logic proofs and the weakest liberal precondition only provide partial correctness

arguments: the termination of program statements needs to be addressed separately. This is

sufficient in our setting, since we only attempt to prove safety properties. Dijkstra’s seminal

paper [Dij75], however, introduces a predicate transformer which requires termination:

Definition 2.1.3 (Weakest Precondition). The weakest precondition wp(stmt, Q) for a

program statement stmt with respect to a postcondition Q is the weakest predicate P (in the

implication order) such that {P} stmt {Q} holds and stmt is guaranteed terminate.

Thus, the weakest liberal precondition wlp(stmt, Q) represents a relaxation of the

weakest precondition wp(stmt, Q). For unconditionally terminating statements such as

conditional statements and assignments, however, the definitions of the weakest liberal

precondition wlp and the weakest precondition wp coincide. In accordance to [Nel89],

we indicate this correspondence by using the notation w(l)p in Table 2.1, which lists the

predicate transformers for these statements (cf. Table 1.1 in Section 1.3.1):

� The predicate transformers wp and wlp for the assignment statement state that what

the precondition guarantees for e must also hold for the assigned variable x in the

postcondition Q. Here, Q[x/e] denotes the predicate Q with all free occurrences of x

replaced by the expression e.
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� The predicate transformer for a condition [R] and an assertion assert(R) warrants

that R holds if the execution succeeds. The difference between these two statements

is that, intuitively, a failing condition does not allow us to make any assumption

on the outcome, whereas executing an assertion which does not hold results in “no

proper (non-looping) outcomes”, i.e., non-termination.2 The fact that assertions are

modelled using non-termination is the reason for the two entries in the respective cell

of Table 2.1.

� Finally, predicate transformers can be applied to paths by means of functional compo-

sition, where the empty sequence of statements ε corresponds to the identity mapping.

Notably, the definition of wp for the conditional statement [R] in Table 2.1 violates the

so called “Law of the Excluded Miracle”, a restriction introduced in Dijkstra’s original ex-

position of predicate transformers (see [Dij75], property 1 in Section 3.1). The requirement

that wp(stmt, false) = false always has to hold effectively bars partial program statements

such as [R]. Nelson [Nel89] takes strong opposition against this restriction:

“I concluded that the Law of the Excluded Miracle is like bubble sort: It is

unfortunate that is has a catchy name because the world would be better off

forgetting it.”

Partial statements are omnipresent in the work related to this dissertation (see, for

instance, [BMMR01, HJMS02, CKSY05, McM06]), and their semantics is subtle and there-

fore sometimes misrepresented3 ([HJMS02], Section 5.2.1 as well as [CC79], Section 3.2,

for instance, state that w(l)p([R], Q) = R ∧Q, which is stronger than R ⇒ Q). In this

dissertation, we choose the more general predicate transformer w(l)p presented in [Nel89]

over its restrictive counterpart in [Dij75].

The weakest (liberal) precondition imposes a backwards direction of the program anal-

ysis. Its counterpart predicate transformer, the strongest postcondition, enables reasoning

in the opposite direction.
2Accordingly, in assert(P ) corresponds to (P → Skip) � Loop in Nelson’s formalism [Nel89].
3We thank Joseph N. Ruskiewicz for bringing this issue to our attention.
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Definition 2.1.4 (Strongest Postcondition). The strongest postcondition sp(stmt, P ) for

a statement stmt with respect to a precondition P is the strongest predicate Q (in the

implication order) such that {P} stmt {Q} holds, i.e., {P} stmt {Q′} is equivalent to

sp(stmt, P )⇒ Q′.

The strongest postcondition for our set of simple statements is defined analogously to

w(l)p in Table 2.1. Some brief comments are in order:

� The existential quantification introduced by the strongest postcondition for assign-

ment statements essentially takes the role of the substitution performed by w(l)p:

What the precondition P states about x must hold of x′ (a fresh variable not occur-

ring in P and e) in the postcondition.

� The strongest postcondition of [R] simply warrants that R holds in addition to what

the precondition already guarantees. If the condition [R] does not hold for any of the

states characterised by the precondition P , then the respective postcondition is false,

which only holds for the empty set of states.

� The order in which the predicate transformer functions are composed is reversed.

Reasoning with the strongest postcondition corresponds to a forward reachability anal-

ysis (or symbolic simulation, respectively) of paths [HK76]. The strongest postcondition

enables the construction of predicates characterising the set of reachable states at each point

in the path. Each assignment statement x :=e gives rise to a fresh variable x′ representing

the value of x before the execution of the statement. We briefly point out the similarity to

two other common techniques in static analysis:

� Predicative programming [Heh84] treats statements as predicates over the initial and

final value of x (x̀ and x́, respectively). Dijkstra et al. [D+82] was the first to ob-

serve the correspondence of this approach and predicate transformers. The weakest

liberal precondition for a statement stmt is completely determined by the predicate

wlp(stmt, x 6= x́)[x/x̀] (a proof is provided in [Nel89], Section 7). This predicate is the

complement of the predicate representing stmt in predicative programming. Similarly,

the predicate sp(stmt, x̀ = x)[x/x́] is a relation representing the statement stmt.
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� The static single assignment form (SSA) [CFR+91] of a program is an intermediate

representation used in compiler construction in which each variable is assigned ex-

actly once. This is achieved by introducing subscripts for the original variables, e.g.,

x1 := x0 + 1 is a possible SSA representation of x := x + 1.

For paths, both representations can be obtained by means of skolemisation (see, for

instance, [BJ89]) of the strongest postcondition and variable renaming. For instance,

∃x′ . x = x′ + 1 is equi-satisfiable with x1 = x0 + 1 and x́= x̀+1 (which is equivalent to

¬wlp(x := x + 1, x 6= x́)[x/x̀]). The representations are thus interchangeable in the context

of the satisfiability of formulae. For convenience, we represent statements as predicates or

in SSA form whenever it simplifies the presentation.

The direct correspondence of the rules in Figure 2.1 and the predicate transformers

in Table 2.1 follows immediately from Definitions 2.1.2 and 2.1.3. The following example

illustrates this tight connection.

Example 2.1.1. We revisit the example presented in Section 1.3.1 of the Introduction.

Consider the following slice of the path presented in Figure 1.2:

y := x; [y 6= 0]; y := y&(y− 1); assert(y 6= x)

Table 1.2 shows the strongest postconditions and weakest preconditions for each point in

this path. It is possible to obtain the same pre- and postconditions listed in this table by

using the Hoare logic rules in Figure 2.1. In the following, we prove that the assertion at

the end of this path cannot be violated. This can be achieved by showing that y 6= x holds

immediately before the assertion. We obtain:

{y&(y− 1) 6= x} y := y&(y− 1) {y 6= x} (assignment)

{y = 0 ∨ y&(y− 1) 6= x} [y 6= 0] {y&(y− 1) 6= x} (condition)

{x = 0 ∨ x&(x− 1) 6= x} y := x {y = 0 ∨ y&(y− 1) 6= x} (assignment)

Note that (x = 0 ∨ x&(x− 1) 6= x) ≡ true. Repeated application of the rule of composi-
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tion in Figure 2.1 yields

{true} y := x; [y 6= 0]; y := y&(y− 1) {y 6= x} , (2.1)

completing the proof argument.

Analogously, we can apply forward reasoning. To improve readability, we omit basic

logical simplification steps in the logic L in the following proof.

{true} y := x {y = x} (assignment)

{true} y := x {y = 0 ∨ y = x} (consequence)

{y = 0 ∨ y = x} [y 6= 0] {y = x ∧ y 6= 0} (condition)

{y = x ∧ y 6= 0} y := y&(y− 1) {∃y′ . y = y′&(y′ − 1) ∧ y′ = x ∧ y′ 6= 0} (assignment)

{y = x ∧ y 6= 0} y := y&(y− 1) {y 6= x} (consequence)

The intermediate predicates correspond to the strongest postconditions in Table 1.2. The

application of the consequence rule weakens the postcondition of y:=x and accounts for the

fact that the execution of [y 6= 0] silently terminates if y = 0 and never reaches the assertion.

Again, repeated use of the composition rule yields the Hoare triple (2.1).

The consequence rule in Figure 2.1 reflects the additional degree of freedom Hoare logic

provides compared to Dijkstra’s predicate transformers. Preconditions may be strengthened

and postconditions may be weakened. Note that the predicate transformers presented so

far are monotonic in their second argument, i.e., it follows from P ⇒ Q that wp(stmt, P )⇒

wp(stmt, Q), and similarly for wlp and sp. Reasoning with Hoare logic and the consequence

rule in particular gives us no such guarantee. In general,

(P ⇒ P ′) ∧ {P} stmt {Q} ∧ {P ′} stmt {Q′} ⇒ (Q⇒ Q′)

does not hold. Note that Hoare triples cannot be classified as monotonic or non-monotonic,

since, unlike predicate transformers, they do not represent functions. In Section 2.2 we

encounter non-monotonic predicate transformers based on Craig interpolation. The con-
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sequences of this property for interpolation-based automated verification algorithms are

discussed in Section 2.5.1.

2.2 Craig Interpolation

The predicate transformers presented in the previous section provide merely an upper and

a lower bound (in the implication order) for the predicates in Hoare logic proofs. In a

consecutive sequence of statements, the pre- and postconditions of each respective Hoare

triple are bounded from below by the predicates obtained by a forward analysis based on the

strongest postcondition, and bounded from above by the predicates constructed using the

weakest precondition during backward analysis. This is illustrated in the following example.

Example 2.2.1. We continue working in the setting of Example 2.1.1. Table 1.2 lists the

weakest preconditions and strongest postconditions for each point in the path

y := x; [y 6= 0]; y := y&(y− 1); assert(y 6= x) .

Figure 2.2 is based on this table and indicates the existence of more than one Hoare

logic proof for the safety of the path. At each location in the path, we have a choice of

predicates only restricted by the strongest postcondition and weakest precondition of the re-

spective prefix and suffix of the path, respectively. In particular, the proof using the predicate

(y ≤ (x− 1) ∧ x 6= 0) is a valid Hoare logic proof, as can be shown using the consequence

rule:

{y = x ∧ y 6= 0} y := y&(y− 1) {y = x&(x− 1) ∧ x 6= 0} cf. Example 2.1.1

{y = x ∧ y 6= 0} y := y&(y− 1) {y ≤ (x− 1) ∧ x 6= 0} (consequence)

{y = x ∧ y 6= 0} y := y&(y− 1) {y 6= x} (consequence)

Weakening the postcondition of the first Hoare triple of the proof enables us to show that

y ≤ (x− 1) ∧ x 6= 0 is a valid conclusion (which can be further weakened to y 6= x). The

rest of the proof is as in Example 2.1.1.

Formally, the upper and lower bounds for predicates can be defined in terms of the
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predicate transformers introduced in Definitions 2.1.2 and 2.1.4.

Definition 2.2.1 (Chain Condition). Let stmt1; . . . ; stmtn be a path of length n (i.e., a

sequence of n statements). Furthermore, let P0,. . . ,Pn be a set of n+1 predicates such that

{Pi−1} stmti {Pi} is a Hoare triple for all i ∈ {1..n}. Then, by Definitions 2.1.2 and 2.1.4

it has to hold that

∀i ∈ {1..n} . Pi−1 ⇒ wlp(stmti, Pi) ∧ sp(stmti, Pi−1)⇒ Pi .

McMillan [McM06] observes that it is possible to obtain predicates satisfying the con-

ditions in Definition 2.2.1 by means of Craig interpolation. William Craig’s seminal pa-

per [Cra57a] presents the following result:

Theorem 2.2.1 (Craig’s Interpolation Theorem). Let A and B be two closed formulae in

first order predicate logic with equality. Given a valid implication A ⇒ B, there exists an

“intermediate” closed formula I implied by A and implying B such that the function and

predicate symbols (other than the identity symbol) of I occur in A as well as in B. We call

such a formula I an interpolant for the pair of formulae (A,B).

Craig [Cra57a, Cra57b] provides a constructive proof for his theorem. Variants of this

theorem have been shown for logics other than first order logic. Furthermore, there are

a number of algorithms for computing interpolants for propositional logic [Hua95, Kra97,

Pud97, Bus99, DPWK10] and for various combinations of quantifier-free equality logic with

uninterpreted functions and linear arithmetic (e.g., [McM05, RSS07, BZM08, FGG+09,

GKT09, CGS09]).

Kovács and Voronkov [KV09b] points out that McMillan [McM05] makes slight changes

to the notion of an interpolant and introduces inconsistencies with the original terminology

(presented in Theorem 2.2.1). For reasons discussed at the end of this section, [McM05]

defines an interpolant for an inconsistent pair of formulae (A,B) to be a formula I such

that A⇒ I and B ⇒ ¬I. In the terminology of Theorem 2.2.1, this corresponds to a Craig

interpolant for the pair of formulae (A,¬B).

In this dissertation, we adhere to Craig’s original terminology. The interpolation theo-
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rem, however, needs to be carefully adapted to our setting. Theorem 2.2.1 does not allow

free variables and is therefore not immediately applicable to the quantifier free predicates

we use to construct Hoare proofs. Therefore, we treat free program variables in predicates

as constants (i.e., uninterpreted nullary functions) in the respective first order language

(as suggested in Section 5 of [KV09b]). Moreover, in the context of software verification,

it is common to apply a variation of Theorem 2.2.1 which requires only the uninterpreted

symbols to be shared (cf. [KV09b], Theorem 3). We address this issue in Section 3.2 after

specifying the first-order language L introduced in Section 2.1 in more detail in Section 3.1.

The condition for the predicates Pi (0 < i < n) in Definition 2.2.1 can be formulated

alternatively as

sp(stmti, Pi−1)⇒ Pi ∧ Pi ⇒ wlp(stmti+1, Pi+1) . (2.2)

Therefore, the interpolant for the pair of formulae ( sp(stmti, Pi−1) , wlp(stmti+1, Pi+1) ) is

a valid candidate for Pi. Unfortunately, condition (2.2) defines Pi in terms of Pi+1 and vice

versa and does therefore not enable the actual construction of these interpolants. A slight

modification to the condition makes the iterative computation of interpolants possible. Let

stmt1; . . . ; stmtn be a path of length n. We can derive each Pi (0 < i < n) from its

predecessor Pi−1 by constructing an interpolant for the pair of formulae

( sp(stmti, Pi−1) , wlp(stmti+1; . . . ; stmtn, Pn) ) . (2.3)

The resulting sequence of interpolants adheres to the condition in Definition 2.2.1. The

condition that sp(stmti, Pi−1) ⇒ Pi has to hold guarantees that the resulting interpolants

can be used to form a sequence of Hoare triples. The condition is introduced in [McM06].

Heizmann et al. [HHP10] calls such a sequence of interpolants inductive.

We conclude this section by pointing out that each path stmt1; . . . ; stmtn can be trans-

formed into a conjunction of (existentially quantified) predicates representing the respective

statements. This is possible because of the correspondence between statements and pred-

icates (noted in Section 2.1 on page 28). The observation is based on the proof of the
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following Lemma:

Lemma 2.2.1. Let π1 = stmt1; . . . ; stmti and π2 = stmti+1; . . . ; stmtn (with 0 ≤ i ≤ n,

allowing π1 or π2 to be ε) be the prefix and the suffix of a path of length n, respectively.

Then, given a quantifier-free predicate Q, sp(π1, Q) (and wlp(π2, Q), respectively) can be

represented as an existentially (universally) quantified predicate in prenex normal form.

Proof. 1. We prove the first case (sp(π1, true)) of Lemma 2.2.1 by induction.

Base case. By definition, sp(ε, Q) = Q. This establishes the base case.

Induction hypothesis. Let π be a path of length i − 1. Then, sp(π,Q) can be

represented as an existentially quantified predicate in prenex normal form.

Induction step. Let π; stmt be a path of length i, and let P = sp(π,Q). By the

induction hypothesis, P is an existentially quantified predicate in prenex normal form.

According to Table 2.1, sp(π; stmt, Q) = sp(stmt, P ). By definition, the predicate

R in conditions and assertions is quantifier-free (see Section 2.1). It is therefore

straight forward to transform P ∧ R into an equivalent predicate in prenex normal

form by means of renaming the quantified variables in P and extending the scope of

the quantifier to R. According to Table 2.1, sp(x := e, P ) is ∃x′ . (x = e[x/x′])∧P [x/x′],

which can be brought into prenex normal form by renaming the quantified variables

in P and such that they do not conflict with the free variables in ∃x′ . x = e[x/x′] and

by shifting the existential quantifiers of P to the left.

2. To prove the second case (wlp(π2, Q)) of Lemma 2.2.1 we use the following theorem:

Theorem 2.2.2 (Predicate Correspondence, [Nel89]). Let stmt be a statement testing

or setting no program variables other than x. For any predicate P , it holds that

wlp(stmt, P ) ≡ (∀x′ . wlp(stmt, x 6= x′) ∨ P [x/x′])
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We use Theorem 2.2.2 to show that wlp(π2, Q) can be represented as a universally

quantified predicate in prenex normal form.

Base case. By definition, wlp(ε, Q) = Q. This establishes the base case.

Induction hypothesis. Let π be a path of length i − 1. Then, wlp(π,Q) can be

represented as a universally quantified predicate in prenex normal form.

Induction step. Let stmt;π be a path of length i, and let P = wlp(π,Q). By

the induction hypothesis, P is a universally quantified predicate in prenex normal

form. Then, according to Table 2.1, wlp(stmt;π, true) = wlp(stmt, P ). By Theo-

rem 2.2.2, wlp(stmt, P ) is ∀x′ . wlp(stmt, x 6= x′) ∨ P [x/x′]. As in case 1, we make a

case distinction for stmt according to Table 2.1.

(a) Assignment. By Theorem 2.2.2 and Table 2.1, wlp(x := e, P ) is equivalent to

∀x′ .¬(x′ = e) ∨ P [x/x′] . We can rename the quantified variables in P such that

they do not conflict with the variables in x′ 6= e and move the universal quantifiers

of P to the front.

(b) Condition, Assertion. Analogously, we obtain ∀x′ .¬(R ∧ (x = x′)) ∨ P [x/x′] for

wlp([R], P ) or wlp(assert(R), P ), where R is a quantifier-free predicate, which

can be brought into prenex normal form as outlined previously.

The argument can be generalised to statements testing or setting more than one

program variable by adjusting the predicate x 6= x′ in Theorem 2.2.2 accordingly.

The reason for presenting this relatively trivial proof in such detail is that it provides

valuable insight about the structure of the predicates representing sp(π1, P ) and wlp(π2, Q).

Let π1 = stmt1; . . . ; stmti and π2 = stmti+1; . . . ; stmtn be a prefix and a suffix, respec-

tively, of a path of length n. We make the following observations:

1. The existentially quantified variables in sp(π1, P ) refer to values of the respective pro-

gram variables in the past (with respect to the program location following statement
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stmti). Conversely, the universally quantified variables in wp(π2, Q) refer to values

of the respective program variables in the future. The free variables in sp(π1, P ) and

wp(π2, Q) refer to the values in the “current” time-frame. Note that not all free vari-

ables in sp(π1, P ) must necessarily occur in wp(π2, Q) as well, since π1 may define

variables that are never used in π2. The “strongest postconditions and weakest pre-

conditions along the path” are therefore not necessarily “the strongest and weakest

interpolants respectively” as claimed in [McM06].

2. By construction (see case 1 in the proof for Lemma 2.2.1), sp(π1, Q) is an existentially

quantified conjunction of predicates, each of which corresponds to one statement in

π1 or to Q[x/x′].

3. By construction (see case 2 in the proof for Lemma 2.2.1), wp(π1, Q) is a universally

quantified disjunction of predicates, each of which is derived from a statement in π2

or from Q. Moreover, all predicates derived from program statements occur negated.

By negating wp(π1, Q), we can transform the formula into an existentially quanti-

fied conjunction of predicates, each of which corresponds to a statement in π2 or to

¬Q[x/x′].

4. Suppose that sp(π1, P ) ⇒ wp(π2, Q) and let I be an interpolant for the pair of for-

mulae ( sp(π1, P ), wp(π2, Q) ). Then sp(π1, P )⇒ I and ¬wp(π2, Q)⇒ ¬I. Moreover,

the formula sp(π1, P ) ∧ ¬wp(π2, Q) is unsatisfiable.

The last observation is the motivation for the unconventional definition of Craig inter-

polants in McMillan [McM05], which is now commonly used in the context of automated

verification. Chapter 3 of this dissertation discusses algorithms that are able to derive

Craig interpolants from refutation proofs for the conjunction sp(π1, P ) ∧ ¬wp(π2, Q). The

runtime of these algorithms is polynomial in the size of the refutation proof.

Example 2.2.2. Let

π1 = y := x; [y 6= 0] and π2 = y := y&(y− 1); assert(x 6= y)

be the prefix and suffix of a path. In order to show that the path is safe, we follow the
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instructions outlined in the proof of Lemma 2.2.1 and derive (using Theorem 2.2.2 presented

in the proof of Lemma 2.2.1)

sp(y := x; [y 6= 0], true) ≡ y = x ∧ y 6= 0

wlp(y := y&(y− 1), x 6= y) ≡ ∀y′ . y′ 6= y&(y− 1) ∨ x 6= y′ .

We negate ∀y′ . y′ 6= y&(y− 1)∨ x 6= y′ and obtain ∃y′ . y′ = y&(y− 1)∧ x = y′. Observe

that the conjunction

∃y′ . y = x ∧ y 6= 0 ∧ y′ = y&(y− 1) ∧ x = y′

is unsatisfiable, as shown by the following refutation proof:

y = x�� ��y ≤ x

�� ��y 6= 0
y′ = y&(y− 1)

y′ ≤ y− 1

y′ < y

y′ < x
x = y′

false

The predicate y ≤ x ∧ y 6= 0, which can be derived from the proof of inconsistency (see

Chapter 3), is an interpolant for the pair of formulae

( sp(y := x; [y 6= 0], true), wlp(y := y&(y− 1), x 6= y) ) .

We are now in a position to use an interpolating decision procedure to construct a

parametrised predicate transformer. The constraint (2.2) dictates the upper and lower

boundaries for the result of a “useful” predicate transformer. We assume the existence

of a (partial) function idp : L × L → L mapping a pair of formulae (A,B) to a re-

spective Craig interpolant (as outlined in Example 2.2.2, details are provided in Chap-

ter 3). Let P be a precondition for a statement stmt. Given a weakest acceptable post-

condition Q such that sp(stmt, P ) ⇒ Q we can define a forward predicate transformer
−→
pt(stmt, Q, P ) def= idp(sp(stmt, P ), Q). Since sp(stmt, P ) establishes a lower bound for the

predicate, {P} stmt {−→pt(stmt, Q, P )} holds.
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However, unlike the strongest postcondition sp, predicate transformer
−→
pt is not mono-

tonic in its rightmost argument. (Recall the remark about monotonicity and Hoare triples

at the end of Section 2.1.) For instance, let P1 and P2 be (i > 1) and (i > 0) respec-

tively, and note that P1 ⇒ P2. One can now conceive a decision procedure idp such

that
−→
pt([i ≥ 2], (i > 0), P1) = (i > 0) and

−→
pt([i ≥ 2], (i > 0), P2) = (i ≥ 2). Since

(i ≥ 2) ⇒ (i > 0),
−→
pt is not monotonic. We discuss the drawbacks of non-monotonic

predicate transformers in Section 2.5.1.

2.3 Programs, Reachability Trees, and Counterexamples

The predicate transformers defined in Section 2.1 define the semantics of statements and

sequences of statements (paths, respectively). These elements provide the basis for defining

the semantics of programs. In this section, we define the notion of programs in terms of

control-flow automata [HJM+02] (which are essentially equivalent to the program graphs of

Cousot [CC79]). We introduce the concept of reachability trees [HK76] and formalise the

notion of a counterexample.

We use control-flow automata (CFA) to represent programs. A CFA comprises a finite

number of nodes N ⊆ N and a set of directed edges E ⊆ (N × N). Each CFA contains

one designated entry node , which has no predecessors, and one designated exit node ,

which has no successors. Each edge 〈i, j〉 ∈ E connects two nodes and is annotated with a

statement stmt〈i,j〉. Overloading our notation, we use the term “path” to refer to a path in

the graph of the CFA as well as to the corresponding sequence of statements. Figure 1.1 in

Section 1.3.1 shows a specimen of a CFA representing a program.

The semantics of statements is defined in Section 2.1. We extend this definition to pro-

grams using the deductive semantics of programs presented in [CC79]. Given a choice of

more than one successor node, we assume that the successor is selected non-deterministically:

The implementation “clairevoyantly” [Nel89] chooses a condition which succeeds.

The strongest postcondition sp (see Table 2.1) determines the forward semantics (Section

3.1 of [CC79]) of a program. The states reachable at each node of a program are determined

by a merge over all paths analysis.
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Definition 2.3.1 (Merge Over All Paths Analysis [CC79]). Let the concrete domain of

program states C be a complete lattice represented by the lattice of first-order logic predicates

P(⇒, false, true,∨,∧) of the language L. The merge over all paths MOP(sp, true) for a node

i in a CFA (N,E) is the predicate Pi (i ∈ N) defined by

Pi =
∨

πi∈Π( ,i)

sp(πi, true) ,

where Π( , i) denotes the (not necessarily finite) set of paths from to the node i. The

predicate Pi characterises the set of states reachable at node i.

The predicate transformers for the statements of the program correspond to a system

of equations. For each node i 6= , Pi is determined by the join over the strongest

postconditions of the statements labelling the respective incoming edges. Formally,

 P = true

Pi =
∨

j∈{n|〈n,m〉∈E ∧m=i} sp(stmt〈j,i〉, Pj) if i ∈ N \ { }
. (2.4)

The merge over all paths analysis (Definition 2.3.1) corresponds to the least fixed point

of this system of equations [CC79]. Tarski’s theorem [Tar55] in combination with the

monotonicity of the predicate transformer sp warrants the existence of this fixed point. If

we evaluate the equations (2.4) in the execution order imposed by the directed edges of the

CFA, we obtain a reachability tree:

Definition 2.3.2 (Reachability Tree). A reachability tree T of a CFA (N,E) for the pred-

icate transformer sp is a directed tree-shaped graph formed by a collection of annotated

nodes NT and a set of edges ET . Each node in NT is represented by a tuple comprising

a unique time-stamp t ∈ N (numbering the nodes in order of creation) and a node i ∈ N .

Furthermore, each node (t, i) is annotated with a predicate P(t,i). The following conditions

hold:

� The set NT contains exactly one designated root node 〈0, 〉 with in-degree zero,

which is annotated with the predicate true.

� For every edge 〈(t1, i), (t2, j)〉 ∈ ET it holds that
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– t1 < t2,

– 〈i, j〉 ∈ E, and

– sp(stmt〈i,j〉, P(t1,i)) = P(t2,j).

A node (t1, i) in NT is fully expanded if for every edge 〈i, j〉 ∈ E there exists a correspond-

ing edge 〈(t1, i), (t2, j)〉 ∈ ET . We say that a node in (t, i) is unreachable if P(t,i) ⇒ false

and reachable otherwise.

A reachability tree represents a symbolic simulation of finite-length paths of a program.

This approach is sufficient to falsify programs, since counterexamples to reachability prop-

erties (such as assertions) are paths of finite length.

Definition 2.3.3 (Counterexample). Let T be a reachability tree of a CFA (for the pred-

icate transformer sp) containing a node i with an outgoing edge labelled assert(R). A

counterexample to this assertion is a path π of T such that

� π starts at (0, ),

� π is incident upon a node (t, i) of T , and

� ¬(sp(π, true)⇒ R) is satisfiable.

It follows immediately from Lemma 2.2.1 that ¬(sp(π, true)⇒ R) can be represented as

an existentially quantified formula in prenex normal form. Therefore, the third condition

in Definition 2.3.3 can be checked by means of a satisfiability checker for L. A breadth-

first search algorithm is able to provide paths satisfying condition one and two (assuming

such paths exist). Automated verification techniques exploring all paths up to a predeter-

mined length fall into the category of bounded model checking (BMC) [BCCZ99]. We refer

the reader to our survey paper [DKW08] for a detailed discussion of BMC-based software

verification.

BMC is unable to provide safety guarantees beyond the fraction of the state space

reachable within a limited number of execution steps. A verification algorithm computing

the least fixed point for the equation system (2.4) (or a sound approximation thereof) lifts

this restriction. Let Pi denote the predicate corresponding to the merge over all paths for
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y:=x c:=0

[y6=0]

[y=0]

y:=y&(y-1) c:=c+1 assert(y6=x)

[y6=0]

[y=0]

y:=y&(y-1)

1

2

Figure 2.3: A reachability tree for the program in Figure 1.1. The annotations are omitted.

the node i of a CFA (N,E). A program is safe if for each node i ∈ N and all its outgoing

edges labelled assert(R), it holds that Pi ⇒ R. The safety of a program can therefore be

verified by computing the least fixed point for the equation system (2.4).

In general, however, no sound and complete algorithm can achieve this goal (due to Tur-

ing’s undecidability result in discussed in the introduction [Tur36]). Consider an algorithm

that expands the leaf nodes of the reachability tree until a fixed point for

P = true and Pi =
∨
{P(t,j) | (t, j) ∈ ET ∧ i = j} (2.5)

is reached for each node i in the CFA. Depending on the semantics of the programming

language (or more specifically, the underlying first-order language L), this process may not

terminate.

Example 2.3.1. Figure 2.3 shows a reachability tree (omitting the annotations of nodes)

for the CFA in Figure 1.1. All nodes in this tree except the leaf-node Á are fully expanded.

The nodes labelled À and Á in Figure 2.3 represent two nodes (t1, i) and (t2, i) (where

t1 < t2), respectively, both deriving from a single node i of the CFA in Figure 1.1. From

Section 1.3.1, we recall that

P(t1,i) = (y = (x&(x− 1)) ∧ (x 6= 0)) and

P(t2,i) = (x&(x− 1) 6= 0) ∧ (x 6= 0) ∧ y = (x&(x− 1))&((x&(x− 1))− 1) .

Since P(t2,i) ⇒ ¬P(t1,i), node (t2, i) has to be expanded further to reach a fixed point for

Pi. For variables taking values in a bounded domain, the equations (2.5) converge after a
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finite number of expansion steps. If, however, we model program variables using unbounded

integers, the sequence of predicates we obtain diverges.

The following section discusses a technique that enables us to avoid the non-termination

observed in Example 2.3.1 at the cost of accuracy.

2.4 Predicate Abstraction

This section discusses abstraction as a means to construct approximations of reachability

trees. In particular, we focus on predicate abstraction [GS97], which is an instance of

Cousot’s abstract interpretation [CC77] framework. Predicate abstraction requires the pre-

and postconditions tracked at each node of a reachability tree to be Boolean combinations

of a finite set of predetermined predicates, resulting in a finitary abstraction of the concrete

domain C of a program. Accordingly, the predicate transformers of Section 2.1 are replaced

by approximate counterparts. The finitary nature of the abstract domain prevents the

divergence observed in Example 2.3.1 and enables the effective computation of invariants.

The idea to analyse abstractions of programs is motivated by the observation that, in

order to prove the safety of a program, it is not always necessary to compute the exact set

of reachable states of a program (or the merge over all paths MOP(sp, true), respectively).

Example 2.4.1. The inductive invariant y ≤ (x− 1) ∧ (x 6= 0) is an over-approximation

of the set of states reachable at the node right before the assertion in Figure 1.1. To see

this, consider the assignment {x 7→ 4, y 7→ 2}, which satisfies the invariant but represents a

state unreachable at the respective program location.

2.4.1 Approximating Predicate Transformers

In the terminology of Cousot’s abstract interpretation framework, a predicate Q “approx-

imates” a predicate P if P ⇒ Q (cf. [CC79], Definition 4.0.1). For instance, the inductive

invariant y ≤ (x− 1) ∧ (x 6= 0) in Example 2.4.1 approximates y = (x&(x− 1)) ∧ (x 6= 0).

The predicate y = (x&(x− 1)) ∧ (x 6= 0) does not occur in the safety argument for the

example in Section 1.3.1 and is therefore not required to prove the program safe. By defini-

tion, the number of predicates representing the merge over all paths is finite. Therefore, if a
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program is safe, then there must be a finite set of predicates which is sufficient to construct

a respective Hoare proof. Let P ⊆ L be a finite set of quantifier-free predicates which

track selected facts about the program and let L̂P denote the Boolean closure of P (i.e.,

the language of all well-formed predicates formed using P and the operators ∧,∨, and ¬).

Note that there are only finitely many semantically distinct elements in L̂P .

Predicate abstraction amounts to approximating the pre- and postconditions of Hoare

triples using predicates of the language L̂P . Consequently, the choice of P determines the

accuracy of the analysis.

Given a predicate P ∈ L̂P , it is not necessarily the case that sp(stmt, P ) ∈ L̂P , i.e., the

language L̂P is not necessarily closed under the application of predicate transformers. In

order to be able to perform a merge over all paths analysis in the domain defined by L̂P ,

we need to define an approximate counterpart to the strongest postcondition.

Definition 2.4.1 (Correct Upper Approximation ([CC79], Theorem 7.1.0.2)). Let p̂t be a

(not necessarily monotonic) predicate transformer for a language L̂ ⊆ L. The mapping p̂t

is a correct upper approximation of the strongest postcondition if and only if

∀P ∈ L̂ . sp(stmt, P )⇒ p̂t (stmt, P ) . (2.6)

Equivalently, {P} stmt { p̂t (stmt, P ) } must hold (according to Definition 2.1.4).

(Note that the parametrised predicate transformer
−→
pt defined at the end of Section 2.2

is such a correct upper approximation.) This condition guarantees that the merge over all

paths analysis MOP(p̂t, true) yields an over-approximation of the set of reachable states

determined by MOP(sp, true), i.e., it holds that MOP(sp, true) ⇒ MOP(p̂t, true). While

this is sufficient to guarantee the soundness of a safety analysis, Definition 2.4.1 does not

guarantee that the approximate predicate transformer p̂t yields the “best” possible result.

Definition 2.4.2 (Best Correct Upper Approximation). Given a finite set of predicates P,

let ŝp(stmt, P ) be the strongest predicate Q ∈ L̂P such that {P} stmt {Q} holds for all

predicates P ∈ L̂P . Then (according to Theorem 7.2.0.2 in [CC79])

1. ŝp is monotonic in its second argument and
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[i≤10] j:=i [i<100] i:=i+1 j:=j+1 assert(j<100)

Figure 2.4: A path reaching the assertion of the CFA in Figure 1.7

2. ŝp is the best correct upper approximation of sp in L̂P .

Observation 1 in Definition 2.4.2 warrants the existence of the least fixed point for

the system of equations for ŝp defined analogously to the equations (2.4) in Section 2.3.

Moreover, this fixed point is effectively computable due to the fact that the number of

semantically distinct predicates in L̂P is finite.4 Observation 2 in Definition 2.4.2 guarantees

that MOP(ŝp, true) is the best approximation of MOP(sp, true) in L̂P .

While the definition of best correct upper approximation resembles the definition of

the strongest postcondition (cf. Definition 2.1.4), the predicate transformer ŝp lacks the

simple syntactic construction rules (see Table 2.1 in Section 2.1) of its concrete counterpart.

In order to compute ŝp(stmt, P ) for a predicate P ∈ L̂P , we need to identify the best

approximation of sp(stmt, P ) in L̂P . For this purpose, we fix a canonical representation for

the predicates in L̂P . Let P = {P1, . . . , Pn} be the set of predicates for L̂P . A minterm over

P is a conjunction
∧n

i=1 Li of literals Li (where Li ∈ {Pi,¬Pi}). Each minterm represents

one of 2n equivalence classes, which form a partitioning of the concrete state space C. The

best approximation of a predicate Q corresponds to the minimal set of partitions covering

the states Q represents. Formally, for a fixed set of predicates P = {P1, . . . , Pn}, the best

approximation of a predicate Q ∈ L in L̂P is

∨{
M |M =

n∧
i=1

Li (where Li ∈ {Pi,¬Pi}) and Q ∧M 6⇒ false

}
. (2.7)

The following example illustrates reasoning with the abstract predicate transformer ŝp.

Example 2.4.2. Consider the program in Figure 1.7. Figure 2.4 shows a path reaching

the assertion of this program. Note that that the path does not violate the assertion (cf.

Section 1.3.2). Now, let P = {(i = j), (i < 100)}. We aim to establish the safety of the

path by showing that (i = j) ∧ (i < 100) holds right before the assertion by symbolically

4We implicitly assume that semantically equivalent predicates can be identified, i.e., that bLP is decidable.

45



simulating the path in L̂P . We observe that

sp([i ≤ 10], true) = i ≤ 10 .

The best approximation (2.7) of [i ≤ 10] in L̂P is

(i = j ∧ i < 100) ∨ (¬(i = j) ∧ i < 100) .

Accordingly, we obtain ŝp([i ≤ 10], true) = (i < 100). Analogously, we derive

ŝp(j := i, i < 100) = (i < 100) ∧ (i = j) and

ŝp([i < 100], (i < 100) ∧ (i = j)) = (i < 100) ∧ (i = j)

from the strongest postcondition sp of the respective predicates. Note that we do not loose

any more precision in this simulation step. In the next step, however, we obtain

sp(i := i + 1, (i < 100) ∧ (i = j)) = (i ≤ 100) ∧ (i = j + 1) .

The best approximation of (i ≤ 100) ∧ (i = j + 1) in L̂P is

(i < 100) ∧ ¬(i = j) ∨ ¬(i < 100) ∧ ¬(i = j) , or equivalently ¬(i = j) .

Finally, the strongest postcondition sp(j := j + 1, (i 6= j)) = (i + 1 6= j) and its approxi-

mation true is insufficient to establish the required assertion (i = j) ∧ (i < 100).

Note that the simulation of the path in Figure 2.4 in L̂P corresponds to a path in the

reachability tree in which the approximate predicate transformer ŝp has been substituted

for its concrete counterpart sp (see Definition 2.3.2). The prefix

π = [i ≤ 10]; j := i; [i < 100]; i := i + 1; j := j + 1

of the path in Figure 2.4 satisfies the first two conditions of the Definition 2.3.3 of a coun-

terexample. Furthermore, the formula ¬(ŝp(π, true) ⇒ (j < 100)) is satisfiable (since
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ŝp(π, true) = true). We say that the path constitutes an abstract counterexample.

Definition 2.4.3 (Abstract Reachability Tree, Abstract Counterexample). Abstract reach-

ability trees (ART) and an abstract counterexamples (for a correct upper approximation

p̂t of the strongest postcondition) are defined as in Definition 2.3.2 and Definition 2.3.3,

respectively, with the only difference that the predicate transformer sp is replaced with its

abstract counterpart p̂t wherever it occurs in the respective definition.

Whenever we wish to distinguish more clearly between reachability trees and coun-

terexamples and their abstract counterparts, we refer to the artefacts originally defined in

Definition 2.3.2 and Definition 2.3.3 as concrete reachability trees and concrete counterex-

amples, respectively.

Definition 2.4.4 (Spurious Counterexample). An abstract counterexample is spurious if the

corresponding path in the respective concrete reachability tree does not constitute a concrete

counterexample.

For instance, the path in Example 2.4.2 is a spurious counterexample, since sp(π, true) =

(j ≤ 11)∧(i ≤ 11)∧(i < 101) and therefore the assertion j < 100 holds. The reason is that

the predicates obtained by means of the approximate predicate transformer are not strong

enough (with respect to the chain condition in Definition 2.2.1) to prove {true} π {j < 100}.

Intuitively, adding any sequence of predicates that satisfies the chain condition in Defini-

tion 2.2.1 to P suffices to eliminate the spurious counterexamples. In Section 2.5 we discuss

techniques to refine approximations in more detail.

2.4.2 Abstract Domains and Transition Relations

The minterms in Formula (2.7) partition the state space into a finite number of equiv-

alence classes. Given a set of predicates P = {P1, . . . Pn}, each minterm
∧n

i=1 Li (with

Li ∈ {Pi,¬Pi}) can be alternatively represented by means of
∧n

i=1(xi ⇔ Pi) and a fixed

valuation of the Boolean variables {x1, . . . , xn}. Accordingly, each equivalence class (or

minterm over P, respectively) corresponds to a valuation of the variables {x1, . . . , xn} (or

the corresponding minterm
∧n

i=1 Li, Li ∈ {xi,¬xi}, if we maintain a symbolic representa-

tion). We refer to such a valuation as an abstract state s ∈ Bn and use the the language
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of propositional logic LB as a symbolic representation for sets of abstract states. The

state space induced by the Boolean variables {x1, . . . , xn} represents a finite abstract do-

main [GS97, CC77]. Intuitively, the best approximation (2.7) associates a set of abstract

states to each predicate Q ∈ L. This intuition is captured formally by the following defini-

tion:

Definition 2.4.5 (Boolean Approximation [BPR03]). Let P = {P1, . . . Pn} be a fixed set

of predicates. The abstraction function αbool : L → LB mapping a predicate Q ∈ L to a set

of abstract states is defined as

αbool(Q) def=∨{
n∧

i=1

(xi ⇔ bi) | {b1, . . . , bn} ∈ Bn such that Q ∧

(
n∧

i=1

bi ⇔ Pi

)
6⇒ false

}
,

i.e., αbool(Q) is a propositional predicate over the Boolean variables {x1, . . . , xn}.

Conversely, the concretisation function γbool : LB → L for a propositional predicate over

the variables {x1, . . . , xn} is defined as

γbool(Q) def=

(
∃x1, . . . , xn . Q ∧

n∧
i=1

xi ⇔ Pi

)
.

Note that γbool(Q) is a predicate in the language L̂P if we eliminate the existential

quantification by enumerating the satisfying assignments of (∃x1, . . . , xn . Q). We immedi-

ately obtain an alternative definition of the best upper approximation ŝp of the predicate

transformer sp:

∀P ∈ L̂P . ŝp(stmt, P ) = γbool(αbool(sp(stmt, P ))) (2.8)

The best approximate predicate transformer ŝp uniquely determines an abstract counter-

part ŝtmt for each program statement stmt. Analogously to concrete statements, abstract

statements can be represented as predicates over initial and final values, i.e., as relations

over two sets of variables {x̀1, . . . ,x̀n} and {x́1, . . . ,x́n} (cf. page 28 in Section 2.1). We are

now in a position to define this abstract transition relation in terms of the pair of functions

αbool(Q) and γbool(Q).
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Definition 2.4.6 (Abstract Transition Relation). Let P = {P1, . . . , Pn} be a fixed set of

predicates and let αbool and γbool be the corresponding abstraction and concretisation func-

tions. Let spbool(stmt, P ) = αbool(sp(stmt, γbool(P ))) : LB → LB be a predicate transformer

for the abstract domain of propositional predicates over {x1, . . . , xn}. The abstract transition

relation ŝtmt ⊆ (Bn ×Bn) for a program statement stmt is defined as

ŝtmt(x̀1, . . . , x̀n, x́1, . . . , x́n) def=∨{
∃x1, . . . , xn .

n∧
i=1

xi ⇔ x̀i ∧

spbool(stmt,
n∧

i=1

xi ⇔ bi)[x1/x́1][. . .][xn/x́n] | {b1, . . . , bn} ∈ Bn

}
(2.9)

The core of the Relation (2.9) in Definition 2.4.6 is formed by the abstract predicate

transformer spbool(stmt, P ) = αbool(sp(stmt, γbool(P ))) [BPR03]. It maps each set of ab-

stract states characterised by the predicate P ∈ LB to a set of abstract successor states.

The predicate transformer spbool enables a transition from an abstract state represented by

a minterm Mi ∈ LB into an abstract state characterised by a minterm Mj ∈ LB if and only

if the formula sp(stmt, γbool(Mi))∧γbool(Mj) is satisfiable. Intuitively, this means that there

exists a pair of concrete states si and sj in γbool(Mi) and γbool(Mj), respectively, such that

sj is reachable from si by executing stmt. Formally, for P = γbool(Mi) and Q = γbool(Mj),

Mj ⇒ spbool(stmt,Mi) if and only if

∃s, s′ . sp(stmt, P (s)) ∧Q(s′) . (2.10)

This follows immediately from the definition of αbool (Definition 2.4.5). We can rewrite

Relation (2.10) as

¬∀s, s′ .¬
(
sp(stmt, P (s)) ∧Q(s′)

)
which in turn is equivalent to

¬∀s, s′ . sp(stmt, P (s))⇒ ¬Q(s′) .
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Stated as a Hoare triple, this yields

¬( {P} stmt {¬Q} ) or

¬( {γbool(Mi)} stmt {¬γbool(Mj)} ) ,

(2.11)

respectively. Intuitively, a transition between the abstract states Mi and Mj is enabled

unless it can be explicitly ruled out by means of a Hoare logic proof. Therefore, if a state is

reachable in the concrete program, then the corresponding abstract state is also reachable

in the abstraction, meaning that reachability is preserved. This abstraction technique is

known as existential abstraction [CGL94].

Example 2.4.3. We continue working in the setting of Example 2.4.2. Let x1 and x2 be

the Boolean variables corresponding to (i = j) and (i < 100), respectively. Consider the

conditional statement [i < 10]. Definition 2.4.6 requires us to compute the set of abstract

successor states for all minterms over x1 and x2. We derive

sp([i ≤ 10], i 6= j ∧ i ≥ 100) = false γbool(false) = false

sp([i ≤ 10], i 6= j ∧ i < 100) = i 6= j ∧ i ≤ 10 γbool(i 6= j ∧ i ≤ 10) = ¬x1 ∧ x2

sp([i ≤ 10], i = j ∧ i ≥ 100) = false γbool(false) = false

sp([i ≤ 10], i = j ∧ i < 100) = i 6= j ∧ i ≤ 10 γbool(i = j ∧ i ≤ 10) = x1 ∧ x2

This yields the relation

(¬x̀1 ∧ x̀2 ∧ ¬x́1 ∧ x́2) ∨ (x̀1 ∧ x̀2 ∧ x́1 ∧ x́2) ,

which can be written as (x̀1 ⇔ x́1) ∧ x̀2 ∧ x́2.

The enumeration of all 2n minterms over the predicates {P1, . . . , Pn} and the respective

calls to the decision procedure for L required for the computation of αbool are extremely

computationally expensive. In practice, it is therefore common to compute an upper ap-

proximation of the most accurate transition relation. Cartesian abstraction [GS97, BPR03]

is one such approximation.
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Definition 2.4.7 (Cartesian Approximation [GS97]). Let P = {P1, . . . Pn} be a fixed set

of predicates and {x1, . . . , xn} the corresponding set of Boolean variables. The Cartesian

abstraction function αcart : L → LB mapping a predicate Q ∈ L to a set of abstract states

is defined as

αcart(Q) def=
∧

({xi |Q⇒ Pi, 1 ≤ i ≤ n} ∪ {¬xi |Q⇒ ¬Pi, 1 ≤ i ≤ n}) .

Cartesian abstraction considers each predicate Pi independently and may therefore elim-

inate correlations between predicates which would have been preserved by αbool. For in-

stance, let x1 and x2 correspond to (i = 0) and (i > 10), respectively. Then αcart(i < 100)

is true, allowing the valuation {x1 7→ true, x2 7→ true} despite the fact that γbool(x1 ∧ x2)

yields the unsatisfiable formula (i = 0) ∧ (i > 10).

The definition of the abstract transition function for Cartesian abstraction resembles

Definition 2.4.6 except that αcart replaces αbool. Accordingly, the predicate transformer

spcart(Q) is defined as αcart(sp(stmt, γbool(Q))). In order to compute the abstract transition

relation we need to check for each predicate Pi (¬Pi, respectively) and each minterm Mj

whether sp(stmt, γbool(Mj))) implies Pi, i.e., whether {γbool(Mj)} stmt {Pi} is a valid

Hoare triple. Since {γbool(Mj)} stmt {Pi} can be stated as γbool(Mj)⇒ wlp(stmt, Pi), this

amounts to finding all minterms Mj such that γbool(Mj) implies wlp(stmt, Pi). This process

can be improved significantly by considering sub-conjuncts of minterms. Let Mj =
∧n

i=1 Li,

Li ∈ {xi,¬xi} and C be the conjunct
∧

i∈I Li, where I ⊆ {1, . . . , n}. Since Mi ⇒ C,

γbool(Mj) implies wlp(stmt, Pi) if γbool(C) does. The fact that conjuncts are partially

ordered under implication enables a systematic search for the weakest set of conjuncts

“covering” all minterms.

Example 2.4.4. We derive the abstract transition relation presented in Example 2.4.3 by

means of Cartesian abstraction. We compute

wlp([i ≤ 10], i < 100) = (i ≤ 10)⇒ (i < 100) = true and

wlp([i ≤ 10], i ≥ 100) = (i ≤ 10)⇒ (i ≥ 100) = false .
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Therefore, we conclude that sp([i ≤ 10], γbool(true))⇒ (i < 100) and the negated predicate

(i ≥ 100) is implied by sp([i ≤ 10], γbool(false)). Thus, spbool([i ≤ 10], γbool(true)) ⇒

γbool(x2) and spbool([i ≤ 10], γbool(false))⇒ γbool(¬x2), and from Definition 2.4.6 we obtain

(true ∧ x́) ∨ (false ∧ (¬x́)) as transition relation for x2.

Similarly, we derive

wlp([i ≤ 10], i = j) = (i ≤ 10)⇒ (i = j) and

wlp([i ≤ 10], i 6= j) = (i ≤ 10)⇒ (i 6= j)

and observe that sp([i ≤ 10], γbool(x1)) ⇒ (i = j) and sp([i ≤ 10], γbool(¬x1)) ⇒ (i 6=

j). Note that there is no need to consider stronger conjuncts (for instance x1 ∧ x2). We

obtain the constraints x́1∧ x̀1 and (¬x́1)∧ (¬x̀1) from sp([i ≤ 10], γbool(x1))⇒ γbool(x1) and

sp([i ≤ 10], γbool(¬x1))⇒ γbool(¬x1), respectively.

Since the weakest liberal precondition distributes over conjunctions (see Lemma B.1.1 in

Section B.1), we obtain the abstract transition relation by pairing the transition contraints

for the separate Boolean variables into a single relation

x́2 ∧ ((x́1 ∧ x̀1) ∨ ((¬x́1) ∧ (¬x̀1))) ,

which simplifies to x́2 ∧ (x́1 ⇔ x̀1).

Note that in comparison to Example 2.4.4 we lose some precision: Unlike the transition

relation (x̀1 ⇔ x́1) ∧ x̀2 ∧ x́2, the relation x́2 ∧ (x́1 ⇔ x̀1) does not rule out that x̀2 = false.

The reason for this imprecision is that we considered the preconditions for x1 and ¬x1, but

not for the combination x1 ∧ (¬x1), which is also a possible outcome of αcart. This can be

amended by adding the constraint x̀2, which derives from

wlp([i ≤ 10], false) = ¬(i < 10) .

Similarly, the imprecision introduced by Cartesian approximations may result in the

elimination of the correlation between two Boolean variables xi and xj (the corresponding

predicates, respectively). This approximation can be refined by constraining the transition
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relation on demand. A detailed exposition of this approach can be found in [BCDR04].

2.4.3 Boolean Programs

In practice, the relation ŝtmt ⊆ (LB × LB) is often represented as an assignment or a

conditional statement. For instance, the relation derived in Example 2.4.3 corresponds to

the condition [x2]. We can verify this claim by showing that

spbool([x2], x̀1 = x1 ∧ x̀2 = x2)[x1/x́1][x1/x́1] = (x̀1 ⇔ x́1) ∧ x̀2 ∧ x́2

holds (cf. page 28). The program statements presented in Section 2.1, however, are not

general enough to represent all conceivable transition relations. Since the support predicates

corresponding to the Boolean variables {x1, . . . , xn} track relations over variables in the

original program, an assignment in the concrete program may trigger a change of more

than one Boolean variable. The introduction of a parallel assignment x1, . . . , xn :=e1, . . . , en

resolves this issue. The semantics for this statement is provided in Table 2.2. In addition,

we use * to represent a non-deterministic value, which may take the value of either true or

false. The semantics of a non-deterministic assignment is determined by

spbool(x := ∗, P ) = ∃v.x = v ∧ P [x/v] ,

where v is a fresh variable not occurring in e and P . Programs comprising statements of this

kind are called Boolean programs. They resemble the programs in Section 2.3 in structure,

but allow only variables of Boolean type. A detailed discussion of this formalism exceeds the

scope of this dissertation. The formal semantics of Boolean programs is provided in [BR00a].

Furthermore, we do not provide an algorithms to derive Boolean programs from abstract

transition relations. Instead, we construct the statements in an ad hoc manner and refer

the reader to [BMMR01] for details.

The following example demonstrates how abstractions can be represented as Boolean

programs.

Example 2.4.5. Consider the program in Figure 2.5(a). The Figure 2.5(b) shows the corre-
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Statement Strongest Postcondition
stmt spbool(stmt, P )

x1,...,xn:=e1, . . . , en
∃x′1, . . . ,x′n . (x1 = e1[x1/x

′
1] . . . [xn/x′n]) ∧ . . .∧

(xn = en[x1/x
′
1] . . . [xn/x′n]) ∧ P [x1/x

′
1] . . . [xn/x′n]

[R] P ∧R

assert(R) P ∧R

stmt1; stmt2 spbool(stmt2, spbool(stmt1, P ))

Table 2.2: Semantics for Boolean program statements

i:=0; j:=0;

[i<10]

[i≥10]

i:=i+1;

j:=j+1;

assert(j<10);

(a) A CFA representing a program with a loop.

x1:=true; x2:=true;

[true]

[¬x1]

x1:=x1?false:*;

x2:=x2?false:*;

assert(true)

(b) A Boolean program representing an abstraction of the CFA above.

Figure 2.5: A program and its corresponding abstraction for the predicates P =
{(i=0), (j=0)} represented by the Boolean variables x1 and x2, respectively
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sponding Boolean program constructed using the predicates (i=0) and (j=0) (represented by

x1 and x2, respectively). The expression e1?e2:e3 is shorthand for (e1 ⇒ e2) ∧ ((¬e1)⇒ e3).

For instance, the assignment x2:= x2?false: ∗ which is the abstraction of j := j + 1 corre-

sponds to the transition relation (x̀2 ⇒ (¬x́2)) ∧ (x̀1 ⇔ x́1). Accordingly, the approximation

is not precise enough to show that the assertion (j < 10) (implied by γbool(x2)) in the

original program holds.

The previous example suggests that there is a direct correspondence between reacha-

bility trees for the predicate transformer spbool : LB → LB and abstract reachability trees

(Definition 2.4.3). The concretisation function γbool maps each set of reachable abstract

states represented by P ∈ LB to an approximate predicate γbool(P ) ∈ L̂P . Due to the

finitary nature of transition systems represented by a CFA annotated with monotonic tran-

sition relations ŝtmt we can apply existing (symbolic) model checking algorithms to compute

the MOP(spbool, true). Instances of such algorithms are presented in [BR00b, Sch02] (for

pushdown systems) and [McM93] (for finite state transition systems). Furthermore, the

author and his collaborators presented SAT-based algorithms for the reachability analysis

in Boolean programs in [BKW07a] and [BKW07b]. We do not cover these algorithms in

the scope of this dissertation and refer the reader to these publications for more detail and

related work.

2.5 Construction of Safety Proofs

In this section, we present a technique to generate Hoare proofs establishing the safety

of programs. Intuitively, this is possible by expanding the abstract reachability tree of

a program until we find approximate predicates representing inductive invariants for the

cycles in the corresponding CFA. Based on this observation, we formalise the notion of

a safety proof. In Example 2.4.2, however, we observe that an approximation may be too

coarse to establish the safety of a program. In order to obtain safety proofs, it may therefore

be necessary to improve the approximation. We discuss how spurious counterexamples can

be used as a catalyst for such a refinement.
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2.5.1 Complete Reachability Trees and Inductive Invariants

The definition of reachability trees (Definition 2.3.2) in Section 2.3 is driven by the system

of equations determined by the statements of the CFA and the monotonic predicate trans-

former sp. Intuitively, the construction of a reachability tree for the predicate transformer

sp corresponds to the fixed point iteration of the Equations (2.4) in the execution order

dictated by the CFA.

Definition 2.5.1 (Complete Reachability Tree [Jha04, McM06]). Let T = (NT , ET ) be a

reachability tree of a CFA (N,E) for a predicate transformer p̂t which is a correct upper

approximation of the strongest postcondition. T is complete if the following holds for each

node (t, i) ∈ NT with i ∈ N :

1. Either (t, i) is fully expanded, or

2. (t, i) is a leaf node and is covered by previously explored nodes, i.e.,

∃(t1, i), . . . , (tm, i) ∈ NT .

m∧
j=1

(tj < t) ∧

P(t,i) ⇒
m∨

j=1

P(tj ,i)

 (2.12)

holds.

Lemma 2.5.1 (Reachility Trees, Inductive Invariants). Let T = (NT , ET ) be a complete

reachability tree of the CFA (N,E) and a correct upper approximation p̂t of sp. Then

Pi =
∨

(t,i)∈NT

P(t,i)

is an inductive invariant for the node i ∈ N with respect to the strongest postcondition sp.

Proof. Assume that there is a Pi which is not an inductive invariant of the node i ∈ N .

Then there exists a cyclic path π ∈ (N,E) starting and ending in i such that sp(π, Pi) 6⇒ Pi.

Since sp distributes over disjunctions (Lemma B.1.1, Section B.1), we obtain sp(π, Pi) =∨
(t,i)∈NT

sp(π, P(t,i)), and therefore it must hold that ∃(t, i) ∈ NT . sp(π, P(t,i)) 6⇒ Pi.

In order to show that such a node cannot exist, we prove a more general result.

Given a node (t, i) ∈ NT , we show that for any arbitrary path π starting at node i
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and incident upon node j (i, j ∈ N), there exist nodes (t1, j), . . . , (tm, j) ∈ NT such that

sp(π, P(t,i)) ⇒
∨m

l=1 P(tl,j). A similar proof can be found in [Jha04], Section 3.2. We

prove our claim by induction on the length of π. If π = ε, then sp(π, P(t,i)) = P(t,i),

which establishes the base case. Consider the path π; stmt and suppose the induction

hypothesis holds for π. We are done if the node reached by π is not a leaf node of

T . Otherwise, let (t1, j), . . . , (tm, j) be nodes in NT such that sp(π, P(t,i)) ⇒
∨m

l=1 P(tl,j).

Note that we can always choose these nodes in such a manner that (t1, j), . . . , (tm, j) are

fully expanded nodes of T , for if one node (tl, j) is an unexpanded leaf node, we can re-

place it with the nodes covering it. The recursive application of this replacement policy

must eventually terminate, since the time-stamps of the replacement nodes are smaller

than tl. Since the predicate transformer sp is monotone in its second argument, it holds

that sp(stmt, sp(π, P(t,i)))⇒ sp(stmt,
∨m

l=1 P(tl,j)). Moreover, since sp distributes over dis-

junctions, we obtain sp(stmt, sp(π, P(t,i))) ⇒
∨m

l=1 sp(stmt, P(tl,j)). Since all nodes (tl, j)

(where 1 ≤ l ≤ m) are fully expanded, there must be m successor nodes in T labelled

sp(stmt, P(tl,j)) (1 ≤ l ≤ m), respectively. (If there is a node (tl, j) which has no such suc-

cessor, then the path π; stmt does not exist in (N,E).) This concludes the argument.

Reachability and Non-Monotonic Predicate Transformers

Definition 2.5.1 requires that all covered nodes are leaf nodes. At first glance, this may

seem overly restrictive, since the expansion of a leaf node (n, i) might yield successor nodes

which in turn may cover other nodes in the tree. The following example demonstrates why

such an indirect coverage is problematic.

Example 2.5.1. Consider the program in Figure 2.6(a). By simulating the program using

the strongest postcondition we can convince ourselves that the program is safe and that its

state space is finite. Figure 2.6(b) illustrates an attempt to construct a reachability tree for

this program using a non-monotonic predicate transformer p̂t. The dashed arrows indicate

coverage relations between nodes. Let us draw our attention to node À which is labelled i ≤ 1

and covered by node Á labelled i ≤ 2. A further expansion of À yields a node Â labelled with

the predicate i ≤ 2, which covers the node Ã. We could now be tempted to assume that we
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i := 0
i := i+ 2

i := i+ 1

i := i

i := i&5

assert(i ≤ 2)

(a) A peculiar program

{true}
i := 0

{i = 0}

i := i+1

i := i

{i ≤ 1}

{i ≤ 1}
À

Á

Ã

Â

i := i+2
{i ≤ 2} · · ·

i := i&5
{i ≤ 2}

{i ≤ 2}
i := i&5

(b) An attempt to construct a safety proof using a non-monotonic predicate transformer

Figure 2.6: Non-monotonic reasoning and reachability

need not expand Â and Ã further, since any successor of À should be covered by successors

of Á. This assumption, however, does not hold for non-monotonic predicate transformers.

Expanding Á may yield the predicate p̂t(i := i&5, i ≤ 2) = (i ≤ 1), which is too strong to

cover the node Ã. Therefore, the node Â must not be used to cover node Ã.

A more generic example exposing this issue can be found in [McM06]. The fact that

non-monotonic predicate transformers rule out indirect coverage imposes a restriction on

the search algorithm used to construct safety proofs.

Example 2.5.2. We continue working in the setting of Example 2.5.1. Consider a search

algorithm which discovers that node Â covers node Ã before it explores the branch leading to

node Á. If node Á is later used to cover node À, the algorithm needs to remove the covering

relation between node Â and node Ã.

Accordingly, covering one node may result in uncovering other nodes. A non-deter-

ministic approach to compute a set of covering nodes may result in circular dependen-

cies [McM06]. The restriction that a node can only be covered by a node with a smaller

time-stamp warrants that covering a node (ti, i) can only result in uncovering nodes (tj , j)

with tj > ti.
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2.5.2 Inductive Invariants and Safety Proofs

Complete reachability trees can be either obtained by means of standard breadth-first or

depth-first search algorithms or by means of model checking. Algorithms of the former

nature are presented in [HJM+02, McM06]. In Section 2.4.3 we briefly touch upon model

checking algorithms for Boolean programs, which enable the construction of complete reach-

ability trees for the predicate transformer spbool. The current section is concerned with the

extraction of safety proofs from complete reachability trees.

A complete reachability tree T = (NT , ET ) is sufficient to establish the safety of the

corresponding CFA (N,E) if and only if for each node i ∈ N followed by an assertion, the

labels of all corresponding nodes in NT are strong enough to entail that the assertion holds.

Formally,

∀〈i, j〉 ∈ E . (stmt〈i,j〉 = assert(R))⇒
(
∀(t, l) ∈ NT . l 6= i ∨ (P(t,l) ⇒ R

)
) . (2.13)

Given such a complete reachability tree, Lemma 2.5.1 enables the construction of a

safety proof.

Definition 2.5.2 (Safety Proof). A safety proof for a CFA (N,E) is a total mapping

from the nodes in i ∈ N to predicates in Pi ∈ L such that for each 〈i, j〉 ∈ E the Hoare

triple {Pi} stmt〈i,j〉 {Pj} holds and for each node i ∈ N and all its outgoing edges labelled

assert(R), it holds that Pi ⇒ R.

The inductive invariants determined by Lemma 2.5.1 and a complete reachability tree

satisfying (2.13) constitute such a safety proof. (The correctness of this claim follows im-

mediately from the proof of Lemma 2.5.1.) The following example illustrates the close

relationship between complete reachability trees and safety proofs.

Example 2.5.3. Figure 2.7 shows a complete reachability tree for the CFA in Figure 1.1.

This reachability tree is obtained using the predicate transformer determined by the inter-

polating decision procedure outlined in Section 1.3.1. We provide a detailed description of

this decision procedure in Chapter 3, Section 3.5.

In the following, we provide a Hoare triple {P} stmt〈i,j〉 {Q} for each edge 〈(t1, i), (t2, j)〉
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y:=x

[y6=0]

[y=0]

y:=y&(y-1) assert(y6=x)

[y6=0]

[y=0]

y:=y&(y-1)

1

2

Figure 2.7: A complete reachability tree for the program in Figure 1.1. The corresponding
annotations are listed in Example 2.5.3.

of the reachability tree in Figure 2.7. A proof of the validity of each Hoare triple is provided

in Section 1.3.1.

{true} y := x {y = x}

{y = x} [y 6= 0] {y = x ∧ y 6= 0}

{y = x ∧ y 6= 0} y := y&(y− 1) {y ≤ (x− 1) ∧ (x 6= 0)} À

{y ≤ (x− 1) ∧ (x 6= 0)} assert(x 6= y) {y ≤ (x− 1) ∧ (x 6= 0)}

{y ≤ (x− 1) ∧ (x 6= 0)} [y 6= 0] {y ≤ (x− 1) ∧ (x 6= 0) ∧ (y 6= 0)}

{y ≤ (x− 1) ∧ (x 6= 0) ∧ (y 6= 0)} y := y&(y− 1) {y ≤ (x− 1) ∧ (x 6= 0)} Á

The annotations required for a safety proof can be easily obtained from these Hoare

triples. The predicate transformer labels the nodes À and Á with y ≤ (x − 1) ∧ (x 6= 0).

Therefore, node Á is covered by À (indicated by the dashed arrow). All other nodes in the

reachability tree are fully expanded. It follows from Lemma 2.5.1 that y ≤ (x− 1) ∧ (x 6= 0)

is an inductive invariant for the respective node in the CFA in Figure 1.1. We obtain the

Hoare triples

{true} y := x; [y 6= 0]; y := y&(y− 1) {y ≤ (x− 1) ∧ (x 6= 0)} À

{y ≤ (x− 1) ∧ (x 6= 0)} assert(x 6= y); [y 6= 0]; y := y&(y− 1) {y ≤ (x− 1) ∧ (x 6= 0)} Á

which establish that y ≤ (x− 1) ∧ (x 6= 0) is an inductive invariant.
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Remarks. The complete reachability tree in Example 2.5.3 corresponds to a safe, com-

plete, and well-labelled unwinding (as presented in [McM06]). Reachability trees with

cut-points correspond to the tagged graphs presented in [Kin70].

2.5.3 Refining Approximations

Example 2.4.2 demonstrates that abstract reachability trees may give rise to spurious coun-

terexamples (Definition 2.4.4). While an approximation of finitary nature such as predicate

abstraction always enables us to construct a complete reachability tree, this tree may not

satisfy the condition (2.13). If this is the case, it is possible to improve the accuracy of

the approximation by means of counterexample-guided abstraction refinement (CEGAR)

[BSV93, Kur94, CGJ+00]. The aim of this technique is to eliminate a spurious coun-

terexample from an abstract reachability tree (Definition 2.4.3). This can be achieved by

improving the accuracy of the approximate predicate transformer p̂t. In Sections 2.2 and

2.4.1 we encounter two types of approximate predicate transformers: An interpolation-based

parametrised predicate transformer
−→
pt(stmt, Q, P ) and the predicate-abstraction based ap-

proximation ŝp. Accordingly, we present an appropriate refinement strategy for each of these

approximations. Let π be a path representing a spurious counterexample in an abstract

reachability tree T reaching an assertion assert(R).

� If T is derived from a parametrised predicate transformer
−→
pt(stmt, Q, P ) as defined

at the end of Section 2.2, we tighten the upper bounds Q for the nodes visited by

π. For each such node (t, i) ∈ T , the new upper bound is determined by wlp(π′, R),

where π′ represents the suffix of π starting at i.

� If T is the result of a predicate-abstraction-based approximation, we compute a se-

quence of predicates P1, . . . , Pn satisfying the chain condition (Definition 2.2.1) and

strong enough to establish {true} π {R}. Then, we add these predicates to P (and

L̂P , respectively).

The first approach is applied in [McM06], and variations of the latter approach are

presented in [BR02a, HJMS02, HJMM04]. We provide a brief outline of these techniques.
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For an overview of predicate abstraction-based refinement techniques we refer the reader to

our survey [DKW08].

Refining Interpolation-based Approximations

McMillan’s interpolation-based verification technique (presented in [McM06]) iteratively

approximates the upper bound Q for a parametrised predicate transformer
−→
pt(π,Q, P ).

Let (N,E) be a CFA. We assume, w.l.o.g., that the CFA contains only a single assertion

assert(R), and that this assertion is the annotation an outgoing edge of j ∈ N . Analogously

to the merge over all paths (Definition 2.3.1), we derive the weakest sufficient upper bound

for each node i ∈ N as

Qi =
∧

πi∈Π(i,j)

wlp(πi, R) , (2.14)

where Π(i, j) denotes the set of all paths from i to j in the CFA. If we combine Equation

(2.14) and Definition 2.3.1, we obtain

Pi =
∨

πi∈Π( ,i)

−→
pt

πi,

 ∧
πj∈Π(i,j)

wlp(πj , R)

 , true

 (2.15)

as the MOP(
−→
pt, true) for each node i ∈ N that is sufficiently tight to establish the safety

of the program.

A spurious counterexample in a reachability tree T constitutes a violation of the upper

bound (2.14). Let π = stmt1; . . . ; stmtn represent a spurious counterexample violating an

assertion assert(R) and let Q(t1,1), . . . , Q(tn,n) represent the corresponding upper bounds

for the nodes (t1, 1), . . . , (tn, n) of the corresponding path in the reachability tree T . Then

we obtain a set of predicates inductively defined by

Q′
(tn,n) = R , Q′

(ti,i)
= wlp(stmti, Q

′
(t(i+1),(i+1))) for 1 ≤ i < n .

These predicates are sufficient to construct a Hoare proof for {true} π {R}. The predi-

cates Q(ti,i) ∧Q′
(ti,i)

(for 1 ≤ i ≤ n) constitute the new upper bounds for (t1, 1), . . . , (tn, n),

effectively eliminating the spurious counterexample from any reachability tree computed
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using the refined predicate transformer
−→
pt(πi, Q(ti,i) ∧Q′

(ti,i)
, true).

Example 2.5.4. Consider the reachability tree in Figure 2.7. Suppose that, initially,

the upper bounds for all nodes are true. Accordingly, the reachability tree constructed

using the approximate predicate transformer
−→
pt(stmt, true, P ) contains a counterexample

y := x; [y 6= 0]; y := y&(y−1) violating the assertion assert(x 6= y). By refining the initial

upper bounds to

(x 6= y) ,

x 6= y&(y− 1) = wlp(y := y&(y− 1), (x 6= y)) , and

(y = 0) ∨ (x 6= y&(y− 1)) = wlp([y 6= 0], (x 6= y&(y− 1))) ,

respectively, we obtain (according to Table 1.2) the Craig interpolants

y ≤ x =
−→
pt(y := x, (y = 0) ∨ (x 6= y&(y− 1)), true) ,

y ≤ x ∧ y 6= 0 =
−→
pt([y 6= 0], x 6= y&(y− 1), y ≤ x) and

x 6= 0 ∧ y ≤ (x− 1) =
−→
pt(y := y&(y− 1), x 6= y, y ≤ x ∧ y 6= 0) .

The inductive invariant x 6= 0 ∧ y ≤ (x− 1) is sufficiently strong to rule out the violation

of the assertion. Thus, the refinement presented above eliminates the spurious counterex-

ample.

Eager versus Lazy Refinement. According to Equation (2.14), an improved upper

bound for a node (t, i) ∈ NT is also a valid upper bound for any other node (t′, i) ∈ NT .

It is therefore admissible to refine all these nodes accordingly. The approach refining only

the (t, i) along the path in NT which corresponds to the counterexample is known as lazy

refinement and was first presented in [HJMS02]. The approach refining all nodes in NT

which correspond to the CFA node i is known as eager refinement and used in [BR02a,

CKSY05], for instance.

The refinement of an approximation makes it necessary to recompute certain sections

of the abstract reachability tree T = (NT , ET ). Furthermore, this reconstruction of T

may invalidate previously established coverage relations in T . The refinement, however,
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potentially eliminates more than one spurious counterexample, avoiding a repeated recon-

struction of the reachability tree. Intuitively, eager refinement eliminates a larger number

of spurious counterexamples than lazy refinement, but requires the reconstruction of the

entire reachability tree.

Refining Predicate Abstraction-based Approximations

The mechanism underlying the refinement of predicate abstraction-based approximations is

the relaxation of the restrictions imposed by the predicate language L̂P . Given an abstrac-

tion function α : L → L̂P , the set of predicates P defining L̂P determines the accuracy of

the approximation. This accuracy can be improved by increasing the expressiveness of L̂P

by adding additional predicates to P.

Similarly to the refinement approach in the previous section, the goal is to refine L̂P

until the weakest sufficient upper bound (2.14) is expressible for all nodes of the CFA.

Again, the strategy is to iteratively eliminate spurious counterexamples.

Given a spurious counterexample stmt1; . . . ; stmtn violating the assertion assert(R),

it is possible to compute a sequence of predicates P1, . . . , Pn (where Pn = R) satisfying

the chain condition in Definition 2.2.1. Suppose we add these predicates to P, thus in-

creasing the expressiveness of L̂P . By definition of the best correct upper approximation

(Definition 2.4.2), this modification is sufficient to eliminate the spurious counterexample.

Example 2.5.5. Consider the Boolean program in Figure 2.5. We demonstrate in Exam-

ple 2.4.5 that the approximation constructed using the predicates (i=0) and (j=0) is not

sufficient to establish the safety of the program in Figure 2.5(a). We obtain a spurious

counterexample

x1 := true; x2 := true; [true]; x1 := x1?false : ∗; x2 := x2?false : ∗

potentially violating the assertion j < 10. The corresponding concrete path is

i := 0; j := 0; [i < 10]; i := i + 1; j := j + 1 ,
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x1:=true
x2, x3:=
true, false

[true]

[¬x1]

x1:=x1?false:*;
x2, x3:=

(x2 ∨ x3)?false : ∗,
x2?true : (x3?false: ∗)assert(true)

Figure 2.8: A refined approximation of the program in Figure 2.5(a) for the predicates
(i=0), (j=0), and (j=1) (x1, x2, and x3 respectively)

and by simulating this path using the strongest postcondition, we obtain the new predicates

i < 10, i = 1, and j = 1 and add them to P. Figure 2.8 shows a refined version of the

Boolean program in Figure 2.5(b). The predicates (i=0), (j=0), and (j=1) correspond to

the Boolean variables x1, x2, and x3, respectively. We omit the remaining predicates, since

they are not necessary to eliminate the spurious counterexample.

By constructing the abstract reachability tree for the refined Boolean program, we can

verify that x3 holds after the first iteration of the loop and that the counterexample has

indeed been eliminated.

Boolean programs can be understood as an implicit representation of abstract reacha-

bility trees for the predicate transformer spbool. However, the fact that the same abstract

transition function ŝtmt approximates all occurrences of stmt in the reachability tree effec-

tively rules out lazy refinement. Therefore, all verification tools using Boolean programs as

internal representation (such as Slam [BR02b, BCLR04] and SatAbs [CKSY05]) deploy

eager refinement strategies.

2.5.4 Counterexample-Guided Abstraction Refinement

CEGAR is a framework comprising the steps described in Sections 2.4.1, 2.5.1, and 2.5.3

– abstraction, verification using reachability trees, and refinement. The term CEGAR

denotes an iterative approach which, starting from a coarse approximation of the concrete

program, refines the abstraction successively until the program can be proved either safe

or faulty. Figure 2.9 illustrates this abstraction refinement cycle. Since this dissertation

discusses different flavours of abstraction, reachability checks, and refinement, the flow-

graph in Figure 2.9 is held as general as possible. It illustrates four phases of the process:
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(ART)

Abstract Verify

SimulateRefine

[no error]
program is safe

[feasible]

report error

concrete program

Figure 2.9: The Counterexample-Guided Abstraction Refinement scheme

1. Abstract. The generation of Boolean programs is performed in this phase. In the

case of a lazy refinement approach, abstraction and verification are performed in one

single phase (indicated by the dashed box in Figure 2.9).

2. Verify. In the verification phase, one of the following tasks is performed:

(a) verification of the Boolean program (generated in the previous phase) by means

of model checking, a process which may yield a counterexample, or

(b) expansion of the abstract reachability tree T until either an abstract counterex-

ample is found or T is complete.

3. Simulate. The potentially spurious abstract counterexample obtained in the previous

phase is simulated in the context of the concrete program. Legitimate counterexamples

are reported.

4. Refine. Spurious counterexamples are eliminated using the techniques described in

Section 2.5.3.

The next example, which we owe to [JM06], demonstrates that the CEGAR loop does

not necessarily terminate.

Example 2.5.6. Figure 2.10 shows a program which is safe because it contains only one

cyclic path [x 6= 0]; x := x + 1; y := y + 1 which maintains the invariant (i = j)⇒ (x = y).
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x:=i y:=j

[x 6= 0] x:=x-1

y:=y-1

[x= 0]
[i = j]

[i6=j]

assert(y=0)

Figure 2.10: A program presented by Jhala and McMillan in [JM06]

Suppose we use predicate abstraction to generate an approximate version of the concrete

program. We argue that, if we use the strongest postcondition to refine the approximation,

we obtain the following spurious counterexample after n iterations of the CEGAR loop:

x := i; y := j; ||: [x 6= 0]; x := x− 1; y := y− 1; :||n−1 [x = 0]; [y = j] ,

(where the repetition sign denotes (n − 1) iterations of the cycle). This is easy to see for

n = 1, assuming the initial approximation uses P = {true, false}. A simulation of this path

using the strongest postcondition yields the predicates {x = j, y = j, x = 0, i = j}. The best

approximation of

sp(x := i; y := j; [x 6= 0]; x := x− 1; y := y− 1, true) =

(x− 1 = 0) ∧ (x− 1 = i) ∧ (y− 1 = j)

is therefore true, which is insufficient to prove the safety of the program. The subsequent

iterations yield the refinement predicates {x− (n− 1) = j, y− (n− 1) = j}, resulting in the

construction of a “one-hot” counter in the abstract domain. This process only terminates

if the domain of the variables in the concrete program is finite (cf. Example 2.3.1).

Due to Turing’s undecidability result [Tur36], the fact that the CEGAR loop may fail to

terminate is not surprising. However, the interesting aspect is that the non-termination in

Example 2.5.6 can be avoided by choosing a different refinement strategy. Such strategies

are discussed in Chapter 4 and in [JM06].
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2.6 Verification Tools and Related Work

The Slam toolkit [BR02b] (now commercialised under the name of Static Driver Veri-

fier [BCLR04]), a CEGAR-based verification tool developed at Microsoft Research, pop-

ularised the use of predicate abstraction for software model checking. It was followed

by Blast [HJMS02], Magic [CCG+04], SatAbs [CKSY05], and the F-Soft verifica-

tion framework [IYG+05], all of which are widely known CEGAR-based verification tools

using predicate abstraction. A detailed comparison of these tools can be found in our sur-

vey [DKW08]. Recently, Microsoft research presented Slam’s reincarnation Slam 2.0 and

a derivative Yogi [NR10]. The latter is based on test generation.

The verification tool Slam makes a clear distinction between the different phases of

CEGAR (see Figure 2.9). It comprises three different tools, namely the predicate abstrac-

tion engine C2bp [BMMR01], a BDD-based model checker Bebop [BR00b] for Boolean

programs, and the simulation and refinement tool Newton [BR02a].

The structure underlying SatAbs is similar. SatAbs uses propositional logic and effi-

cient satisfiability-solving techniques to implement the concrete predicate transformers and

their respective approximations. This enables a bit-level accurate presentation of programs,

making it possible to model bitwise operations and arithmetic overflow. The importance

of a bit-level accurate representation of the program semantics is discussed at the end of

Section 1.3.1 and in more detail in Chapter 3.

Blast is the prototype of all tools based on lazy refinement. At the same time, it is the

only predicate-abstraction based exponent in our list which uses lazy refinement. Recent

versions of Blast use interpolation to refine abstractions in a lazy manner [HJMM04].

The algorithm deployed in McMillan’s verification tool Impact [McM06] resembles the lazy

approach of Blast but abandons predicate abstraction as approximation technique. Our

verification tool Wolverine [KW09a] follows the same approach.

Chapter 2 omits the discussion of two prominent features of programming languages:

procedures and concurrency. The support of these features is orthogonal to the techniques

which are the focus of this dissertation. All the tools listed above are able to handle proce-

dure calls, either based on abstracting the predicate transformers for procedure calls [Nel89]
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(the approach taken by Slam [BMMR01]) or by inline expansion of procedures (as imple-

mented in Impact, Wolverine, and earlier versions of SatAbs). Note that inline expan-

sion is only a partial solution which does not support recursive function calls. Blast uses

interpolation and introduces appropriate cut-points for paths in order to generate pred-

icates over the arguments and return values of procedures [HJMM04]. This enables the

summarisation of procedures [SP81]. A similar approach is proposed in [HHP10].

Furthermore, some of the verification tools discussed in this section provide limited or

experimental support for concurrency. Magic deploys a compositional approach, decom-

posing the program into several components which are verified separately. Magic is able

to verify programs using message passing, but does not support shared memory.

In the course of an internship at Microsoft Research, the author of this dissertation

integrated support for concurrent programs into an experimental version of Slam. For

this purpose, we replaced Bebop by the explicit state model checker Zing [AQRX04] and

the SAT-based tool Boppo [CKS06], both of which enable the verification of concurrent

Boolean programs. A similar modification to SatAbs is presented by the author and

his collaborators in [WBKW07], where the benchmarks suggest that the verification of

concurrent Boolean programs forms the bottleneck of this approach.

An adapted version of Blast supports threads by exploring the state space of one

thread at a time, using CEGAR to approximate the behaviour of the thread and its envi-

ronment [HJMQ03]. This modification enables the detection of race conditions in programs

with shared memory.

The following two chapters focus on the extraction of Craig interpolants from coun-

terexamples. The techniques in these two chapters are mutually orthogonal. Moreover,

they are general enough to make an integration into existing implementations (such as the

tools presented in this section) feasible.
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Chapter 3

Constructing Interpolants

After the detailed discussion of applications of Craig’s interpolation theorem in Chapter 2,

we dedicate the current chapter to the construction of Craig interpolants. In particular, we

focus on algorithms which extract interpolants from refutation proofs. While this is not the

only approach to obtain interpolants ([RSS07], for instance, proposes to use a constraint

solver to eliminate symbols local to a partition), this technique is widely and successfully

applied by a number of tools [HJMM04, McM05, McM06, KW07, BZM08, KW09a, CGS10].

First, we provide a definition of the first-order language and the underlying theory we

use to reason about software programs. Section 3.1 describes bit-vector logic, a formalism

which reflects the finitary nature of the domain in which program variables take their values.

We proceed with a general discussion of refutation proofs and their relation to interpolation

(Section 3.2). The concepts introduced in Section 3.2 are then refined and applied to

refutations of propositional encodings of bit-vector formulae in Section 3.3. We present

a family of interpolation systems for refutations of propositional formulae, enabling us to

derive a range of different interpolants. Section 3.4 discusses how proofs over propositional

encodings can be lifted to a higher level of abstraction while still maintaining the advantages

of a propositional representation. This technique enables us to compute proofs over “word-

level” formulae. Interpolation techniques for such proofs are presented in Section 3.5. We

discuss related work in Section 3.7 and present an experimental evaluation of our techniques

in Section 3.6.
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Table 3.1: The grammar for bit-vector arithmetic formulae [KS08]
formula ::= formula ∧ formula | formula ∨ formula | ¬formula | atom

atom ::= propositional identifier | term � term
term ::= ∼term | constant | identifier | term # term

(where � ∈ {=,≥, >, 6=} and # ∈ {+,−, ·, &, |,⊕,�,�})

Contribution. This chapter presents a number of novel interpolation techniques (pub-

lished by the author and his collaborators in [KW07, KW09a] and [DPWK10]). The in-

terpolation system presented in Section 3.3 and [DPWK10] is a generalisation of existing

interpolation systems for propositional resolution proofs and relates the resulting inter-

polants by logical strength. The “proof lifting” technique introduced in Section 3.4 is a

generalisation of the results presented in [KW07] and represents a combination of deci-

sion procedures which eagerly generate a propositional encoding of bit-vector formulae and

satisfiability modulo theory-solvers (SMT-solvers). Finally, Section 3.5 presents two inter-

polation systems for bit-vector formulae and compares them with respect to the strength

of the interpolants they generate. To the best of our knowledge, this is the first comparison

of this kind for word-level interpolation systems.

3.1 Bit-Vector Arithmetic

Throughout Section 2.1, we refer to a first-order language L over a concrete domain of

program states C without specifying any further details. The example in Section 1.3.1

illustrates that our application dictates specific requirements for L. Program variables

typically take values in a finite domain, and the semantics of the operators is determined

by their respective implementation in hardware (see Figures 1.6 and 3.1, for instance). The

theory of bit-vector arithmetic enables sound reasoning in such a setting. Therefore, we

fix bit-vector logic as the language underlying the verification techniques presented in this

dissertation. We adopt the notation and the semantics of Kroening and Strichman [KS08].

Syntax. Table 3.1 presents the abstract syntax of quantifier-free formulae in the theory

of bit-vector arithmetic. We embed the quantifier-free language fragment specified by this

grammar into the first-order language L. We fix an enumerable set of variables, function
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and predicate symbols, and constant symbols. Furthermore, we consider a subset of the

variables to be propositional variables. Well-formed elements of L are generated by the

following set of rules:

� A term t is a constant, a variable, or an application f(t1, . . . tn) of an n-ary function

symbol f to terms t1, . . . , tn. We fix a set of binary functions {+,−, ·, &, |,�,�,⊕}

which we allow to occur in infix notation. Moreover, the function ∼ is unary.

� An atom is a n-ary relation (or predicate) R applied to n terms t1, . . . , tn. We fix a set

of binary relations {=,≥, >, 6=} which may occur in infix notation (e.g., t1 6= t2). Note

that the set of atoms over the relations � ∈ {=,≥, >, 6=} is closed under negation,

i.e., the negation ¬(t1 � t2) of an atom can be expressed in terms of an atom.

� An non-quantified formula is a Boolean combination of atoms. We allow the Boolean

operations ∧, ∨, and ¬ and use A ⇒ B to denote ¬A ∨ B and A ⇔ B to denote

(A ⇒ B) ∧ (B ⇒ A). As usual, we assume that ∧ has a higher precedence than ∨.

Furthermore, given an atom A, we refer to A and ¬A as literals.

We augment the language L with quantifiers in the standard way. Given a formula

A in the first order language L, let Var(A) denote the non-quantified (free) variables in

A. A formula is closed if it has no free variables. We use the symbols x, y, z, . . . to

represent variables. In the context of Craig’s interpolation theorem (Theorem 2.2.1), we

treat these variables as constants (uninterpreted nullary functions, respectively) if they are

not quantified, since the theorem applies to closed formulae exclusively (see Section 2.2).

Interpretations. A formula adhering to the syntactic rules introduced in the previous

section may contain logical and non-logical symbols. Quantifiers, logical connectives, vari-

ables, and the equality relation are logical symbols, and so are parenthesis determining the

precedence of operators in formulae. Furthermore, we include the truth constants true and

false in the set of logical symbols and assume that the corresponding elements are con-

tained in the domain C. We use the standard interpretation of the logical connectives and

the relation symbols = and 6=. Universal and existential quantifiers range over the elements
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of the domain C unless applied to propositional variables, in which case they range over the

Boolean domain B.

Non-logical symbols represent predicates (or relations), functions, and constants on the

domain of discourse. A modelM of a formula F comprises a domain C and an interpretation

function assigning meaning to the non-logical symbols in F . We use the notation fM to

refer to the element in C assigned to the symbol f by the meaning function. Accordingly, an

n-ary function symbol f (predicate symbol p) has a function fM : Cn → C (pM : Cn → B,

respectively) associated to it. A formula is satisfied by a modelM if it evaluates to true in

the respective interpretation. A formula is unsatisfiable if there exists no model satisfying

it. A formula F is a tautology if no model satisfies its negation ¬F . A formula F entails a

formula G, denoted as F |= G, if all models satisfying F also satisfy G.

We identify a fixed set of interpreted functions and predicates whose meaning is uniquely

determined by the theory of bit-vectors. Conversely, uninterpreted function symbols and

predicates have no other predetermined property than their name and arity. We use Sym(A)

to denote the uninterpreted function and predicate symbols in a formula A.

In the following, we briefly outline the semantics of the interpreted functions and pred-

icates of bit-vector arithmetic. The relation ≥ is a partial order over the domain C, and

ti > tj denotes (ti ≥ tj) ∧ (ti 6= tj). The functions + and − correspond to addition and

subtraction in modular arithmetic (see, for instance, [JCG09]). The modulus is determined

by the cardinality of the finite domain the function result and parameters range over.

The finitary nature of the domain of program variables enables the representation of

values d ∈ C as bit-vectors dn−1 . . . d0, where di ∈ B (for 0 ≤ i < n) and n is the width of

the bit-vector. Overloading our notation, we use 0 and 1 as an alternative representation

for the constants false and true and interpret them accordingly in the context of arithmetic

expressions. In the case of finite (bounded) domains containing unsigned or signed integers

we assign each bit-vector a corresponding value in N0 and Z, respectively:

(dn−1 . . . d0)M
def=


∑n−1

i=0 di · 2i for unsigned domains

−2n−1 · dn−1 +
∑n−2

i=0 di · 2i for signed domains
(3.1)
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Accordingly, the relational operators =, 6=, ≥, and > take their standard meaning in

Z. Furthermore, we can define the semantics of addition, subtraction, and multiplication in

terms of sequential circuits. The circuit in Figure 3.1, for instance, implements the addition

of two bit-vectors of width 3, i.e., (x + y ≡ z) mod 8 where x is represented by x2 x1 x0, y

by y2 y1 y0, and z by z2 z1 z0 . The unary operator ∼ denotes bit-wise negation

∼ (dn−1 . . . d0)
def= (¬dn−1 . . .¬d0) ,

and similarly, the operators & and | denote bit-wise conjunction and disjunction, respec-

tively. Let c be a numerical constant. The operator � denotes a left shift defined as

(dn−1 . . . d0)� c
def= (d(n−1)−c . . . d0 0 . . . 0) if cM < n .

The operator is treated as an uninterpreted function if cM ≥ n. The right shift operator� is

defined similarly. For details we refer the reader to [KS08] and [BKWW08]. Brinkmann and

Drechsler [BD02] provides a formal semantics for the fragment of bit-vector logic presented

in Table 3.1.

For reasons of readability, we assume that all values in our domain are represented using

bit-vectors of the same width (and all functions use the same modulus, respectively). In our

implementation, we lift this restriction by using many-sorted first-order logic. Furthermore,

we assume that bit-vectors represent unsigned numbers unless we specify explicitly that

they are signed.

Example 3.1.1. Consider the path

i := ∗; j := ∗; [i > j + 2]; assert(i > j)

and assume that the bit-width of the unsigned variables i and j is 32. The strongest postcon-

dition of the prefix reaching the assertion is sp(i := ∗; j := ∗; [i > j + 2], true) = i > j+2.

Since the predicate i > j+2∧i ≤ j has the satisfying assignment {i 7→ 232−1, j 7→ 232−1}

in its bit-vector interpretation, the prefix constitutes a valid counterexample. A decision pro-

cedure for the theory of linear arithmetic over the reals or the unbounded integers, however,

76



would report that the path is safe.

3.2 Interpolation, Symbol Elimination, and Quantification

This section introduces the concepts the interpolation algorithms in Sections 3.3 to 3.5

are based on. We present a variation of Craig’s interpolation theorem adapted to the

theory of bit-vector arithmetic. We introduce proofs and restrictions on the structure and

nature of these proofs which enable the construction of partial interpolants (Section 3.2.3).

The interpolation systems in Section 3.3 require the projection functions introduced in

Section 3.2.3 to generate partial interpolants from propositional resolution proofs, while

the algorithms in Section 3.5 require proofs to be local (Section 3.2.2). The technique

in Section 3.4 relies on partial interpolants to combine the different interpolation systems.

The concluding discussion of the relationship between quantification and symbol elimination

provides insight into the logical strength of interpolants.

3.2.1 Proofs and Interpolants for Bit-Vector Arithmetic

Following the elaboration of the details of the formal language L on which we base our

verification efforts, we present a variation of Craig’s interpolation theorem adapted to our

setting. In particular, we extend Theorem 2.2.1 in order to accommodate interpreted and

uninterpreted symbols (as introduced in Section 3.1). In accordance with [KV09b] we

assume that the meaning of interpreted symbols is determined by an underlying theory

T . A theory is a set of axioms (closed formulae, respectively), i.e., we assume that T is

axiomatisable in first-order logic. We call the function and predicate symbols occurring in

T interpreted and all other symbols uninterpreted. We use A1, . . . , An |=T A to denote

that A1 ∧ . . . ∧ An ⇒ A evaluates to true under all assignments satisfying T . The symbol

`T represents a sequence of inference steps.

Definition 3.2.1 (Inference rule). Given a set of closed formulae A1, . . . , An, and A, an

inference rule
A1 · · · An

A
,
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states that the conclusion A can be derived from the conjunction of the premises A1∧. . .∧An.

An inference system for T is a set of inference rules. A derivation in an inference system

is a tree built from inferences in the theory T . A proof that a conclusion A follows from a

premise in a theory T is a (finite) derivation in which all leaves are either axioms or elements

of the premise and A is the root. A proof showing that false follows from a formula or set

of premises is a refutation. Note that A |=T B does not necessarily imply that A `T B,

since the inference system might not be complete for the language L. However, we assume

that A |=T B always follows from A `T B, i.e., that the inference system is sound.

We restate Theorem 2.2.1 such that it accommodates the theory T :

Theorem 3.2.1. Let A and B two closed formulae in L (as defined in Section 3.1) and let

T be the respective theory. If A |=T B holds, then there exists a closed formula I such that

A |=T I and I |=T B hold, and the uninterpreted function and predicate symbols of I occur

in A as well as in B. We call I an interpolant.

A slightly more general and non-symmetric version of Theorem 3.2.1 and a corresponding

proof is presented in [KV09b].

Recall that we use nullary function symbols and predicates to represent program vari-

ables in order to retain consistency with the original formulation of Craig’s theorem. Note

that the language fragment defined by the grammar in Table 3.1 represents the special case

in which all function symbols and predicates except the ones used to represent program vari-

ables and propositional variables are interpreted. In this setting, the differentiation between

unquantified variables and uninterpreted nullary function symbols is solely terminological.

This chapter of our dissertation is concerned with the generation of interpolants in the

language of quantifier-free bit-vector arithmetic (as specified in Table 3.1). The existence of

efficient satisfiability checking techniques for quantifier-free L-formulae (see [KS08]), which

allow us to perform the coverage check for reachability trees (Definition 2.5.1), provide the

incentive to restrict ourselves to this fragment. More generally, for many theories (including

the theory of arrays) the quantifier-free fragment has a decision procedure to answer the

satisfiability queries while the full theory may be undecidable [KMZ06], making quantifier-

free formulae particularly interesting.
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3.2.2 Local Derivations and Symbol Elimination

Before we proceed to discuss techniques to construct Craig interpolants in Sections 3.3

to 3.5, we point out the close connection between quantification, symbol elimination, and

interpolation. Given an interpolant I for a pair of formulae (A,B), it holds by definition

(see Theorem 3.2.1) that A |=T I and ¬B |=T ¬I. Moreover, A ∧ ¬B is unsatisfiable,

i.e., A,¬B |=T false. This observation gives rise to an alternative formulation of Craig’s

interpolation theorem (often referred to as Craig-Robinson Theorem [Har09]).

Theorem 3.2.2 (Craig-Robinson Theorem). Let A and B be two closed formulae in a first-

order logic L. If A ∧ B |=T false, then there exists a closed formula I such that A |=T I

and B |=T ¬I hold, and the uninterpreted function and predicate symbols of I occur in A

as well as in B.

In [KV09b], the formula I defined in Theorem 3.2.2 is referred to as “reverse” interpolant,

since it is a Craig interpolant for (A,¬B). In this context, we will also refer to ¬B as B

in order to keep the presentation compact. We claim in Example 2.2.2 that it is possible

to derive interpolants for (A,B) from a derivation of false from (A,B), given that this

refutation has a certain structure. The papers [JM06] and [KV09b] state that one can

extract an interpolant from a refutation proof if all derivations in the proof are local.

Definition 3.2.2 (Local Derivation). Given a refutation proof for the conjunction of two

formulae A and B, an inference
C1 · · · Cn

C

in this proof is called local if

� either all uninterpreted function and predicate symbols in C1, . . . , Cn and C occur in

A or all of them occur in B, and

� if all uninterpreted function and predicate symbols in C1, . . . , Cn occur in A as well

as in B, then so do the uninterpreted function and predicate symbols of C.

A derivation, proof, or refutation is called local if each of its inferences is local.
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y = x

y ≤ x

y 6= 0
y′ = y&(y− 1)
y′ ≤ y− 1

y′ < y

y′ < x
x = y′

false

Figure 3.2: A proof consisting of local derivations

Intuitively, a proof containing only local derivations eliminates uninterpreted function

and predicate symbols which are local to A or local to B before it combines formulae derived

from A with formulae derived from B. Accordingly, no formula in the derivation is allowed

to contain a mixture of symbols “local to” A and “local to” B.

Example 3.2.1. Consider the formulae A ≡ (y = x ∧ y 6= 0 ∧ y′ = y&(y− 1)) and

B ≡ (x 6= y′) derived from the safe path in Example 2.2.2. Figure 3.2 shows a refutation

proof for the conjunction A ∧ B. The sub-tree of the proof encircled with a dashed line

contains only function symbols which occur in A. The final inference

y ≤ x y′ < y

y′ < x
(transitivity)

in the sub-tree eliminates the symbol y such that the conclusion refers only to function

symbols shared by A and B.

3.2.3 Partial Interpolants

Kovács and Voronkov [KV09b] shows that an interpolant for the pair of formulae (A,B) can

be extracted in linear time from a refutation proof for A∧B if every inference in the proof

is local. We do not restate their detailed results at this point (we defer this discussion to

Section 3.5), but aim at providing an intuition of the concept underlying their construction.

The interpolation system presented in [KV09b] as well as a number of other interpolation

procedures (e.g., [Hua95, Kra97, Pud97, McM05, YM05, FGG+09, GKT09]) are based on an

inductive definition of interpolants. The algorithms associate a so called partial interpolant

with each sub-tree of the refutation proof. Consider a sub-tree A′, B
′ `T C of a refutation

A,B `T false (as indicated in Figure 3.3(a)). A′ and B
′ represent subsets of the premises
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false

C

A′︷︸︸︷ B
′︷︸︸︷

(a) A sub-proof A′, B
′ `T C.

CA′

CB′

A′ B
′C

(b) Intersection of models of A′ and B
′
.

Figure 3.3: Illustrations for partial interpolants in refutations

A and B, respectively.

Since C is a consequence of A′∧B
′, C represents a superset of the models that satisfy A′

as well as B
′. Therefore, unless C = false, an actual Craig interpolant for A′ and B′ may not

exist because A′ may not imply B′. Accordingly, a partial interpolant (or “C-interpolant”

in the terminology of [KV09b]) is a slightly “relaxed” notion of a Craig interpolant which

takes the conclusion C into account.

It follows immediately from A′,¬B′ `T C that (A′ ∧ ¬C) ⇒ (B′ ∨ C). Accordingly,

[KV09b] introduces the notion of a “C-interpolant”, a formula I which has the following

properties:

1. A′ ∧ ¬C |=T I,

2. I |=T B′ ∨ C, and

3. all uninterpreted function and predicate symbols of I occur in A′ as well as in B′.

Note that if A′, B
′ `T C is a local derivation, then either all uninterpreted function and

predicate symbols in C occur in A or all of them occur in B (cf. Definition 3.2.2). The

proof of Lemma 2 in [KV09b] shows that a C-interpolant is a Craig interpolant for the

pair of formulae (A′ ∧ ¬C,B′) in the former case and for (A′, B′ ∨ C) in the latter case.

Moreover, if C is false, then the C-interpolant is a Craig interpolant for (A′, B′) and a

reverse interpolant for (A′, B
′).

The main result of [KV09b] is that a C-interpolant for a local derivation A,B `T C is a

Boolean combination of conclusions and C-interpolants of the sub-proofs of the derivation.

Example 3.2.2. Consider the local refutation in Figure 3.2. The conclusion y′ < x of the
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local derivation y = x, y 6= 0, y′ = y&(y− 1) `T y′ < x is a Craig interpolant for the pair of

formulae y = x ∧ (y 6= 0) ∧ (y′ = y&(y− 1)) and x 6= y′.

In Section 3.5, we present an algorithm which extracts interpolants from local refutations

of bit-vector formulae.

The requirement of the locality of derivations is sufficient but not necessary. Yorsh

and Musuvathi [YM05] shows that this restriction can be relaxed under certain conditions.

[YM05] discusses theories and inference systems which allow splitting the conclusion C

of A′, B
′ `T C into an A-part CA′ and a B-part CB′ (i.e., Sym(CA′) ⊆ Sym(A′) and

Sym(CB′) ⊆ Sym(B′)) such that C = CA′ ∨ CB′ . In particular, [YM05] covers the Nelson-

Oppen [NO79] framework and the resolution calculus for propositional logic. Note that

local derivations also trivially have this property.

Figure 3.3(b) depicts the intersection of the models of two formulae A′ and B
′. Intu-

itively, a fraction of the set of models represented by C can be attributed to CA′ (or CB′ ,

respectively). Note that these sets of models are not necessarily disjoint (indicated by the

shaded area in Figure 3.3(b)). [McM05] and [YM05] introduce a projection operation C|A

performing this split for a certain class of formulae C.

Definition 3.2.3 (Projection of Literals). Let C be a disjunction of literals
∨n

i=1 li, where

each literal li is either an atom or a negation of an atom. Given a formula A, C|A is the

disjunction of all literals li in C whose uninterpreted function and predicate symbols occur

in A (i.e., Sym(li) ⊆ Sym(A)).

In the case of Nelson-Oppen style derivations A′, B
′ `T (t1 = t2) with “AB-pure”

conclusions [YM05] (i.e., Sym(t1 = t2) ⊆ Sym(A′) or Sym(t1 = t2) ⊆ Sym(B′) respectively,

t1 and t2 being terms) the conclusion comprises only a single atom. Given a derivation

A′, B
′ `T C, we observe that A′ ∧ ¬(C|A′) ⇒ B′ ∨ C|B′ holds. A partial interpolant is a

Craig interpolant for the pair of formulae A′ ∧ ¬(C|A′) and B′ ∨ C|B′ .

Definition 3.2.4 (Partial Interpolant). Let A′, B
′ `T C be the inference corresponding to

a sub-tree in a refutation. Furthermore, let C be a disjunction
∨n

i=1 li of literals. A partial

interpolant for A′, B
′ `T C is a formula I for which the following conditions hold:
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1. A′ ∧ ¬(C|A′) |=T I,

2. I |=T B′ ∨ (C|B′), and

3. Sym(I) ⊆ Sym(A′) ∩ Sym(B′).

The interpolation techniques discussed in this dissertation map refutation proofs to

partial interpolants. In accordance with [DPWK10], we refer to a procedure for constructing

an interpolant from a refutation as interpolation system.

Definition 3.2.5 (Interpolation System). An interpolation system is a function that given

a refutation R of A∧B maps sub-trees of R to partial interpolants. An interpolation system

is correct if it maps the tree corresponding to A,B `T false to a Craig interpolant for the

pair of formulae (A,B).

At this point, we intentionally keep the notions of an interpolation system and a par-

tial interpolant general and refine them according to our needs when we discuss interpo-

lation systems for specific inference systems in Sections 3.3 and 3.5. The inference sys-

tems discussed in [YM05] impose structural restrictions on the premises in a refutation.

Premises in Nelson-Oppen-style derivations are required to be conjunctions of AB-pure

literals. Premises of proofs in the propositional resolution calculus are required to be dis-

junctions of literals.

In Section 3.3 we present an interpolation technique for quantifier-free propositional

logic (a fragment of L) which extracts Craig interpolants from propositional resolution

refutations using partial interpolants. In Section 3.4 we discuss how partial interpolants

can be used to compute Craig interpolants using derivations in different inference systems.

3.2.4 Symbol and Quantifier Elimination

In the following, we investigate the relation between the symbol eliminating inference sys-

tems discussed in the previous section and quantifier elimination. This analysis yields a

number of general results about the strength and structure of Craig interpolants.

In our setting, all uninterpreted function and predicate symbols of the language of

quantifier-free bit-vector arithmetic are used to represent instances of program variables.
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Formally, we are not allowed to quantify over these “variables”. Nevertheless, we frequently

do so in Chapters 1 and 2 in order to construct the strongest postcondition. Moreover,

in these previous chapters we take it for granted that these quantified symbols can be

eliminated (cf. Section 2.1). In general, however, this is not the case. In the following, we

address both issues, starting with the quantification of program variables.

As remarked previously, if we restrict ourselves to the language fragment defined by the

grammar in Table 3.1, all uninterpreted function and predicate symbols represent program

variables. The use of constant symbols to represent variables is motivated by the fact that

Craig’s theorem requires the formulae A and B to be closed, i.e., Var(A) ∪ Var(B) = ∅.

Therefore, for A,B ∈ L, we may use first-order logic variables to represent program variables

as long as all they do not occur unquantified in A or B. All unquantified variables need to

be “replaced” by constant symbols, which, in our setting, is a mere matter of terminology

– the resulting closed formula and the original formula are equi-satisfiable.

Evidently, in this setting quantification constitutes a means of symbol elimination (at

the cost of enriching the language of bit-vector arithmetic with quantifiers). Moreover, this

approach allows us to define the strongest and weakest interpolant (in the implication order)

for a pair of formulae (A,B).

Lemma 3.2.1 (Strongest and Weakest Interpolants). Let (A,B) a pair of closed formulae

in the language of bit-vector arithmetic. Furthermore, let σ be a bijective function which

maps the nullary function and predicate symbols in A and B to first-order logic variables

and propositional variables which do not occur in A and B. We use σ(A) (σ(B)) to denote

the substitution of constant and predicate symbols in A (B, respectively) according to σ. Let

A′ = σ(A) and B′ = σ(B) and let

I ′∃ ≡ ∃x ∈ Var(A′) \Var(B′) . A′ and I ′∀ ≡ ∀x ∈ Var(B′) \Var(A′) . B′

denote the formulae in L in which all variables that occur only in A′ (only in B′, respectively)

are existentially (universally) quantified. Furthermore, let I∃ denote the formula I ′∃ with all

free variables Var(I ′∃) replaced by their original counterparts nullary function and predicate

symbols again (i.e., I∃ = σ−1(I ′∃)). I∀ is defined analogously. Then I∃ is the strongest and
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I∀ is the weakest interpolant in L for the pair of formulae (A,B).

Proof. We start with justifying the transformation step in which we replace all nullary

function and predicate symbols in a closed formula with variables. Let A be a closed formula

and let M be a model of A in T (denoted as M |=T A). M maps every uninterpreted

symbol c in A to a value in the domain C (i.e., {c 7→ cM} ∈ M, cM ∈ C). Let A′ be the

formula A with each uninterpreted symbol c replaced by a variable c (where σ(c) = c).

Moreover, let M′ be a model for A′ such that ({c 7→ cM} ∈ M) ⇔ ({c 7→ cM} ∈ M′)

holds, i.e., M and M′ are isomorphic. Then M′ |=T A′, i.e., for each model satisfying A

there exists a corresponding model satisfying A′. A similar claim holds for I∃ and I ′∃.

Let I be a closed formula constituting an interpolant for the pair of formulae (A,B),

i.e., A |=T I and I |=T B. We show first that I∃ |=T I. Note that any model of I ′∃ can be

extended to a model of A′. Now let M be a model satisfying I∃. Due to the isomorphism

between models of A and A′, M can be extended to a model M+ satisfying A. Since

A |=T I, it holds thatM+ |=T I, and since the set of uninterpreted symbols in I is a subset

of the function symbols in I∃, it holds that M `T I. Accordingly, I∃ |=T I.

Furthermore, it holds that I |=T I∀. To see this, note that I |=T B can be written

as ¬B |=T ¬I. Accordingly, due to an argument similar to the one made above, ¬I∀ is

the strongest formula implied by ¬B in T such that all uninterpreted symbols of I∀ also

occur in A. Conversely, I∀ must be the weakest formula implying B, since the set of models

satisfying ¬I∀ is the complement of the set of models of I∀.

A variation of Lemma 3.2.1 for propositional logic is provided in [EKS08] (Lemma 1).

Remark 1. The fact that I |=T B is equivalent to ¬B |=T ¬I, used in the proof of

Lemma 3.2.1, immediately leads to the following observation:

Lemma 3.2.2 (Inverse Interpolant). Let I be a Craig interpolant for the pair of formulae

(A,B). Then ¬I is a Craig interpolant for the pair of formulae (¬B,¬A).

Proof. It follows from A |=T I that ¬I |=T ¬A and from I |=T B that ¬B |=T ¬I.

Similarly, the negation of the reverse interpolant for a pair of formulae (A,B) is a
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reverse interpolant for (B,A). Furthermore, observe that the conjunction or disjunction of

two Craig interpolants is also an interpolant.

Lemma 3.2.3 (Combination of Interpolants). Let I1 and I2 be Craig interpolants for the

pair of formulae (A,B). Then I1 ∧ I2 as well as I1 ∨ I2 are a Craig interpolants for the pair

of formulae (A,B).

Remark 2. Recall that Lemma 2.2.1 allows us to write sp(π,Q) (and wlp(π,Q), respec-

tively) as an existentially (universally) quantified formula in prenex normal form (given

that Q is a quantifier free predicate). We point out the structural resemblance to the weak-

est and strongest interpolants (though, as we observe on page 36, not all free variables in

sp(π,Q) are necessarily free variables of wlp(π,Q), and therefore sp(π,Q) and wlp(π,Q)

are not necessarily interpolants for the pair of formulae (sp(π,Q), wlp(π,Q))).

The strongest or weakest Craig interpolant for a pair of formulae (A,B) is not neces-

sarily a formula in the language fragment defined in Table 3.1, since the algorithm outlined

in Lemma 2.2.1 may introduce existential and universal quantifiers. Evidently, we are al-

ways able to construct quantifier-free interpolants if the underlying theory has quantifier

elimination (cf. [KMZ06], Theorem 8).

Example 3.2.3. Consider the pair of formulae y ≤ x ∧ y′ < y and x = y′ (occurring in

the refutation in Figure 3.2). According to Lemma 3.2.1, the strongest Craig interpolant for

these formulae is ∃y . y ≤ x∧y′ < y and the weakest interpolant is x = y′. The transitivity of

the inequality relation in the theory of bit-vector arithmetic enables us to obtain a quantifier-

free representation y′ < x of the strongest interpolant.

A quantified variable x ranging over a finite domain C can always be eliminated from

a formula ∀x . F (or ∃x . F ) by generating a finite conjunction (or disjunction, respectively)

of formulae F [x/c], c ∈ C. Accordingly, the language fragment in Table 3.1 augmented

with quantifiers is amenable to quantifier elimination. In general, however, it is not always

possible to eliminate quantifiers.
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Table 3.2: The grammar for propositional logic
(a) Propositional Logic

formula ::= formula ∧ formula | formula ∨ formula | ¬formula | (formula) | atom
atom ::= propositional identifier | constant

constant ::= true | false

(b) Propositional formulae in conjunctive normal form (CNF)

formula ::= formula ∧ (clause) | (clause) clause ::= clause ∨ literal | literal
literal ::= atom | ¬atom atom ::= propositional identifier

Example 3.2.4. The strongest interpolant for the pair of formulae x = 2 ·z and x 6= 2 ·y+1

(where x, y, z take values in the unbounded domain Z) is ∃z . x = 2 · z. There is no

quantifier-free interpolant expressing that x is even in the language of linear arithmetic over

the integers [McM05, JCG09].

Finally, given a local refutation A∧¬B `T false, it is not necessarily possible to derive

the strongest and weakest interpolant for the pair of formulae (A,B). Intuitively, the

structure of the proof dictates a nesting of quantifiers. In particular, two different instances

of the same symbol may be eliminated in different sub-trees of the proof. The nesting

determines the strength of the interpolant. In certain cases, this restriction can be lifted by

modifying the proof. Such proof transformations are discussed in Section 3.3.5.

3.3 Interpolation and Propositional Logic

Efficient solvers for bit-vector arithmetic often reduce the problem instances to a lan-

guage fragment of L for which efficient proof-generating decision procedures are avail-

able. Propositional logic (see Table 3.2(a)) is a prominent example of such a target lan-

guage (see, for instance, [DdM06, BKO+07, JLS09]). A number of proof-generating satis-

fiablity solvers for a propositional formulae in conjunctive normal form (CNF) is available

(e.g., [ZM03, ES04, Bie08]). CNF is the fragment of propositional logic specified by the

grammar in Table 3.2(b) to which every propositional formula can be reduced by means of

a satisfiability-preserving transformation.
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3.3.1 Flattening Bit-Vector Formulae

Due to the finitary nature of bit-vector arithmetic, every bit-vector formula can be repre-

sented by means of an equi-satisfiable formula in propositional logic. In this section, we

describe a transformation commonly known as flattening or bit-blasting.

The propositional fragment in Table 3.2(a) lacks the theory-specific atoms of bit-vector

arithmetic (i.e., the non-terminal term � term in Table 3.1 is not part of the propositional

language). Given a bit-vector formula F , we use Atoms(F ) to denote the atoms occurring

in F , and AtomsT (F ) to denote its theory-specific atoms (i.e., AtomsT (F ) ⊆ Atoms(F )).

Propositional logic is sufficiently expressive to represent the propositional structure of a

bit-vector arithmetic formula.

Definition 3.3.1 (Propositional Skeleton). Let F be a formula in the bit-vector logic lan-

guage presented in Table 3.1. The propositional skeleton of F is denoted by sk(F ) and is

obtained by replacing every atom that is not a propositional identifier by a fresh propositional

identifier.

Observe that sk(F ) determines a bijective mapping between the atoms in Atoms(sk(F ))

and the atoms Atoms(F ). In this chapter, we use ei to denote a propositional atom and αi

to denote the corresponding theory atom. (Multiple occurrences of αi are always replaced

by the same atom ei.) The propositional skeleton sk(F ) is an approximation of F inasmuch

as it preserves satisfiablity. If F is satisfiable, then so is sk(F ), whereas the converse does

not necessarily hold.

Example 3.3.1. The propositional skeleton of the bit-vector formula

(¬(x = y) ∨ ((x&2) = 2)) ∧ (y = z + z) ∧ (x = z� 1) ∧ ((z&1) = 0) (3.2)

is

(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5 . (3.3)

The assignment which maps all propositional atoms in sk(F ) to true (represented by
∧5

i=1 ei)

satisfies the Formula (3.3), whereas the Formula (3.2) is unsatisfiable.
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The accuracy of the approximation sk(F ) can be further improved by adding contraints

which reflect the semantics of the theory atoms AtomsT (F ) for each respective propositional

atom in sk(F ). In the following, we sketch the propositional encoding of the bit-vector op-

erators in Table 3.1. A more detailed description of the encoding is provided in [BKWW08]

and [KS08].

We perform an initial transformation which guarantees that the parameters of a bit-

vector operation are always symbols. Given a term t1 # t2 in a formula, we replace the

sub-terms t1 and t2 with fresh symbols z1 and z2, respectively, and add the constraint

(z1 = t1) ∧ (z2 = t2) to the resulting new formula.

Let n denote the bit-width of the program variables x and y in a term x#y, where # rep-

resents an operation in {+,−, ·, &, |,⊕,�,�}. Then, the symbols x and y are represented

by n propositional symbols xn−1, . . . , x0 and yn−1, . . . , y0, respectively. As explained above,

we introduce a fresh symbol z and n corresponding propositional symbols zn−1, . . . , z0 rep-

resenting the term x # y.

Bit-wise operations. The bit-wise operations z = x & y, z = x | y, and z = x ⊕ y are

encoded as

n−1∧
i=0

(zi ⇔ (xi ∧ yi)) ,

n−1∧
i=0

(zi ⇔ (xi ∨ yi)) , and
n−1∧
i=0

zi ⇔ ((xi ∨ yi) ∧ (¬xi ∨ ¬yi)) ,

respectively, and the bit-wise negation z =∼ x is represented by
∧n−1

i=0 (zi ⇔ ¬xi).

Shift operations. Shift-operations are implemented by means of a cascade of parallel

multiplexers known as barrel shifter. Figure 3.4 shows the circuit diagram of a 4-bit barrel

shifter implementing the operation z = x� y. The ith stage of the shifter performs a shift

by 2i positions if yi is true.

Arithmetic operations. Figure 3.1 shows the implementation of a carry-look-ahead

adder for two inputs x and y of bit-width three. Subtraction is enabled by the bit-wise

negation of the subtrahend y and setting the carry-in flag cin to true, which corresponds

to taking the two’s complement of y. Multiplication can be encoded using a shift-and-add
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Figure 3.4: The implementation of a 4-bit barrel shifter

circuit, i.e., the multiplication of two 2-bit parameters x and y represented as [x1 x0] and

[y1 y0], respectively, is defined as

[z2 z1 z0] = ([0 x1 x0]&[y0 y0 y0]) + (([0 x1 x0]� 1)&[y1 y1 y1]) .

Notably, it is possible to represent integer division z = x
y

by means of its inverse operation

multiplication using the constraint (z · y+ r = x)∧ (r < y) (for y 6= 0), where r denotes the

remainder.

Relational Operators. Having defined the encoding of the terms in the grammar in

Table 3.1, we proceed to the encoding of theory-specific atoms term � term, where � is

either = or > (the relations ≥ and 6= can be encoded in terms of >, = and Boolean

operations). The encoding of the equality x = y is straight-forward:

n−1∧
i=0

(xi ⇔ yi)

The inequality x < y can be expressed in terms of subtraction. If x < y holds, then the

subtraction x−y yields an overflow, which can be detected by checking the signals cout, x2,

and y2 in Figure 3.1. For unsigned operands, an overflow occurs if cout = true. In case of

signed operands, the value of (x2 ⇔ y2)⇔ cout indicates whether an overflow occurred.
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We use E(αi) to denote the propositional encoding of a theory atom αi. Given a propo-

sitional symbol e ∈ Atoms(sk(F )), contemporary decision procedures construct a constraint

(e⇒ E(α)) ∧ (¬e⇒ ¬E(α)) (3.4)

encoding the semantics of the theory atom α. The solvers expose various levels of aggressive-

ness when it comes to constraining the atoms of the propositional skeleton. Lazy approaches

iteratively strengthen the encoding, much like the iterative refinement approach presented

in Section 2.5.4. Eager flattening techniques perform the transformation in a single step.

In the context of this dissertation, we are solely interested in the resulting propositional

representation of bit-vector formulae and refer the reader to [KS08] for a more detailed

discussion of eager and lazy encoding strategies.

Conjunctive Normal Form. Most satisfiability solvers for propositional formulae expect

their input to be presented in CNF (as specified in Table 3.2(b)). A formula in CNF

comprises literals (which are propositional atoms or their negations) and clauses (which are

disjunctions of literals). A formula in CNF is a conjunction of clauses, often also represented

as set of clauses. We write l ∈ C if a literal l occurs in a clause C, and C ∈ A if a clause C

occurs in a formula A which is in CNF.

The encoding obtained by means of flattening as described previously does not adhere

to the syntactical restrictions imposed the grammar in Table 3.2(b). It is, however, possible

to transform the flattened formula into an equi-satisfiable formula in CNF by means of

Tseitin’s encoding [Tse83]. Analogously to the pre-processing step which replaces sub-terms

ti with fresh symbols zi, Tseitin’s encoding introduces a fresh propositional symbol and a

corresponding constraint for each sub-formula. This transformation results in a conjunction

of sub-formulae of the form x⇔ R(y, z), where R represents a Boolean combination of y and

z. Each of these sub-formulae is then converted into an equivalent formula in CNF. Table 3.3

shows the respective transformation rules for the propositional structures introduced by

flattening the bit-vector formula. Tseitin’s transformation results in a linear increase of the

size of the formula (at the cost of introducing new propositional symbols).
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Negation:
x⇔ ¬y ≡ (x⇒ ¬y) ∧ (¬y⇒ x)

≡ (¬x ∨ ¬y) ∧ (y ∨ x)

Disjunction:
x⇔ (y ∨ z) ≡ (y⇒ x) ∧ (z⇒ x) ∧ (x⇒ (y ∨ z))

≡ (¬y ∨ x) ∧ (¬z ∨ x) ∧ (¬x ∨ y ∨ z)

Conjunction:
x⇔ (y ∧ z) ≡ (x⇒ y) ∧ (x⇒ z) ∧ ((y ∧ z)⇒ x)

≡ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬(y ∧ z) ∨ x)
≡ (¬x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z ∨ x)

Equivalence:
x⇔ (y⇔ z) ≡ (x⇒ (y⇔ z)) ∧ ((y⇔ z)⇒ x)

≡ (x⇒ ((y⇒ z) ∧ (z⇒ y)) ∧ ((y⇔ z)⇒ x)
≡ (x⇒ (y⇒ z)) ∧ (x⇒ (z⇒ y)) ∧ ((y⇔ z)⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ ((y⇔ z)⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ (((y ∧ z) ∨ (¬y ∧ ¬z))⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ ((y ∧ z)⇒ x) ∧ ((¬y ∧ ¬z)⇒ x)
≡ (¬x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z ∨ y) ∧ (¬y ∨ ¬z ∨ x) ∧ (y ∨ z ∨ x)

Table 3.3: Tseitin transformation [Tse83] for standard Boolean connectives [BKWW08]

Example 3.3.2. Consider the propositional encoding e1 ⇔
∧n−1

i=0 (xi ⇔ yi) of the constraint

e1 ⇔ (x = y) for the skeleton in Example 3.3.1. The bi-implication can be rewritten as

n−1∧
i=0

(¬e1 ∨ (xi ⇔ yi)) ∧

(
e1 ∨

n−1∨
i=0

((xi ∧ ¬yi) ∨ (¬xi ∧ yi))

)
(3.5)

The left side of this formula can be rewritten in CNF as

n−1∧
i=0

((¬e1 ∨ ¬xi ∨ yi) ∧ (¬e1 ∨ xi ∨ ¬yi)) .

By introducing a fresh symbol oi for each of the conjuncts (xi ∧¬yi) and (¬xi ∧ yi), respec-

tively, we obtain

(ei ∨ o0 ∨ . . . ∨ o2·n−1) ∧
n−1∧
i=0

((oi ⇔ (xi ∧ ¬yi)) ∧ (oi+n ⇔ (¬xi ∧ yi))) ,
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Encoding Propositional constraint CNF clauses

e1 ⇔ (x = y) e1 ⇒ (x0 ⇔ y0) ∧ e1 ⇒ . . .∧ (¬e1 ∨ ¬x0 ∨ y0) ∧ (¬e1 ∨ x0 ∨ ¬y0)∧(∧n−1
i=0 xi ⇔ yi

)
⇒ e1 . . . ∧ (ei ∨ o0 ∨ . . . ∨ o2·n−1) ∧ . . .

e2 ⇔ ((x&2) = 2) e2 ⇒ x1 (¬e2 ∨ x1)
e3 ⇔ (y = z + z) e3 ⇒ ¬y0 ∧ . . . (¬e3 ∨ ¬y0) ∧ . . .
e4 ⇔ (x = z� 1) (e4 ⇒ (x1 ⇔ z0)) ∧ (e4 ⇒ ¬x0) (¬e4 ∨ ¬x1 ∨ z0) ∧ (¬e4 ∨ x1 ∨ ¬z0)∧

∧ . . . (¬e4 ∨ ¬x0) ∧ . . .
e5 ⇔ ((z&1) = 0) e5 ⇒ ¬z0 (¬e5 ∨ ¬z0)

Table 3.4: A propositional encoding of the constraints for the skeleton in Example 3.3.1

which replaces the right part of Formula (3.5). The conjuncts (oi ⇔ (xi∧¬yi)) and (oi+n ⇔

(¬xi ∧ yi)) can be replaced by formulae in CNF according to Table 3.3.

With a CNF encoding of the constraints derived from the theory atoms in place, we can

proceed to refine the propositional skeleton.

Example 3.3.3. We continue working in the setting of Example 3.3.1 and add a set of

propositional constraints which rules out the satisfiable assignment
∧5

i=1 ei. First, consider

the theory atoms x&2 = 2 and z&1 = 0, which dictate that x1 = true and z0 = false. This

is encoded in the propositional constraints for e2 and e5 in Table 3.4. Moreover, the shift

operation in the theory atom x = z� 1 forces x1 and z0 to be equal and x0 to be false. This

contradicts (x&2) = 2 ∧ (z&1) = 0. Therefore, the constraints eliminate any assignment

consistent with e2 ∧ e4 ∧ e5.

The propositional skeleton presented in Example 3.3.1 is already in CNF and requires

no further transformation.

3.3.2 Resolution Refutations

Resolution is a rule of inference (see Definition 3.2.1) enabling the construction of refutation

proofs for unsatisfiable formulae in CNF. The resolution rule eliminates symbols and enables

us to construct proofs adhering to the structural restrictions discussed in Section 3.2.1.

Let C and D represent propositional clauses (as defined in Table 3.2(b)) and let x be a
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propositional atom. The resolution rule is formally defined below.

(C ∨ x) (D ∨ ¬x)

(C ∨D)
Res (3.6)

We refer to x as the pivot and to (C ∨D) as the resolvent of the resolution. Furthermore,

we use Res((C∨x), (D∨¬x), x) to refer to the resolvent of (C∨x) and (D∨¬x) with respect

to the pivot x. The rules of associativity and commutativity are applied implicitly. Then,

the inference system comprising only the resolution rule is refutation complete for formulae

in CNF, i.e., if A |=T false holds for a formula A in CNF, then so does A `T false.

A refutation A `T false in the resolution-based inference system is a tree each leaf

node of which corresponds to a clause of A and each inner node of which corresponds to

a resolution step. A more compact representation of resolution refutations are directed

acyclic graphs, which enable sharing of clauses between resolution steps.

Definition 3.3.2. A resolution proof R is a directed acyclic graph (VR, ER, pivR, `R, sR),

where VR is a set of vertices, ER is a set of edges, pivR and `R are functions assigning

pivots and clauses to vertices, respectively, and sR ∈ VR is a unique vertex (called the

sink of R) with out-degree zero. An initial vertex has in-degree 0. All other vertices are

internal and have in-degree 2. For each internal vertex v ∈ VR, there are predecessor nodes

v+ and v− (i.e., (v+, v) ∈ ER and (v−, v) ∈ ER) such that `R(v+) = (C ∨ piv(v)) and

`R(v−) = (D ∨ ¬piv(v)), and it holds that

`R(v+) `R(v−)

`R(v)
Res .

A resolution proof R is a refutation if `R(sR) = 2 (where 2 represents the empty clause

which is logically equivalent to false). A refutation R is a refutation of a CNF formula A

if for each initial vertex v ∈ VR it holds that `R(v) is a clause in A.

We drop the subscripts in Definition 3.3.2 if it is obvious from the context to which

proof R we refer. In order to allow for a compact representation of resolution proofs, we use

x as an alternative notation for ¬x, > and ⊥ for true and false, respectively, and l1 l2 . . . ln

94



�

x1x1

e2 x1 e2x1 z0z0

e4 x1 z0

e4

e5 z0e5

Figure 3.5: A resolution proof for the formula presented in Example 3.3.4

to represent a clause (l1 ∨ l2 ∨ . . . ∨ ln) over the literals l1, . . . , ln.

Example 3.3.4. Figure 3.5 shows a resolution proof for the formula

e2 ∧ e4 ∧ e5 ∧ (¬e2 ∨ x1) ∧ (¬e4 ∨ ¬x1 ∨ z0) ∧ (¬e5 ∨ ¬z0) .

An informal justification for the unsatisfiability of this formula is provided in in Exam-

ple 3.3.3. Note that in Figure 3.5 we use the more compact representation of clauses, i.e.,

we write (e4 x1 z0) instead of (¬e4 ∨ ¬x1 ∨ z0).

3.3.3 Interpolation Systems for Propositional Resolution Proofs

In this section, we discuss interpolation systems that enable us to construct a Craig inter-

polant for (A,B) from a resolution refutation of A ∧ B. This section covers the approach

of Huang, Kraj́ıček, and Pudlák [Hua95, Kra97, Pud97], who were the first to present a

linear-time interpolation system based on propositional resolution proofs. Furthermore,

we discuss a variation of their algorithm proposed by McMillan in [McM05]. Finally, we

present a technique that generalises the interpolation systems mentioned above and enables

us to generate interpolants of different logical strength. This technique has been previously

published by the authors and his collaborators in [DPWK10].1

An interpolation system is a procedure for constructing a Craig interpolant for the pair

of formulae (A,B) from a refutation A,B `T false. This section is exclusively concerned
1The technique is based on Mitra Purandare’s observation that predicate symbols occurring in A which

are eliminated in derivations not involving premises from B need not occur in the interpolant for (A, B).
The formal interpolation system presented in this dissertation was devised by the author in close cooperation
with his collaborator Vijay D’Silva.
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with resolution refutations. All interpolation systems discussed in this section are based on

an inductive definition of partial interpolants (a concept introduced in Section 3.2.3). The

slightly altered setting necessitates an adaptation of the partial interpolants introduced in

Definition 3.2.4, which we defer until after the definition of our interpolation systems for

resolution proofs (see page 108). Similarly, we refine the notion of an interpolation system

(Definition 3.2.5) according to our setting.

Definition 3.3.3 (Interpolation System for Propositional Resolution Refutation). An in-

terpolation system Itp for propositional resolution refutations is a function that given a

refutation R = (VR, ER, pivR, `R, sR) of a formula A ∧B in CNF maps each vertex v ∈ VR

to a partial interpolant for v. Given a refutation R representing A,B `T false we use

Itp(R,A, B) to denote the mapping from VR to partial interpolants.

An interpolation system Itp for propositional refutations is correct if for every refutation

R of A∧B it holds that Itp(R,A, B)(sR) (where `(sR) = 2) is a Craig interpolant for (A,B).

We write Itp(R) for Itp(R,A, B) when the formulae A, B are clear from the con-

text. An interpolation system Itp generates an annotated resolution refutation. The map-

ping Itp(R,A, B) associates a partial interpolant Itp(R,A, B)(v) with each vertex v ∈ VR

and its respective clause clause `(v). In accordance with [McM05], we use the notation

`(v) [ Itp(R,A, B)(v) ] to represent this annotation.

Note that, given a refutation R of a formula A ∧ B, Itp(R,A, B)(sR) is a reverse inter-

polant for (A,B) (i.e., an interpolant in the sense of Theorem 3.2.2) and a Craig interpolant

for (A,B).

In the following, we discuss specific instances of interpolation systems for propositional

resolution refutations, starting with the system introduced by Huang, Kraj́ıček, and Pudlák.

Definition 3.3.4 (Interpolation System by Huang, Kraj́ıček, and Pudlák). The interpola-

tion system ItpHKP maps each vertex of a resolution refutation R = (VR, ER, pivR, `R, sR)

of A ∧B to a partial interpolant according to the following rules:
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� [z0]

x1 [⊥]x1 [z0]

e2 x1 [⊥] e2 [⊥]x1 z0 [⊥]z0 [>]

e4 x1 z0 [⊥]

e4 [⊥]

e5 z0 [>]e5 [>]

Figure 3.6: Annotations for the resolution proof in Figure 3.5 generated using ItpHKP

1. For each initial vertex v let

ItpHKP(R,A, B)(v) def=

 false if `(v) ∈ A

true if `(v) ∈ B
.

2. Otherwise, v is an internal vertex with (v+, v) ∈ ER and (v−, v) ∈ ER. Thus, `(v) is

the conclusion of a resolution step with the premises `(v+) = C∨x and `(v−) = D∨¬x

and the pivot pivR(v) = x. Then

ItpHKP(R,A, B)(v) def=


I1 ∨ I2 if x ∈ Atoms(A) \Atoms(B)

(x ∨ I1) ∧ (¬x ∨ I2) if x ∈ Atoms(A) ∩Atoms(B)

I1 ∧ I2 if x ∈ Atoms(B) \Atoms(A)

,

where

I1 = ItpHKP(R,A, B)(v+) and I2 = ItpHKP(R,A, B)(v−) .

A proof of the correctness of this interpolation system is provided in [YM05] and estab-

lishes that each annotation generated by ItpHKP is indeed a partial interpolant according to

Definition 3.2.4.

Example 3.3.5. We continue working in the setting of Example 3.3.4. We split the formula

presented there into the two partitions

A ≡ e2 ∧ e4 ∧ (¬e2 ∨ x1) ∧ (¬e4 ∨ ¬x1 ∨ z0) and B ≡ e5 ∧ (¬e5 ∨ ¬z0)
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� [x1]

x1 [⊥]x1 [>]

e2 x1 [⊥] e2 [⊥]x1 z0 [>]z0 [>]

e4 x1 z0 [>]

e4 [>]

e5 z0 [>]e5 [>]

Figure 3.7: Annotations for the resolution proof in Figure 3.5 generated using ItpHKP for
the partitioning in Example 3.3.6

and annotate the resolution refutation in Figure 3.5 with the partial interpolants generated by

the interpolation system ItpHKP(R,A, B) (see Figure 3.6). The resulting reverse interpolant

is ItpHKP(R,A, B)(sR) = z0. It can easily be verified that z0 is a Craig interpolant for

e2 ∧ e4 ∧ (¬e2 ∨ x1) ∧ (¬e4 ∨ ¬x1 ∨ z0) and ¬e5 ∨ (e5 ∧ z0) .

The propositional interpolant z0 corresponds to the negation of the constraint contributed

by the theory atom z&1 = 0 in Example 3.3.3.

Observe that the parameters A and B of Itp(R,A, B) merely define a partitioning of the

premises. A refutation A ∧ B `T false is trivially also a refutation of B ∧ A. In general,

however, it does not hold that Itp(R,A, B)(sR) = Itp(R,B,A)(sR) (this follows immediately

from Definition 3.3.3). Accordingly, it is possible to construct different interpolants from

the same refutation R by merely changing the partitioning of the premises.

Example 3.3.6. We split the formula presented in Example 3.3.5 into the partitions

A ≡ e2 ∧ (¬e2 ∨ x1) and B ≡ e4 ∧ e5 ∧ (¬e4 ∨ ¬x1 ∨ z0) ∧ (¬e5 ∨ ¬z0) .

Figure 3.7 shows the respective annotations for the proof in Figure 3.5. We obtain the

propositional reverse interpolant x1, which corresponds to the theory atom x&2 = 2.

Remember that Lemma 3.2.2 establishes that the negation of a reverse interpolant

of (A,B) is a reverse interpolant for (B,A). The system ItpHKP has the property that
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Itp(R,A, B)(v) = ¬Itp(R,B,A)(v) holds for all v ∈ VR ([Hua95], Lemma 13). D’Silva et

al. [DPWK10] therefore refers to ItpHKP as “symmetric” system. McMillan’s interpolation

system, which we present next, does not have this property.

Definition 3.3.5 (McMillan’s Interpolation System). The interpolation system ItpM maps

each vertex of a resolution refutation R = (VR, ER, pivR, `R, sR) of A ∧ B to a partial

interpolant according to the following rules:

1. For each initial vertex v let

ItpM(R,A, B)(v) def=

 `(v)|B if `(v) ∈ A

true if `(v) ∈ B
.

2. Otherwise, v is an internal vertex with (v+, v) ∈ ER and (v−, v) ∈ ER. Thus, `(v) is

the conclusion of a resolution step with the premises `(v+) = C∨x and `(v−) = D∨¬x

and the pivot pivR(v) = x. Then

ItpM(R,A, B)(v) def=

 I1 ∨ I2 if x ∈ Atoms(A) \Atoms(B)

I1 ∧ I2 if x ∈ Atoms(B)
,

where

I1 = ItpM(R,A, B)(v+) and I2 = ItpM(R,A, B)(v−) .

A proof of correctness is provided in [McM05]. In the following example, we apply ItpM

to the refutation in Figure 3.5.

Example 3.3.7. The annotations generated by the interpolation system ItpM for the refu-

tation in Figure 3.5 and the partitioning suggested in Example 3.3.5 differ from the anno-

tations in Figure 3.6 only at two vertices. We obtain the annotations

e4 x1 z0 [z0] and x1 z0 [z0] .

All other annotations remain unchanged. In particular, ItpM(R,A, B)(sR) = z0, i.e, both

interpolation systems yield the same reverse interpolant. (We demonstrate in Example 3.3.8

99



x1x2 [x2] x1x3 [x3]

x2 [x2]x2x3 [x2 ∨ x3]

x3 [x3 ∧ x2]

x2x3 [>] x2x4 [>] x4 [>]

x2 [>]

x3 [>]

� [x3 ∧ x2]
(a) McMillan’s interpolation system

x1x2 [⊥] x1x3 [⊥]

x2 [⊥]x2x3 [⊥]

x3 [⊥]

x2x3 [>] x2x4 [>] x4 [>]

x2 [>]

x3 [>]

� [x3]
(b) Interpolation system of Huang, Kraj́ıček, and Pudlák

Figure 3.8: Refutation yielding different interpolants for different systems

that this is not the case in general.) Using Lemma 3.2.1, we can show that there exists only

a single interpolant for the formulae presented in Example 3.3.5. We obtain

∃e2 , e4 , x1 . e2 ∧ e4 ∧ (¬e2 ∨ x1) ∧ (¬e4 ∨ ¬x1 ∨ z0) ≡ z0 and

∀e5 .¬e5 ∨ (e5 ∧ z0) ≡ z0 .

(by means of repeated application of the equivalence ∃x . F (x) ≡ F (x)[x/true]∨F (x)[x/false],

and similarly for universal quantification). Accordingly, the strongest and weakest inter-

polant coincide, ruling out the existence of any other logically non-equivalent interpolants.

The following example shows that the interpolants obtained from ItpM and ItpHKP may

differ and that ItpM does not have the symmetry property ItpM(R,A, B) = ¬ItpM(R,B,A).

Example 3.3.8. Let

A ≡ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ x2 and B ≡ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ x4 .

An (A,B)-refutation R is shown in Figure 3.8. The partial interpolants generated using

McMillan’s system are shown in Figure 3.8(a) and those generated using ItpHKP in Fig-

ure 3.8(b). We obtain ItpM(R,A, B)(sR) = x2 ∧ ¬x3 and ItpHKP(R,A, B)(sR) = ¬x3. If we
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swap the partitions, we obtain ItpM(R,B,A)(sR) = x2 ∧ x3 and ItpHKP(R,B,A)(sR) = x3.

The results obtained in Example 3.3.8 allow us to make several interesting observations:

1. The systems ItpHKP and ItpM enable us to generate three different reverse inter-

polants, namely ItpM(R,A, B)(sR) = x2 ∧ ¬x3, ItpHKP(R,A, B)(sR) = ¬x3, and

¬ItpM(R,B,A)(sR) = ¬x2 ∨ ¬x3.

2. It holds that (x2 ∧ ¬x3) ⇒ ¬x3 and ¬x3 ⇒ (¬x2 ∨ ¬x3), i.e., ItpM(R,A, B)(sR) ⇒

ItpHKP(R,A, B)(sR) and ItpHKP(R,A, B)(sR)⇒ ¬ItpM(R,B,A)(sR).

3. The uninterpreted predicate symbols in ItpHKP(R,A, B)(sR) are a subset of the pred-

icate symbols in ItpM(R,A, B)(sR).

In the following, we show that these properties do not just hold by coincidence. We do so

by generalising the interpolation systems ItpHKP and ItpM, i.e., we introduce a parametrised

interpolation system ItpL which can be instantiated to a range of different interpolation

systems including ItpHKP and ItpM. We show that these interpolation systems may yield

interpolants of different logical strength.

Labelled Interpolation Systems

The last observation in the previous section (on page 101), though not related to the

strength of interpolants, served as a catalyst for our work on parametrised interpolation

systems [DPWK10]. Our colleague Mitra Purandare noticed that predicate symbols that

are peripheral in the resolution proof need not be included in the interpolant.

Definition 3.3.6 (Peripherality [SDGC07]). Let R = (VR, ER, pivR, `R, sR) be a resolution

refutation of A ∧ B. Given a node v ∈ VR and a literal l ∈ {x,¬x} such that l ∈ `(v), the

set of clauses S(l, v) that “contribute” l is defined as follows:

S(l, v) def=


∅ if l 6∈ `(v)

`(v) if v is an initial node and l ∈ `(v)

S(l, v+) ∪ S(l, v−) if v is an internal node with l ∈ `(v)

101



A literal x is peripheral in R with respect to A and B if for every internal vertex v ∈ VR

with pivR(v) = x it holds that S(x, v+) ∪ S(¬x, v−) ⊆ A or S(x, v+) ∪ S(¬x, v−) ⊆ B,

respectively.

Note that a symbol x may be peripheral even if S(x, v+
1 )∪S(¬x, v−1 ) ⊆ A and S(x, v+

2 )∪

S(¬x, v−2 ) ⊆ B (where piv(v1) = piv(v2) = x) for different instances of the literal x. We are

now in a position to formalise Purandare’s observation.

Theorem 3.3.1 (Purandare’s Peripherality Property). Let R = (VR, ER, pivR, `R, sR) be a

resolution refutation of A ∧B and let X ⊆ Atoms(A) ∩ Atoms(B) be the set of atoms that

are peripheral in R. Then, there exists an interpolant I for the pair of formulae (A,B) such

that for all x ∈ X it holds that x 6∈ Atoms(I).

Later in this section, we show that by instantiating ItpL accordingly it is possible to

obtain an interpolation system which yields interpolants satisfying the property stated in

Theorem 3.3.1. We defer the respective proof to a point at which the definition of the

parametrised interpolation system ItpL introduced in this section is available. We can,

however, show a weaker version of Theorem 3.3.1 with the tools we have readily at hand.

Theorem 3.3.2 (Locality Property of ItpHKP). Let R = (VR, ER, pivR, `R, sR) be a resolu-

tion refutation of A∧B and let x ∈ Atoms(A)∩Atoms(B). If for every inner vertex v ∈ VR

with pivR(v) = x and for all initial vertices u1, . . . , un of the sub-graph with sink v it holds

that either
⋃n

i=1{`(ui)} ⊆ A or
⋃n

i=1{`(ui)} ⊆ B, then there is an interpolant I for (A,B)

which is logically equivalent to ItpHKP(R,A, B)(sR) such that x 6∈ Atoms(I) holds.

Proof. Given a resolution refutation R = (VR, ER, pivR, `R, sR) of A∧B, we show that there

exist formulae A′ and B
′ such that x 6∈ Atoms(A′), x 6∈ Atoms(B′), A `T A′, and B `T B

′

are sub-proofs of R, and A′, B
′ `T false. Let I be a reverse interpolant for (A′, B

′). Then

it holds that A′ ⇒ I and B
′ ⇒ ¬I. Since it holds that Atoms(A′ ∧B

′) ⊆ Atoms(A ∧B), I

is also a reverse interpolant for (A,B). Furthermore, we show that ItpHKP(R,A, B)(sR) is

such a reverse interpolant for (A′, B
′).

Let v ∈ VR be a vertex such that pivR(v) = x. Furthermore, assume that u1, . . . , un are

the initial vertices of the sub-graph Rv = (VRv , ERv , pivR, `R, v) of R and that
⋃n

i=1{`(ui)} ∈
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A. Then it holds that `(u1), . . . , `(un) `T `(v) and x 6∈ `(v). Therefore, by replacing the

conjunction
∧n

i=1 `(ui) in A with `(v), we obtain a new formula in which the number of

occurrences of x is strictly smaller than in A. Accordingly, we obtain A′ by repeating this

substitution for all v ∈ VR with pivR(v) = x. B
′ can be constructed analogously.

Let R′ be the sub-graph of R which we obtain by replacing each respective sub-graph

with sink v and pivR(v) = x in R with a new initial vertex u such that `R(v) = `R′(u).

Note that R′ is a refutation of A′ ∧B
′. According to Definition 3.3.4, ItpHKP(R′, A′, B

′)(u)

is false if `R(u) and true otherwise. It remains to show that ItpHKP(R′, A′, B
′)(u) ≡

ItpHKP(R,A, B)(v).

To this end, we show by induction that ItpHKP(Rv, A, B)(v) ≡ false if `(v) is derived

from clauses in A exclusively. Let ui be an initial vertex of the sub-graph Rv with sink v.

Then `(ui) ∈ A and therefore ItpHKP(Rv, A, B)(ui) = false. The induction hypothesis is

that for all (u−, u) ∈ ERv and (u+, u) ∈ ERv it holds that ItpHKP(Rv, A, B)(u−) ≡ false

and ItpHKP(Rv, A, B)(u+) ≡ false. According to Definition 3.3.4, we have to consider two

cases:

� The pivot is local to A, i.e., pivRv(u) ∈ Atoms(A) \ Atoms(B). Then it holds that

ItpHKP(Rv, A, B)(u) = false ∨ false ≡ false.

� Otherwise, the pivot pivRv(u) is a shared symbol. Accordingly,

ItpHKP(Rv, A, B)(u) = (x ∨ false) ∧ (¬x ∨ false) = x ∧ ¬x ≡ false .

This establishes that ItpHKP(R,A, B)(v) ≡ false. Analogously, we can show that the partial

interpolant ItpHKP(R,A, B)(v) is logically equivalent to true if `(v) is a fact which derives

from clauses in B exclusively. This establishes that the annotations of the vertices of R′ are

logically equivalent to their respective counterparts in R.

Theorem 3.3.2 states that we can treat a predicate symbol x shared by A and B as

“local” if no literal over x contributed by A is ever resolved with a literal over x contributed

by B. The following example provides an intuition for this mechanism.
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Figure 3.9: A resolution proof for ¬x1 ∧ (x1 ∨ ¬x2) and (¬x1 ∨ x2) ∧ x1

Example 3.3.9. Consider the annotated refutation in Figure 3.8(b). Note that the clause

x3 is derived from B ≡ (¬x2 ∨ x3) ∧ (x2 ∨ x4) ∧ ¬x4 exclusively by resolution. Resolution

corresponds to existential quantification, i.e., x3 ≡ ∃x2 . ((¬x2 ∨ x3) ∧ ∃x4 . (x2 ∨ x4) ∧ ¬x4).

Intuitively, we can rename the quantified symbols to symbols which do not occur in A without

changing the reverse interpolant. Accordingly, x2 and x4 need not occur in the interpolant.

Peripherality, as introduced in Definition 3.3.6, is more general than the locality property

observed Theorem 3.3.2. However, the mechanism used by ItpHKP and ItpM to classify

pivot elements as local or shared does not allow distinguishing between peripheral and non-

peripheral symbols. Accordingly, the interpolation systems introduced in Definitions 3.3.4

and 3.3.5 do not allow us to take advantage of the peripherality property.

Example 3.3.10. Consider the resolution refutation R in Figure 3.9 for the pair of propo-

sitional formulae A ≡ ¬x1 ∧ (x1 ∨ ¬x2) and B ≡ (¬x1 ∨ x2) ∧ x1. We obtain the reverse

interpolants ItpM(R,A, B) = ItpHKP(R,A, B) = ¬x1∧¬x2 and ¬ItpM(R,B,A) = ¬x1∨¬x2.

Note that x1 is peripheral in R with respect to A and B and, in accordance with Theo-

rem 3.3.1, there is a reverse interpolant which does not contain this symbol, namely ¬x2.

However, it is not possible to obtain this interpolant by means of ItpM or ItpHKP.

In order to identify peripheral symbols a more fine grained mechanism to classify lit-

erals is required. For this purpose, we introduce labelling functions, which allow us to tag

individual literals as “shared” or “local to” A or B.

Definition 3.3.7 (Labelling Function). Let (S,v,u,t) be a lattice, where S = {⊥, a, b, ab}

is a set of labels and v, u and t are defined by the Hasse diagram in Figure 3.10(a). A

labelling function L for a refutation R is a total mapping from tuples of literals l and vertices
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⊥

a b

ab

(a) Order according to locality

b

ab

a

⊥

(b) Order according to strength

Figure 3.10: Different orders for {⊥, a, b, ab}

v ∈ VR to elements in S such that the following condition holds:

L(v, l) =

 ⊥ if and only if l /∈ `R(v)

L(v+, l) t L(v−, l) for an internal vertex v and a literal l ∈ `R(v)

The condition in Definition 3.3.7 implies that the labelling function for literals at internal

vertices is completely determined by the labels of literals at initial vertices. It does, however,

impose no restrictions on the labels of literals at the initial vertices. Intuitively, these labels

are an indicator of the “locality” of the literals with respect to the formulae A and B. A

propositional symbol x is local to A (or A-local) in a pair (A,B) if x ∈ Atoms(A)\Atoms(B),

local to B (or B-local) if x ∈ Atoms(B) \Atoms(A), local if it is either of these, and shared

otherwise. In the following Definition 3.3.8, we introduce restrictions for labelling functions

that are consistent with this notion of locality (which is also used in Definitions 3.3.4 and

3.3.5) but liberal enough to enable the definition of peripheral symbols (Definition 3.3.6)

on the basis of labelling functions.

Definition 3.3.8 (Locality). A labelling function for an (A,B)-refutation R preserves lo-

cality if for any initial vertex v and literal l in R

1. a v L(v, l) implies that Atoms(l) ⊆ Atoms(A), and

2. b v L(v, l) implies that Atoms(l) ⊆ Atoms(B) .

The labelling function introduced in [SDGC07] is an example of a locality-preserving

labelling function.
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Definition 3.3.9 (Labelling Function for Peripherality [SDGC07]). LP is a locality-preserving

labelling function for a (A,B)-refutation R such that the following condition holds:

v ∈ VR is an initial vertex⇒ LP (v, l) =


⊥ iff l /∈ `R(v)

a iff l ∈ `R(v) and `R(v) ∈ A

b iff l ∈ `R(v) and `R(v) ∈ B

It follows immediately from the Definitions 3.3.6 and 3.3.7 that a symbol x is peripheral

in a proof R if (and only if) for every internal vertex v ∈ VR with piv(v) = x it holds that

LP (v+, x) = LP (v−,¬x) = a or LP (v+, x) = LP (v−,¬x) = b. Accordingly, the labelling

function LP represents an algorithm for detecting peripherality [SDGC07]. We empha-

sise that [SDGC07] does not use the labelling function LP for the purpose of interpolant

generation, and that our definition of labelling functions is more general.

Analogously to the projection C|A (see Definition 3.2.3) we define the downward and

upward projection for labelled literals.

Definition 3.3.10 (Upward and Downward Projection). Given a labelling function L, the

downward and upward projection of a clause at a vertex v with respect to c ∈ S is defined

as

`(v)�c,L
def= {l ∈ `(v) |L(v, l) v c} and `(v)�c,L

def= {l ∈ `(v) | c v L(v, l)} ,

respectively.

We drop the subscript L if the labelling function is clear from the context. We proceed

to define a novel interpolation system based on labelling functions.

Definition 3.3.11 (Labelled Interpolation System). Let L be a locality preserving labelling

function for an (A,B)-refutation R. The labelled interpolation system ItpL maps vertices in

R to partial interpolants as defined below.

1. For each initial vertex v let

ItpL(R,A, B)(v) def=

 `(v)�b if `(v) ∈ A

¬(`(v)�a) if `(v) ∈ B
.
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a
x1 [⊥]

a a
x1x2 [⊥]

b b
x1x2 [>]

b
x1 [>]

b
x2 [>]

a
x1 [x2]

� [x2]

Figure 3.11: An annotated refutation obtained using a labelled interpolation system Itp(L)

2. Otherwise, v is an internal vertex with (v+, v) ∈ ER and (v−, v) ∈ ER. Thus, `(v) is

the conclusion of a resolution step with the premises `(v+) = C∨x and `(v−) = D∨¬x

and the pivot pivR(v) = x. Then

ItpL(R,A, B)(v) def=


I1 ∨ I2 if L(v+, x) t L(v−,¬x) = a

(x ∨ I1) ∧ (¬x ∨ I2) if L(v+, x) t L(v−,¬x) = ab

I1 ∧ I2 if L(v+, x) t L(v−,¬x) = b

,

where

I1 = ItpL(R,A, B)(v+) and I2 = ItpL(R,A, B)(v−) .

Note that L is a parameter of the interpolation system. Whenever we want to emphasise

this parametrisation, we write Itp(L,R,A, B) for the interpolant obtained from an (A,B)-

refutation R with a labelling function L. Again, we omit the parameters A and B whenever

they are clear from the context. Example 3.3.11 illustrates the use of a labelled interpolation

system based on the labelling function LP (see Definition 3.3.9). Our claim that labelled

interpolation systems are strictly more general than existing systems is substantiated by

constructing an interpolant that cannot be obtained from ItpM and ItpHKP.

Example 3.3.11. As in Example 3.3.10, let A ≡ ¬x1∧(x1∨¬x2) and B ≡ (¬x1∨x2)∧x1. A

corresponding refutation of A∧B is shown in Figure 3.11 with the symbol LP (v, l) above each

literal l. The interpolant obtained from Itp(LP , R, A,B) is ¬x2. Recall from Example 3.3.10

that this interpolant cannot be derived in existing systems.

It remains to show that the labelled interpolation system introduced in Definition 3.3.11

does indeed generate valid interpolants and that it is capable of simulating existing inter-

polation systems.
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Theorem 3.3.3 (Correctness). For any resolution refutation R of a formula A∧B and lo-

cality preserving labelling function L, Itp(L,R,A, B)(sR) is a reverse interpolant for (A,B).

We prove the theorem by showing that the annotation I = Itp(L,R,A, B)(v) satisfies

the following conditions for all v ∈ VR:

1. A ∧ ¬(`(v)�a,L)⇒ I,

2. B ∧ ¬(`(v)�b,L)⇒ ¬I, and

3. Atoms(I) ⊆ Atoms(A) ∩Atoms(B).

These conditions resemble the invariants A ∧ ¬(`(v)|A)⇒ I and B ∧ ¬(`(v)|B)⇒ ¬I sat-

isfied by the interpolation system ItpHKP, which warrant that each annotation generated

by ItpHKP is a partial interpolant according to Definition 3.2.4. In order to accommodate

the interpolation systems ItpM and ItpL, we adapt the definition of partial interpolants as

follows:

Definition 3.3.12 (Partial Interpolant for Resolution Refutations). Let R be a resolution

refutation (VR, ER, pivR, `R, sR) of A∧B, a propositional formula in CNF. Furthermore, let

L be a locality preserving labelling function for R. A partial interpolant for a vertex v ∈ VR

is a formula I for which the following conditions hold

1. A ∧ ¬(`(v)�a,L)⇒ I,

2. I ⇒ B ∨ (`(v)�b,L), and

3. Atoms(I) ⊆ Atoms(A) ∩Atoms(B).

Since R is a refutation, it holds that `(sR) = 2. Therefore, the partial interpolant for

sR is a Craig interpolant for the pair of formulae (A,B).

We obtain this specialised definition of partial interpolants by simply replacing the

projection operator (Definition 3.2.3) in Definition 3.2.4 with the upward projection oper-

ator (Definition 3.3.10). Similarly, apart from a minor adaption to accommodate labelling

functions, our proof of correctness resembles the proof provided by Yorsh and Musuvathi
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in [YM05]. Our proof by induction is provided in Section B.2 of Appendix B and in our

technical report [DKPW09].

Labelled interpolation systems do not only enable the generation of interpolants which

cannot be obtained by means of ItpHKP and ItpM (as demonstrated in Example 3.3.11), they

also allow us simulate existing interpolation systems. The following Lemma shows that

ItpHKP and ItpM are instances of the interpolation system introduced in Definition 3.3.11.

Since labelling functions are completely determined by the labels at the initial vertices

of R (cf. Definition 3.3.7), it suffices to define the labelling functions which yield ItpHKP

and ItpM at the initial vertices.

Lemma 3.3.1. Let R be a resolution refutation for the formula A ∧ B. The labelling

functions LHKP , LM and LM ′ are defined for initial vertices v and literals l ∈ `(v) as

follows:

Atoms(l) LM (v, l) LHKP (v, l) LM ′(v, l)

A-local a a a

shared b ab a

B-local b b b

The following equalities hold for all v ∈ VR:

ItpM(R,A, B)(v) = Itp(LM , R, A,B)(v)

ItpHKP(R,A, B)(v) = Itp(LHKP , R, A,B)(v)

¬ItpM(R,B,A)(v) = Itp(LM ′ , R, A,B)(v)

We provide a proof of this claim in Section B.2. In Lemma 3.3.1, the label of each

literal at an initial vertex is determined exclusively by whether the corresponding symbol is

A-local, B-local or shared. In general, any conceivable locality-preserving labelling function

is allowed. The labelling function LP in Definition 3.3.9 also determines the label based

on the locality of symbols, but may assign different symbols to different occurrences of the

same literal (x1 in Figure 3.11, for instance).

The interpolation system ItpL in combination with the labelling function LP (Defini-

tion 3.3.9, applied in Example 3.3.11) establishes the correctness of Theorem 3.3.1. Given
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a symbol x that is peripheral in R it holds for all nodes v ∈ VR that either

� v is an initial node and if `(v) ∈ A with l ∈ `(v) and l ∈ {x,¬x} then LP (v, l) = a (or

b if `(v) ∈ B, respectively), or

� v is an internal node with predecessors v+ and v− and LP (v+, x) t LP (v−,¬x) 6= ab.

Then, according to Definition 3.3.11, the annotations of the initial nodes do not contain the

symbol x. Furthermore, x is also not introduced at the inner nodes v with piv(v) = x. It

follows that x 6∈ Itp(LP , R, A,B)(sR).

Evidently, labelled interpolation systems (Definition 3.3.11) in combination with The-

orem 3.3.1 provide us with a mechanism to eliminate symbols that are peripheral in a

refutation R for A ∧ B from the interpolant for the formulae (A,B). Furthermore, for a

fixed resolution refutation R and any locality-preserving labelling function L it holds that

Atoms(Itp(LP , R, A,B)(sR)) ⊆ Atoms(Itp(L,R,A, B)(sR)). Moreover, the set-inclusion or-

der for the symbols occurring in the interpolants Itp(L1, R, A,B)(sR) and Itp(L2, R, A,B)(sR)

also imposes an order on the labelling functions L1 and L2. A proof and a formal discussion

of this matter is provided in [D’S10]. On a related note, an interpolation technique which

is based on binary decision diagrams and enables the exclusion of predicate symbols by

means of quantifier elimination is presented in [EKS06]. In the following section, we focus

our attention on the implication order and the logical strength of interpolants.

3.3.4 Modulating Interpolant Strength

Recall that on page 101 we observe that different interpolation systems enable us to generate

interpolants of varying logical strength (as demonstrated in Example 3.3.8). We set out to

show that labelled interpolation systems enable us to systematically tune the strength of

interpolants. In this section, we show that the strength of an interpolant obtained by means

of Itp(L,R,A, B) is directly determined by the labelling function L.

The labels of the pivot elements in R determine how the interpolation system ItpL

combines partial interpolants. Let us review Definition 3.3.11. At each inner node, ItpL

introduces a disjunction (I1∨I2), multiplexer (x∨I1)∧(¬x∨I2), or conjunction (I1∨I2) over

the preceding partial interpolants, depending on the label of the pivot element x. Figure 3.12
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I

x
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Figure 3.12: Combining partial interpolants: (I1 ∧ I2) ⇒ (x ∨ I1) ∧ (I2 ∨ ¬x) ⇒ (I1 ∨ I2)

visualises this case split and illustrates the crucial observation that the resulting partial

interpolants are ordered by strength. Pivot elements labelled b result in stronger partial

interpolants than pivot elements labelled ab, which in turn yield stronger annotations than

pivots labelled a. This observation gives rise to the ordering relation � defined by the Hasse

diagram in Figure 3.10(b). Note that the total order � differs from the order v introduced

in Definition 3.3.7 (see Figure 3.10(a)). By abuse of notation, we also use � to denote the

point-wise extension of � to labelling functions. Formally, we define the strength order �

as follows:

Definition 3.3.13 (Strength Order). Let � denote the total order on S = {⊥, a, b, ab}

such that b � ab � a � ⊥ holds (cf. Figure 3.10(b)). Given two labelling functions L and

L′ for a resolution refutation R of A ∧ B, we say that the function L is stronger than L′,

denoted L � L′, if for all v ∈ VR and l ∈ `(v), L(v, l) � L′(v, l).

Note that � is a partial order on labelling functions. According to Definition 3.3.7, the

labelling function for the initial nodes of a resolution refutation determines its values for all

inner vertices. Conveniently, a similar claim holds for the strength of labelling functions.

Lemma 3.3.2. Let L and L′ be labelling functions for a resolution refutation R for A∧B.

If L(v, l) � L′(v, l) for all initial vertices v and literals l ∈ `(v), then L � L′.

The following theorem states that there is a direct correspondence between the strength

of a labelling function L and the resulting interpolation system Itp(L,R,A, B). Naturally,

a labelled interpolation system Itp(L,R,A, B) is stronger than Itp(L′, R, A,B) if for all

resolution refutations R of A ∧B, Itp(L,R,A, B)(sR)⇒ Itp(L′, R, A,B)(sR).

Theorem 3.3.4. Let L and L′ be labelling functions for an refutation R of the formula

A ∧B. If L � L′, then Itp(L,R,A, B)(sR)⇒ Itp(L′, R, A,B)(sR).
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An intuitive explanation for this claim is provided at the beginning of the section.

Formally, the correctness of Theorem 3.3.4 follows from the fact that for each vertex v ∈ VR

the following invariant holds:

(L � L′) ⇒
(
Itp(L,R,A, B)(v)⇒ Itp(L′, R, A,B)(v) ∨ (`R(v)|A ∩ `R(v)|B)

)
For `(sR) = 2, this invariant establishes the correctness of the theorem. We provide the

complete proofs for Lemma 3.3.2 and Theorem 3.3.4 in Section B.3.

Consequently, labelling functions do not only provide us with a mechanism to exclude

symbols that are peripheral in the resolution proof, they also enable us to strengthen and

weaken the interpolants generated using labelled interpolation systems. The strength of an

interpolant can be varied by simply strengthening or weakening the underlying labelling

function. Furthermore, analogously to the combination of interpolants in Lemma 3.2.3, we

can combine labelling functions.

Definition 3.3.14. We use max(c1, c2) and min(c1, c2) to denote the maximum and min-

imum, respectively, of the symbols c1, c2 ∈ S (with respect to �). Let R be a resolution

refutation and L1 and L2 be labelling functions. The labelling functions L1⇑L2 and L1⇓L2

are defined for any initial vertex v and literal l ∈ `(v) as follows:

� (L1 ⇑ L2)(v, l) = max(L1(v, t), L2(v, l)), and

� (L1 ⇓ L2)(v, l) = min(L1(v, t), L2(v, l)).

The label of an internal vertex v and l ∈ `(v), is defined inductively as usual.

Lemma 3.2.1 provides a general upper and lower bound for the strength of an interpolant.

The interpolations systems discussed in this section, however, do not necessarily enable us

to compute the strongest and weakest interpolant. It turns out that the set of labelling

functions ordered by � has LM and LM ′ as the least and greatest element, respectively.

Accordingly, McMillan’s interpolation system defines the lower and upper bound for the

strength of an interpolant generated using labelled interpolation systems. This observation

is formalised in the following theorem. A proof can be found in Section B.3.
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(a) Proof from Figure 3.9
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(b) Restructured proof

x1 x1

�
(c) Reduced proof

Figure 3.13: Different resolution refutations for ¬x1 ∧ (x1 ∨ ¬x2) and (¬x1 ∨ x2) ∧ x1

Theorem 3.3.5. Let R be a refutation of A ∧ B and LR be the set of locality preserving

labelling functions over R. The structure (LR,�,⇑,⇓) is a complete lattice with LM as the

least and LM ′ as the greatest element.

3.3.5 Proof Transformations and Interpolant Strength

As indicated in Section 3.2, the interpolant generated by an interpolation system is not only

determined by the labelling function but also by the structure of the underlying proof. In

fact, there may be valid interpolants which cannot be derived from a certain refutation. The

following example shows that different proofs enable the generation of different interpolants.

Example 3.3.12. Recall from Example 3.3.10 that ¬x2 ∧ ¬x1, ¬x2 ∨ ¬x1, ¬x2, and ¬x1

are reverse interpolants for the pair of formulae ¬x1 ∧ (x1 ∨ ¬x2) and (¬x1 ∨ x2) ∧ x1. The

former three interpolants can be derived from the proof R in Figure 3.9 (Figure 3.13(a),

respectively) using the interpolation systems ItpM and Itp(LP ) (see Example 3.3.11). This

is not the case for the formula ¬x1, however. To see this, note that the proof in Figure 3.9

contains a vertex v with piv(v) = x2. The literals x2 and ¬x2 which are involved in this

resolution step derive from different partitions. An analysis of the cases in Definition 3.3.11

tells us that any interpolant derived from R using a labelled interpolation system will contain

the atom x2. Note, however, that ItpM generates the annotated proof

¬x1 [¬x1] x1 [true]

2 [¬x1]
Res

for the refutation in Figure 3.13(c) and thus yields the reverse interpolant ¬x1. Moreover,

it is obvious that we cannot use labelled interpolation systems to extract the interpolants
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¬x2 ∧ ¬x1 and ¬x2 ∨ ¬x1 from the refutation in Figure 3.13(c).

The refutation proofs in Example 3.3.12 are chosen in an ad hoc manner. In this

section, we discuss techniques to systematically restructure a given refutation proof and

demonstrate the impact of such modifications on the strength of the respective interpolants.

We provide a formal analysis of the proof transformations presented by Jhala and McMillan

in [JM07]. In the setting presented in [JM07], where transition functions are approximated

using interpolants, weaker interpolants can slow down the convergence of the verification

process. [JM07] shows that interpolants can be strengthened (or weakened) by changing the

order of resolution steps in a refutation. Example 3.3.13 illustrates such a transformation.

Example 3.3.13. We continue working in the setting of Example 3.3.8. Again, consider

the formulae

A ≡ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3) ∧ x2 and

B ≡ (¬x2 ∨ x3) ∧ (x2 ∨ x4) ∧ ¬x4

and the respective refutation R1 in Figure 3.8(a) (as previously discussed in Example 3.3.8).

Figure 3.14(a) shows an alternative refutation R2. The interpolant ItpM (R1, A, B)(sR1) is

x2 ∧ ¬x3 and ItpM (R2, A, B)(sR2) is ¬x3. Observe that x2 ∧ ¬x3 implies ¬x3.

The same interpolation system ItpM yields different interpolants for the refutations R1

(Figure 3.8(a)) and R2 (Figure 3.14(a)). The refutation R1 differs from R2 in so far as

the order of the resolution steps of the clause x1 ∨ ¬x2 with the clauses x2 and ¬x1 ∨ ¬x3

(in the leftmost branch of the proof) is reversed. Since x1 is local to A and x2 is shared,

this also changes the order in which the Boolean connectives ∧ and ∨ are introduced in the

partial interpolants. The effect of the transformation is illustrated in Figure 3.14(b), where

partial interpolants are viewed as circuits. Since

((I1 ∨ I2)∧ I3) ≡ (I1 ∧ I3)∨ (I2 ∧ I3) and (I1 ∧ I3)∨ (I2 ∧ I3) ⇒ ((I1 ∧ I2)∨ I3)

we conclude that the transformation strengthens the partial interpolant at the vertex labelled

x3 in the Figures 3.8(a) and 3.14(a).

Intuitively, if resolutions on A-local symbols precede those on shared or B-local symbols,
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(a) A refutation differing from Figure 3.8(a)

I2

I1 I3

I ′

−→ I3

I1 I2

I
(b) Effect of the transformation

Figure 3.14: A refutation obtained by swapping vertices in Figure 3.8(a)

l0l1C1 [I1]
v1 v2

v3w

v

l0C2 [I2]
l1C3 [I3]

l1C1C2

C [I]

(a) Proof R

l0l1C1 [I1]
v1 v3

v2w

v

l1C3 [I3]
l0C2 [I2]

l0C1C3

C [I ′]

(b) Graph R′ def
= R[w 
 v]

Figure 3.15: Illustrations of refutations accompanying Definition 3.3.15

the interpolant is closer to CNF, hence more constrained and stronger. Naturally, the

converse holds if the order is reversed.

In the following, we formalise the transformation illustrated in Example 3.3.13. Defi-

nition 3.3.15 introduces a “swap” transformation for vertices (and resolution steps, respec-

tively) in resolution refutations. In order to simplify the presentation, we assume the proof

to be tree shaped. The definition is based on the sub-graph presented in Figure 3.15(a).

We assume that v and w are the vertices to be swapped and that v1, v2 and v3 are their

ancestors. The vertices are annotated with the respective clauses and the corresponding

partial interpolants.

Definition 3.3.15 (Swap). Let R = (VR, ER, piv , `R, sR) be a tree-shaped refutation of

A∧B and let v1, v2, v3, v and w be vertices in VR. We assume w.l.o.g. that the clauses and

partial interpolants at these vertices and the connecting edges are as shown in Figure 3.15(a).

Figure 3.15(b) shows the graph R′ = (V ′, E′, piv ′, `′, s′), which is the result of swapping the

vertices w and v (denoted R[w 
 v]). Formally

V ′ def= VR and E′ def= (E \ {(v2, w), (v3, v)}) ∪ {(v3, w), (v2, v)} .
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Figure 3.16: The graph R[w 
 v] is not a proof
because x1 is merged.

l0l1C1 [I1] l1C3 [I3] l0l1C2 [I2]

l0C2C3l0C1C3

C [I ′]

Figure 3.17: Transformation for the case
where l0 is a merge literal

The desired effect of the swapping operation is that piv′(w) def= pivR(v) and piv′(v) = piv(w)

and for all u ∈ V ′ \ {v, w}, the pivot function remains unchanged (i.e., piv′(u) def= pivR(u)).

Furthermore, for all vertices u ∈ V ′, `′(u) def= `R(u) if u 6= w and `′(w) def= t0 ∨ C1 ∨ C3.

The swap transformation does not change the set of vertices and the labels of all vertices

except w remain unchanged. Unfortunately, in certain cases this transformation has the

undesired side-effect that it yields an invalid resolution proof. The reason is that `′(v) may

not be the resolvent of `(v+) and `(v−), as demonstrated in the following example.

Example 3.3.14. Consider the transformation illustrated in Figure 3.16. Note that the

resolution on ¬x0 and x0 ∨ x1 with piv(v) = x0 reintroduces the previously eliminated literal

x1 in the proof on the left side. The reversal of the order of the nodes v and w results in

an invalid resolution proof, since the literal x1 occurring in the clauses ¬x0 ∨ x1 and x0 ∨ x1

is merged in the resolution at w with piv(w) = x0, making the subsequent resolution on x1

superfluous.

Example 3.3.14 is a counterexample to the claim in [JM07, page 11] that the swap

transformation R[w 
 v] “is valid when q occurs in v1, but not in v2” (where q denotes

piv(w)). Andrews [And68] uses the term merge literal to refer to a literal such as x1 in

Example 3.3.14. Formally, a merge literal is a literal l ∈ `(v) such that l ∈ `(v+) ∩ `(v−),

where (v−, v) ∈ ER and (v+, v) ∈ ER. Given a proof R as in Figure 3.15(a), the presence

of merge literals leads to an invalid label `′(v) in the transformed proof R[w 
 v] (see

Figure 3.15(b) and Definition 3.3.15)

� if l1 ∈ C2, since in that case l1 does not occur in C but in the resolvent of `′(w) and

`′(v2), or
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� if l0 ∈ C3, since then l0 occurs in C but not in the resolvent of `′(w) and `′(v2).

In both cases, the `′(v) is not the resolvent of its antecedents. (We address both of

these two cases below.) For all remaining cases, we say that the edge (w, v) is merge-free.

Formally, given a proof R with vertices v and w connected and labelled as in Figure 3.15(a),

an edge (w, v) in R is merge-free if l0 /∈ `R(v3) and l1 /∈ `R(v2). Lemma 3.3.3 shows that

R[w 
 v] is a valid proof for merge-free edges (w, v). The proof of the lemma can be found

in Section B.4.

Lemma 3.3.3. Let R be a proof with vertices v and w connected and labelled as in Fig-

ure 3.15(a). If (w, v) is merge-free, then R[w 
 v] is a resolution proof.

The first of the problematic cases mentioned above is taken care of in [JM07] by adding

an additional resolution for the clauses (¬l1 ∨ C3) and (¬l0 ∨ C2) in order to eliminate l1

from `′(v). The resulting graph is shown in Figure 3.17. Observe that in both branches

the order of the resolution steps is reversed with respect to the proof in Figure 3.15(a).

This transformation has the interesting property that it does not change the annotations

generated by ItpM and ItpHKP for v. In the following, we demonstrate this for two cases. A

formal proof is provided in Section B.4 (see Lemma B.4.1).

1. If l1 is local to A and l0 is shared, the partial interpolants I and I ′, shown as circuits

in Figure 3.18(a), are I = (I1 ∧ I2) ∨ I3 and I ′ = (I1 ∨ I3) ∧ (I2 ∨ I3), respectively.

Intuitively, the transformation distributes the disjunction.

2. Now assume that l0 is local to B and l1 is shared. In this case, ItpM introduces a

conjunction at both vertices. Furthermore, the circuits in Figure 3.18(b) show that

this transformation does not change the interpolants in ItpHKP in this case.

Example 3.3.14 represents a case in which l0 ∈ C3 in Figure 3.15(a). In this case, the

transformation yields a proof R[w 
 v] in which l0 has been eliminated from `′(v). Accord-

ingly, R[w 
 v] contains a superfluous resolution on l0. The elimination of the superfluous

resolution may eliminate additional literals from the respective resolvent, creating in an

avalanche effect which results in a significant reduction of the size of the proof. A algorithm

which performs such a repair is presented in [BIFH+09]. An alternative approach to avoid
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I3

I1 I2

I

−→

I3I1 I2

I ′

(a) Interpolant due to ItpM

1 0l1

I1 I2

I3

I

−→
1 0 0 1l1 l1

I1
I3 I2

I ′

(b) Interpolant due to ItpHKP

Figure 3.18: Transforming R in Figure 3.15(a) as in Figure 3.17 does not change the inter-
polant.

the problem is to use multi-sets to represent clauses. This approach, however, requires

an additional factoring rule which necessitates the adaptation of the labelled interpolation

system in Definition 3.3.11. A detailed discussion exceeds the scope of this dissertation.

Note that the proof transformation discussed in this section may introduce tautological

clauses (C1 ∨ x∨¬x). An example is provided in Figures 3.13(a) and 3.13(b). Such clauses

do not contribute to the refutation and may be eliminated (as indicated in Figures 3.13(b)

and 3.13(c)). The resulting reduced proof, however, may require repair by means of an

algorithm such as the one presented in [BIFH+09].

In the remaining part of this section, we address the impact of proof transformations

on the strength of the interpolants. Example 3.3.13 suggests that “pushing” resolution

steps with pivot elements that are local to A towards the initial vertices strengthens the

interpolant obtained using ItpM. We generalise this idea to labelled interpolation systems.

Let LR be a labelling function for a refutation R, w, v ∈ VR internal vertices and (w, v)

a merge-free edge. LR is not a valid labelling function for the proof R[w 
 v] because

R[w 
 v] has a different clause function from R. However, R and R[w 
 v] share the

same initial vertices and labelling functions are determined by the labels of initial vertices.

Accordingly, we can derive a labelling function for R[w 
 v], denoted LR[w 
 v], from LR.

The following theorem formally captures the intuition about the relation of swap trans-

formations and interpolant strength.

Theorem 3.3.6. Let R be a refutation of A∧B, v, w ∈ VR be internal vertices with ancestors

and partial interpolants as in Figure 3.15(a), and let (w, v) be a merge-free edge. For a

fixed labelling function L, let c = L(w+, piv(w)) t L(w−,¬piv(w)) and d = L(v+, piv(v)) t
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Itp(L′[w 
 v], R[w 
 v])

=⇒ =⇒

Itp(L[w 
 v], R[w 
 v]) Itp(L′, R)

=⇒=⇒

Itp(L,R)

Figure 3.19: Combining labelling functions and proof transformations (Corollary 3.3.1)

L(v−,¬piv(v)). The following claims hold:

1. If c � d and either c 6= d or c 6= ab, Itp(L[w 
 v], R[w 
 v])(sR)⇒ Itp(L,R)(sR).

2. In all other cases, if I2 ⇒ I3, then Itp(L[w 
 v], R[w 
 v])(sR)⇒ Itp(L,R)(sR).

As before, a formal proof is provided in Section B.4. The case in which the edge (w, v)

is not merge-free and l1 ∈ C is discussed previously and does not result in a change of the

interpolant. In case that l0 ∈ C3, however, swapping the vertices w and v may necessitate

a repair of the proof, leading to the elimination of clauses and their respective partial

interpolants. This global change may affect the entire proof, making a prediction of the

strength of the interpolant in terms of the annotations of w, v, and their neighbouring

vertices impossible.

Finally, changing labelling functions and swapping vertices are two orthogonal methods

for strengthening interpolants. Corollary 3.3.1, summarised in Figure 3.19, shows that these

methods can be combined.

Corollary 3.3.1. Let R be a refutation of A ∧ B and let L and L′ be labelling functions

such that L � L′. Let w and v be internal vertices of R and (w, v) be a merge-free edge,

such that for any L, Itp(L,R)(sR)⇒ Itp(L[w 
 v], R[w 
 v])(sR[w
v]). Then, it holds that

� Itp(L[w 
 v], R[w 
 v])(sR)⇒ Itp(L′[w 
 v], R[w 
 v])(sR[w
v]), and

� Itp(L′, R)(sR)⇒ Itp(L′[w 
 v], R[w 
 v])(sR[w
v]) .

The corollary follows immediately from Lemma 3.3.2, Theorem 3.3.4 and Theorem 3.3.6.

This concludes our discussion of interpolation techniques for propositional formulae.

The following section establishes a connection between “bit-level” resolution proofs and

“word-level” proofs in the theory of bit-vector arithmetic.
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3.4 Propositional Proofs and Bit-Vector Arithmetic

Propositional interpolation systems as introduced in Section 3.3.3 provide us with formulae

over propositional atoms (as specified by the grammar Table 3.2(a)). While a mapping

to bit-vector formulae (see Table 3.1) based on the equality E(x&(1� i)) = xi is straight

forward, the resulting interpolants may be unwieldy. The problem is demonstrated in the

following example.

Example 3.4.1. Recall that in Example 3.3.3 we introduce propositional constraints to

eliminate the assignment e2 ∧ e4 ∧ e5, which is not ruled out by the propositional skeleton

(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5 in Example 3.3.1. Furthermore, in Example 3.3.5, we derive z0

(E(z&1 = 1), respectively) as a reverse interpolant for

e2 ∧ e4 ∧ (e2 ⇔ E(x&2 = 2)) ∧ (e4 ⇔ E(x = z� 1)) and e5 ∧ (e5 ⇔ E(z&1 = 0)) .

We demonstrate that propositional interpolants are not always as concise as in Exam-

ple 3.3.5. Consider the assignment ¬e1 ∧ e3 ∧ e4 of the atoms of the propositional skeleton

shown above. In order to eliminate this assignment, we introduce propositional constraints

for the corresponding atoms and partition the resulting formula as follows:

¬e1 ∧ (e1 ⇔ E(x = y)) and e3 ∧ e4 ∧ (e3 ⇔ E(y = z + z)) ∧ (e4 ⇔ E(x = z� 1))

According to Table 3.4 and Example 3.3.2 the corresponding propositional encoding is

¬e1 ∧ (e1 ∨ o0 ∨ o1 ∨ . . . ∨ o63) ∧ (o0 ⇔ (x0 ∧ ¬y0)) ∧ (o32 ⇔ (¬x32 ∧ y32)) ∧ . . .

and e3 ∧ e4 ∧ (e3 ⇒ ¬y0) ∧ (e4 ⇒ ¬x0) .

Intuitively, the propositional encoding of x 6= y states that the atoms of at least one of

the pairs xi, yi (where 0 ≤ i ≤ 31) must take on opposing values. Figure 3.20 shows a small

fraction of the resolution proof for the propositional encoding above, which is annotated with

the partial interpolants obtained using ItpHKP. Notably, the interpolation system introduces
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e1o0o1 . . . o31o32 . . . o63 [⊥]

o0x0 [⊥] e4 [>] e4x0 [>]

x0 [>]

o0 [x0]

e1o1 . . . o31o32 . . . o63 [x0]

o32y0 [⊥] e3 [>] e3y0 [>]

y0 [>]

o32 [y0]

e1o1o2 . . . o31 . . . o63 [x0 ∨ y0] o1 [x1 ∧ ¬y1]

. . . . .
.

e1o2 . . . o31 . . . o63 [x0 ∨ y0 ∨ (x1 ∧ ¬y1)]
. . .

Figure 3.20: Propositional refutation of (x 6= y) ∧ (y = z + z) ∧ (x = z� 1)

a constraint for each pair xi, yi of bits. The resulting propositional reverse interpolant is

x0 ∨ y0 ∨ (x1 ∧ ¬y1) ∨ (¬x1 ∧ y1) ∨ (x2 ∧ ¬y2) ∨ . . . ∨ (x31 ∧ ¬y31) ∨ (¬x31 ∧ y31) .

Note that this interpolant is not the same as E(x 6= y), since it is sufficient to set either

x0 or y0 to true in order to contradict E(y = z + z ∧ x = z� 1).

The propositional interpolant derived in Example 3.4.1 has several shortcomings. First

of all, and most importantly, its structure does not reflect the structure of the original

program statements. Therefore, the formula is incomprehensible to a human mind, which

complicates the interpretation of the information provided by a safety proof. This difficulty

becomes even more obvious if one considers the interpolant x 6= 0∧y ≤ (x−1) in our intro-

ductory example in Section 1.3.1. Furthermore, even though the use of purely propositional

formulae does not impact the correctness of the verification algorithm, the representation is

significantly less compact than bit-vector formulae encoding “word-level” information such

as x 6= y, which may have a negative impact on the performance and the complexity of the

verification tool. Consequently, implementing and debugging the verification tool becomes

a tedious and error-prone task.

On the other hand, the propositional encoding of bit-vector formulae affords us several

advantages. In enables the use of off-the-shelf decision procedures (SAT solvers in particu-

lar). Modern SAT solvers deal efficiently with case-splitting (introduced by borderline cases
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such as arithmetic overflow) and the propositional structure of the problem instances. For

unsatisfiable instances, SAT solvers are typically able to quickly identify an unsatisfiable

core of the formula, i.e., to discard the clauses that do not contribute to the inconsis-

tency. Moreover, the flattening-based approach presented in Section 3.3 is complete for the

quantifier-free fragment of bit-vector arithmetic specified in Table 3.1.

3.4.1 SMT-Solvers and Blocking Clauses

Contemporary interpolating decision procedures (such as [McM05, YM05, CGS10]) use

blocking clauses to combine the advantages of theory-specific solvers and SAT solvers.2 A

blocking clause is a constraint representing the negation of a “spurious” assignment.

Example 3.4.2. The skeleton (¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5 presented in Example 3.3.1 does

not rule out the assignments e2 ∧ e4 ∧ e5 and ¬e1 ∧ e3 ∧ e4. We know, however, from the

Examples 3.3.3 and 3.4.1 that these assignments correspond to the unsatisfiable conjunctions

((x&2) = 2)∧(x = z� 1)∧((z&1) = 0) and (x 6= y)∧(y = z+z)∧(x = z� 1). Accordingly,

the clauses (¬e2 ∨ ¬e4 ∨ ¬e5) and (e1 ∨ ¬e3 ∨ ¬e4) (which are the negations of the above

mentioned conjunctions) are a consequence of

(¬e1 ∨ e2) ∧ e3 ∧ e4 ∧ e5 ∧ (e1 ⇔ (x = y)) ∧ (e2 ⇔ ((x&2) = 2))∧

(e3 ⇔ (y = z + z)) ∧ (e4 ⇔ (x = z� 1)) ∧ (e5 ⇔ (z&1 = 0)) (3.7)

and can therefore be added to the skeleton in order to eliminate (or “block”) the undesired

assignments. A resolution proof using the blocking clauses (¬e2∨¬e4∨¬e5) and (e1∨¬e3∨

¬e4) is shown in Figure 3.21.

In Example 3.4.2, the encoding (3.7) associates each blocking clause with an unsatisfiable

conjunction of literals in the theory of bit-vectors. In general, given a formula F , the bijec-

tive mapping between propositional literals Atoms(sk(F )) and theory literals AtomsT (F )

induced by the propositional skeleton (Definition 3.3.1) enables us to map blocking clauses
2The survey [NOT06] and the textbook [Har09] attribute the first approach basing other decision proce-

dures around SAT to Armando, Castellini, and Giunchiglia [ACG00].
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e1e3e4 e4 e2e4e5
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e3 e3

�

Figure 3.21: A resolution proof with blocking clauses

to conjunctions of theory literals. Assuming the existence of a complete interpolating deci-

sion procedure for the conjunctive fragment of the theory T , [McM05, YM05] provides us

with a technique to derive partial interpolants (cf. Section 3.2.3, Definition 3.2.4) for block-

ing clauses. We adapt this concept to accommodate the partial interpolants introduced in

Definition 3.3.12.

Lemma 3.4.1 (Partial Interpolant for Blocking Clause). Let A ∧ B be an unsatisfiable

bit-vector formula (as specified by the grammar in Table 3.1) and let T be the underlying

theory of bit-vector arithmetic. Moreover, let

sk(A) ∧
∧

ei∈Atoms(sk(A))

(ei ⇔ αi) and sk(B) ∧
∧

ej∈Atoms(sk(B))

(ej ⇔ αj) (3.8)

be encodings equi-satisfiable with A and B, respectively. Given a blocking clause

C
def=

n∨
i=1

li where li ∈ {e,¬e | e ∈ Atoms(sk(A ∧B))}

for the propositional skeleton sk(A ∧B), let

CT def=
n∨

i=1

lTi where lTi ∈ {α,¬α |α ∈ AtomsT (A ∧B)}

be the corresponding disjunction of theory literals. Analogously, let CT �c denote the conjunc-

tion of theory literals corresponding to the clause C�c. Finally, let I be a reverse interpolant

for the pair of bit-vector formulae (¬(CT �a),¬(CT �b)). Then I is a partial interpolant for

C and the encodings (3.8) of A and B.
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Proof. We need to show that I satisfies the conditions listed in Definition 3.3.12.

1.
(
sk(A) ∧

∧
ei∈Atoms(sk(A))(ei ⇔ αi)

)
∧ ¬(C�a) |=T I. This follows immediately from(∧

ei∈Atoms(sk(A))(ei ⇔ αi)) ∧ ¬(C�a)
)
⇒ ¬(CT �a).

2.
(
sk(B) ∧

∧
ej∈Atoms(sk(B))(ej ⇔ αj)

)
∧¬(C�b) |=T ¬I. This follows immediately from(∧

ej∈Atoms(sk(B))(ej ⇔ αj)) ∧ ¬(C�b)
)
⇒ ¬(CT �b).

3. The symbols in ¬(CT �a) and ¬(CT �b) are subsets of the symbols in A and B. Ac-

cordingly, the symbols occurring in I are shared symbols of A and B.

Note that the labels assigned to the literals of blocking clauses need to be consistent

with the selected labelling scheme (see, for instance, the labelling functions in Lemma 3.3.1).

For example, all shared skeleton literals must be labelled b if the partial interpolants for

blocking clauses are to be combined with the interpolation system ItpM.

It remains to be shown how we can obtain blocking clauses and how they can be in-

tegrated into an resolution-based solver for propositional logic. The simplest approach to

combine a theory-specific decision procedure for the theory T with propositional reasoning

is to treat the SAT checker as an oracle which generates satisfying assignments. The fol-

lowing algorithm summarises the principles of a basic Satisfiability Modulo Theory (SMT)

approach.

À Given a bit-vector formula F , generate the propositional skeleton (Definition 3.3.1)

sk(F ) by replacing all theory-specific atoms AtomsT (F ) with propositional atoms.

Furthermore, introduce a constraint Γ with the initial value true.

Á If the formula sk(F ) ∧ Γ is unsatisfiable, then F is unsatisfiable. Otherwise, let∧|Atoms(F )|
i=1 li represent an assignment to the atoms Atoms(sk(F )) satisfying sk(F ).

Â Apply the mapping between Atoms(sk(F )) and AtomsT (F ) in order to construct a

conjunction of theory-specific literals which corresponds to
∧|Atoms(F )|

i=1 li. Use the

theory-specific solver to check whether this conjunction is satisfiable in the theory T .
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If it is satisfiable, then so is F . Otherwise, add the clause ¬
∧|Atoms(F )|

i=1 li to Γ and

proceed with step Á.

This technique shifts the burden of case-splitting from the theory specific solver to

the SAT solver. In the worst case, however, the implementation outlined above näıvely

enumerates all satisfying assignments to sk(F ), effectively generating a representation of

the formula in disjunctive normal form (DNF). In order to avoid an exponential blowup of

the encoding, theory solvers are integrated into the SAT solver in a more sophisticated way.

For instance, the solver may add additional clauses representing intermediate proof steps

such as
(¬e3 ∨ e6) for (y = z + z) `T (y = z� 1) and

(e1 ∨ ¬e6 ∨ ¬e4) for (x 6= y) ∧ (y = z� 1) `T (x 6= z� 1)

in order to aid the search of the SAT solver [FJOS03]. We refer the reader to [NOT06]

for a detailed discussion of SMT solvers. A tighter integration of SAT checkers and theory

solvers (known as online approach), however, requires modifications to the theory solver.

3.4.2 Lifting Propositional Resolution Proofs to the Word-Level

In this section, we discuss an ex post facto approach which relies entirely on off-the-shelf

interpolating decision procedures. Essentially, we take advantage of the SAT solver’s ability

to efficiently extract a small, unsatisfiable core from a propositional encoding. Our idea is

to derive blocking clauses from the corresponding resolution proof. Given these clauses, we

compute the respective partial interpolants using a theory specific solver.

The core component of our approach is an algorithm that lifts a propositional resolution

proof R up to a proof that uses bit-vector logic.3 The structure of R remains unchanged (up

to a final minimisation step). We define a lifting function λ which annotates each vertex in

the resolution refutation R with a formula consisting of skeleton literals and theory literals.

Each of the resulting annotations has the structure Θ ∨ Γ, where Θ is a disjunction of

skeleton literals and Γ represents a Boolean combination of theory atoms α1, . . . , αn.

In the following definition, we use Tseitin(F ) to denote the formula in CNF obtained
3We present a similar proof-lifting approach for a very limited subset of bit-vector logic in [KW07].
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from a propositional formula F using Tseitin’s encoding (see Table 3.3). As explained in

Section 3.3.1, Tseitin(F ) and F are equi-satisfiable.

Definition 3.4.1 (Lifting Function). Let F be an unsatisfiable bit-vector formula and let

R = (VR, ER, pivR, `R, sR) be a refutation of its propositional encoding

Tseitin(sk(F )) ∧
∧

ei∈Atoms(sk(F ))

Tseitin(ei ⇒ E(αi)) ∧ Tseitin(E(αi)⇒ ei) (3.9)

(where αi ∈ AtomsT (F )). The lifting function λ : VR → L for R is defined as follows:

1. For all initial vertices v ∈ VR

λ(v) def=


¬ei ∨ αi if `(v) ∈ Tseitin(ei ⇒ E(αi))

ei ∨ ¬αi if `(v) ∈ Tseitin(E(αi)⇒ ei)

`(v) if `(v) ∈ Tseitin(sk(F ))

2. For all inner vertices v ∈ VR with (v−, v) ∈ ER and (v+, v) ∈ ER and λ(v−) = Θ−∨Γ−

and λ(v+) = Θ+ ∨ Γ+

λ(v) def=

 (Θ− ∨Θ+) ∨ (Γ− ∧ Γ+) if piv(v) 6∈ Atoms(Tseitin(sk(F )))

Res(Θ−,Θ+, piv(v)) ∨ (Γ− ∨ Γ+) if piv(v) ∈ Atoms(Tseitin(sk(F )))

The lifting function replaces the propositional formulae at the leaves which are derived

from the constraints e ⇒ E(α) and ¬e ⇒ ¬E(α) (cf. Equation 3.4 in Section 3.3.1) with

the original word-level constraints. Then, it essentially creates a new proof which replicates

the resolution steps on the skeleton literals and simulates the remaining inference steps by

conjoining the respective word-level literals.

We show that the “lifted” proof is indeed valid.

Lemma 3.4.2. Let R be a resolution proof as specified in Definition 3.4.1. For each inner

vertex v ∈ VR with (v−, v) ∈ ER and (v+, v) ∈ ER it holds that λ(v−) ∧ λ(v+)⇒ λ(v).
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Proof. Let v ∈ VR be an inner vertex such that λ(v−) = Θ− ∨ Γ− and λ(v+) = Θ+ ∨ Γ+.

Thus, λ(v−) ∧ λ(v+) ≡ (Θ− ∨ Γ−) ∧ (Θ+ ∨ Γ+). By means of the distribution rule of the

propositional calculus we obtain

(Θ− ∧Θ+) ∨ (Θ− ∧ Γ+) ∨ (Θ+ ∧ Γ−) ∨ (Γ− ∧ Γ+) (3.10)

We need to distinguish two cases.

1. piv(v) 6∈ Atoms(Tseitin(sk(F ))). The conjuncts in (3.10) imply either Θ−, Θ+ or

(Γ− ∧ Γ+).

2. piv(v) ∈ Atoms(Tseitin(sk(F ))). The conjuncts in (3.10) imply either Γ−, Γ+ or

(Θ− ∧Θ+). The latter term in turn implies Res(Θ−,Θ+, piv(v)).

The following lemma establishes a semantic connection between the labels `(v) and λ(v).

Lemma 3.4.3. Let R be a resolution proof as described in Definition 3.4.1. For any vertex

v ∈ VR with λ(v) = Θ ∨ Γ, it holds that if E(Γ) is satisfiable, then so is `(v) \Θ.

Proof. We use induction over the structure of R to prove the correctness of Lemma 3.4.3.

Base case. Let v ∈ VR be an initial vertex and let λ(v) = Θ ∨ Γ. In order to show that

the satisfiability of E(Γ) entails that there is a satisfying assignment to `(v) \ Θ, we need

to distinguish three cases. If `(v) ∈ Tseitin(sk(F )) then Θ = `(v) and Γ = false and the

claim holds trivially. Otherwise, if `(v) ∈ Tseitin(ei ⇒ E(αi)), then Θ = ¬ei and Γ = αi.

W.l.o.g. we assume that Tseitin(ei ⇒ E(αi)) yields (¬ei ∨ oi) ∧ Tseitin(oi ⇔ E(αi)). If

`(v) = (¬ei ∨ oi) then `(v) \Θ = oi, and {oi 7→ true} is a satisfying assignment. Moreover,

since oi ⇔ E(αi) can always be satisfied by choosing an appropriate value for oi, any

conjunct of the equi-satisfiable Tseitin encoding must be satisfiable, too. A similar argument

holds for the remaining case `(v) ∈ Tseitin(E(αi)⇒ ei).

Induction hypothesis. Let λ(v−) = Θ− ∨ Γ− and λ(v+) = Θ+ ∨ Γ+. If E(Γ−) is

satisfiable, then so is `(v−) \Θ−. The same holds for E(Γ+) and `(v+) \Θ+.
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Induction step. Let v ∈ VR be an internal vertex where (v−, v) ∈ ER and (v+, v) ∈ ER

and λ(v−) = Θ− ∨ Γ− and λ(v+) = Θ+ ∨ Γ+.

1. If piv(v) 6∈ Atoms(Tseitin(sk(F ))), then λ(v) = (Θ− ∨ Θ+) ∨ (Γ− ∧ Γ+). Since R

is a valid resolution proof, `(v) = Res(`(v−), `(v+), piv(v)) holds. Suppose that

E(Γ− ∧ Γ+) is satisfiable. Then the bit-vector formula Γ− ∧ Γ+ is satisfiable, and

so are the formulae E(Γ−) and E(Γ+). By the induction hypothesis, there exist sat-

isfying assignments for `(v−) \ Θ− as well as for `(v+) \ Θ+. We show that this

premise is sufficient to construct a satisfying assignment for `(v): W.l.o.g. let M−

andM+ be models such thatM− |= l− andM+ |= l+, where l− ∈ (`(v−) \Θ−) and

l+ ∈ (`(v+) \ Θ+). If l− ∈ `(v) \ (Θ− ∨ Θ+), then M− can be extended to a model

that satisfies `(v) \ (Θ− ∨ Θ+). Otherwise, Atoms(l−) = {piv(v)}. Then l+ 6= ¬l−,

since l− 7→ true. Accordingly, l+ ∈ `(v) \ (Θ− ∨ Θ+) and M+ can be extended to a

model satisfying `(v) \ (Θ− ∨Θ+).

2. If piv(v) ∈ Atoms(Tseitin(sk(F ))), then λ(v) = Res(Θ−,Θ+, piv(v))∨(Γ−∨Γ+). Sup-

pose that E(Γ− ∨ Γ+) is satisfiable. Then the bit-vector formula Γ−∨Γ+ is satisfiable,

and so is at least one of the formulae E(Γ−) and E(Γ+). By the induction hypothesis,

there exists an assignment M satisfying either `(v−) \ Θ− or `(v+) \ Θ+ (or both).

Since piv(v) ∈ Atoms(Tseitin(sk(F ))), it holds that (`(v−)∨`(v+))\(Θ−∨Θ+) ⊆ `(v),

and therefore M can be extended to a model satisfying `(v) \ (Θ− ∨Θ+).

Corollary 3.4.1. Let R be a refutation proof as specified in Definition 3.4.1 and let v ∈ VR

be a vertex of R. If λ(v) = Θ ∨ Γ and `(v) = Θ, then Γ is unsatisfiable.

Corollary 3.4.1 provides us with a mechanism to derive blocking clauses from proposi-

tional resolution proofs. Let F be a bit-vector arithmetic formula and let R be a resolution

refutation of the corresponding propositional encoding resembling (3.9) in Definition 3.4.1.

Given a vertex v ∈ VR such that λ(v) = Θ ∨ Γ and `(v) = Θ, we know that Γ is a

Boolean combination of theory atoms in AtomsT (F ) which is unsatisfiable in the theory
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. . .�� ��e1e3e4

(a) A resolution proof for the propositional encoding of the formula in Example 3.3.1

e1 ∨ x 6= y

e1 ∨ x 6= y e4 ∨ x 6= z << 1

e1e4 ∨ (x 6= y ∧ x 6= z << 1)

e1e4 ∨ (x 6= y ∧ x 6= z << 1)

e1 ∨ x 6= y e3 ∨ y = z + z

e1e3 ∨ y = z + z

e1e3e4 ∨ (x 6= y ∧ x = z << 1 ∧ y = z + z) e3e4 ∨ (x = z << 1 ∧ y = z + z)

. . . . .
.

e1e3e4 ∨ (x 6= y ∧ x = z << 1 ∧ y = z + z)
. . .

e1e3e4 ∨ (x 6= y ∧ x = z << 1 ∧ y = z + z)

(b) Result of the lifting function λ for the proof in Figure 3.22(a)

Figure 3.22: Deriving blocking clauses from propositional resolution proofs

of bit-vectors. The bijective mapping induced by the propositional encoding enables us to

construct a corresponding formula over the atoms Atoms(sk(F )).

Example 3.4.3. Let R be a resolution refutation of the propositional encoding of the for-

mula

(¬(x = y) ∨ ((x&2) = 2)) ∧ (y = z + z) ∧ (x = z� 1) ∧ ((z&1) = 0)

presented in Example 3.3.1. The propositional encoding is described in detail in Table 3.4

in Section 3.3. Figure 3.22(a) shows a branch of such a proof R. Figure 3.22(b) shows

the “word-level proof” which we obtain by applying λ to R. Consider the vertex v labelled

(e1 ∨¬e3 ∨¬e4) (emphasised in Figure 3.22(a)). The corresponding label in Figure 3.22(b)
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is

λ(v) = (e1 ∨ ¬e3 ∨ ¬e4) ∨ (x 6= y) ∧ (y = z + z) ∧ (x = z� 1) .

Accordingly, (x 6= y) ∧ (y = z + z) ∧ (x = z � 1) is unsatisfiable in the theory of bit-

vectors. The corresponding propositional formula is ¬e1∧e3∧e4. Consequently, the negation

(e1 ∨ ¬e3 ∨ ¬e4) of this formula is a blocking clause. The corresponding partial interpolant

(as defined in Lemma 3.4.1) with respect to the partitioning introduced in Example 3.4.1 is

x 6= y.

Suppose we can derive the blocking clause (¬e2 ∨ ¬e4 ∨ ¬e5) (cf. Example 3.4.2) in a

similar manner. If the clauses Θ derived by the respective sub-proofs (as in Figure 3.22(a))

match the blocking clauses, we can replace the sub-proofs by the blocking clauses in order to

obtain a resolution proof over the skeleton literals such as the one illustrated in Figure 3.21.

The resolution proof in Figure 3.22(a) of Example 3.4.3 illustrates the special case in

which the resolution steps involving the skeleton clauses C ∈ Tseitin(sk(F )) are “postponed”

until the point when all literals l 6∈ Atoms(Tseitin(sk(F ))) have been eliminated. Let v be

the vertex in Figure 3.22(a) labelled (e1 ∨ ¬e3 ∨ ¬e4) and let λ(v) = Θ ∨ Γ. We observe

that Γ is a conjunction of theory literals and that Θ is a blocking clause (as assumed in

Example 3.4.3). In general, this is not necessarily the case:

1. Consider the resolution proof in Figure 3.20 and let v be the node for which `(v) = e1

holds, i.e., all atoms oi have been eliminated. Then the labelling function λ yields

λ(v) = e1 ∨ (x 6= y) ∧ (y = z + z) ∧ (x = z � 1). The corresponding blocking clause

is (e1 ∨ ¬e3 ∨ ¬e4).

2. Figure 3.23 shows a fragment of a resolution proof for which the labelling function λ

introduces a disjunction in Γ.

In the first case, we cannot simply replace the sub-proof deriving e1 by the blocking

clause (e1 ∨ ¬e3 ∨ ¬e4) anymore to obtain a resolution refutation over skeleton literals (as

suggested in Example 3.4.3). This is only possible if the proof adheres to certain structural

restrictions. In particular, all skeleton literals need to be eliminated after the literals used

to encode the theory atoms (i.e., the literals introduced via the encoding E(αi)). Intuitively,
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e1o0o1 . . . o31o32 . . . o63e1e2

e2o0o1 . . . o31o32 . . . o63 e2x1

x1o0o1 . . . o31o32 . . . o63

. . .
(a) Resolution involving skeleton clauses

λ→

e1 ∨ x 6= ye1e2

e2 ∨ x 6= y e2 ∨ (x&2) = 2

x 6= y ∨ (x&2) = 2
. . .

(b) Lifted resolution proof

Figure 3.23: Lifting of a resolution proof introducing a disjunction in Γ

this requirement resembles the locality condition in Definition 3.2.2. In order to obtain a

valid resolution proof that enables us to derive an interpolant using blocking clauses, we

have two options:

� The proof transformation techniques presented in Section 3.3.5 enable us to restruc-

ture the propositional resolution proof at the cost of a potential exponential increase

of the size of the proof (in the presence of merge literals, cf. Figure 3.17).

� Given the blocking clauses and the propositional skeleton, we can enquire the SAT

solver to provide a corresponding resolution proof. While this approach corresponds

to a partial reconstruction of the original resolution proof, only the skeleton literals

relevant to the contradiction are considered. The SAT solver is confronted with a

problem of reduced complexity instead of the original problem.

In the case in which Γ is not a conjunction, it is not possible to derive an interpolant from

Γ using an interpolating solver supporting only a conjunctive fragment of L (as presumed

in Section 3.4.1). Since, however, we know that Γ is unsatisfiable in the theory of bit-vector

arithmetic, we can fall back on the basic SMT-solving algorithm presented in Section 3.4.1.

In the worst case, this corresponds to a conversion of Γ into an equivalent formula ΓDNF in

disjunctive normal form. Accordingly, we may obtain more than one blocking clause; one for

each conjunct of the formula ΓDNF. Since the symbolic simulation techniques presented in

Section 2.5.3 predominantly yield conjunctive formulae and since the SAT solver eliminates

case splits not contributing to the contradiction upfront, this number is typically small in

the context of our application.

Finally, we demonstrate how “bit-level” and “word-level” reasoning can be combined.
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e1e3e4 [x 6= y]

e3e4 [x1 ∨ (x 6= y)] e3 [>]

e4 [x1 ∨ (x 6= y)] e4 [>]

� [x1 ∨ (x 6= y)]

e1 [x1]

e1x1 [⊥]x1 [>]

e2 x1 [⊥] e1e2 [⊥]x1 z0 [>]z0 [>]

e4 x1 z0 [>]

e4 [>]

e5 z0 [>]e5 [>]

Figure 3.24: A propositional proof with a blocking clause

Given a bit-vector formula F , the propositional encoding discussed in Section 3.3.1 gener-

ates an equi-satisfiable propositional formula in which each symbol x of F is represented

by a set of propositional symbols x0, . . . , xn−1. The transformation preserves the bit-vector

semantics in the sense that there is a direct correspondence between xi and x&(1 � i).

Accordingly, for each model satisfying the propositional encoding E(F ) the corresponding

model in the domain of bit-vectors satisfies the original formula F . Intuitively, E(F ) “im-

plies” F (though formally the implication for formulae taking values in two different domains

is not defined). If we allow this liberal notion of implication, then an interpolant for the

pair of bit-vector formulae (A,B) is also an interpolant for (E(A), E(B)). This observation

enables us to “mix” bit-level and word-level interpolants.

Example 3.4.4. Figure 3.24 shows a resolution refutation of the propositional encoding

of the formula (3.2). We annotate the proof with partial interpolants for the partitioning

A ≡ (¬(x = y) ∨ ((x&2) = 2)) and B ≡ (y = z + z) ∧ (x = z� 1) ∧ ((z&1) = 0). By abuse

of notation, we annotate the blocking clause (e1 ∨ ¬e3 ∨ ¬e4) with the partial interpolant

x 6= y (derived in Figure 3.22(b)). The resulting “mixed” interpolant x1 ∨ x 6= y happens to

be “equivalent” to A.

The following section is concerned with the construction of interpolants for the conjunc-
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tive fragment of bit-vector arithmetic, a technique which we presumed to be a given in the

current section.

3.5 Interpolation for Word-Level Bit-Vector Arithmetic

The interpolation technique presented in Section 3.4 relies on an interpolating decision

procedure for a conjunctive fragment of bit-vector arithmetic. Example 3.1.1 on page 76

demonstrates that such a decision procedure is only sound if its interpretation of arith-

metic operations is consistent with the finite domain semantics of bit-vector arithmetic.

Many existing verification tools (such as Blast [HJMS02, HJMM04], Slam [BCLR04],

and Impact [McM06]), however, approximate the semantics of bit-vector operations us-

ing decision procedures for linear arithmetic or difference logic over an unbounded domain

(e.g., [McM05, RSS07, CGS10]). While interpolation techniques for modular arithmetic

(such as the one presented in [JCG09]) provide the required accuracy, they lack support for

operations such as bit-wise disjunction or conjunction.

The interpolation technique discussed in this section avoids the discrepancy between

the bit-vector interpretation underlying most programming languages and the domains R

or Z used by many interpolating decision procedures. We achieve this goal, however, at the

cost of completeness. We rely on a limited set of inference rules to reduce bit-vector arith-

metic formulae to equality logic with uninterpreted functions (EUF) and transitive relations.

Interpolation techniques for EUF are presented in [McM05, FGG+09]. The algorithms pre-

sented there extract interpolants from local refutations (as introduced in Definition 3.2.2

in Section 3.2). In Appendix A we present a graph-based decision procedure for bit-vector

arithmetic which provides us with local refutations. The following section presents the infer-

ence rules forming the basic building blocks of the local refutations. Section 3.5.2 describes

an algorithm to derive interpolants from such proofs.

3.5.1 Inference Rules for Bit-Vector Arithmetic

The premises of the inference rules presented in this section are theory literals, i.e., theory

atoms or their negations. The conjunctive fragment of the language L is defined in Table 3.5.
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Table 3.5: The conjunctive fragment of bit-vector arithmetic (see Table 3.1)

cformula ::= cformula ∧ cformula | literal
literal ::= atom | ¬atom

The non-terminal atom is defined in Table 3.1. As mentioned in Section 3.1, the set of

atoms over the relations � ∈ {=,≥, >, 6=} is closed under negation. The literal ¬(x > y),

for instance, can be rewritten to y ≥ x. Therefore, each formula can be reduced to a normal

form, a conjunction of atoms. For convenience, we also use the relations ≤ and < in our

presentation, which can be easily replaced by ≥ and > by swapping the operands. We refer

to > as inequality and to 6= as dis-equality in order to avoid the confusion of these two

relations.

Our (incomplete) decision procedure is described in detail in Appendix A. It aims at

generating a local refutation of a given conjunction of theory atoms (partitioned into two

formulae A and B) using the following techniques:

� It applies axiom instantiation and inference rules such as the ones presented in Ta-

bles 3.6(a) and 3.6(b) to terms containing bit-vector operations whenever possible.

For instance, the occurrence of a term x + 1 gives rise to the dis-equality x 6= x + 1.

Note that in the theory of bit-vectors it would be unsound to conclude x ≤ x + 1.

Our axiom instantiation and inference rules guarantee that the uninterpreted symbols

occurring in the premises are not “mixed” in the conclusion. The sub-terms of the

atom x ≥ z, which derives from the equality x = y | z, for instance, have the same

locality (with respect to the partitioning of the formula) as the terms of the premise.

� It uses constant propagation to derive sub-terms that are free of uninterpreted sym-

bols. Constant terms (such as (4 � 1) + 2) are then evaluated and the decision

procedure adds a corresponding tautology ((4 � 1) + 2 = 10) to the original for-

mula. Since constants are interpreted symbols, the tautology can be added to either

partition of the original formula (cf. Theorem 3.2.1).

� The decision procedure uses the rules in Table 3.7 to derive contradictions. This

set of rules is complete for equality logic with uninterpreted functions. The table
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Table 3.6: Axioms and inference rules for reducing L to EUF with ≥ and >

(a) Examples for axioms for m-bit variables

(t2 + c) 6= t2 if c 6= 0mod 2m

(t2 + c) = t2 if c = 0mod 2m
(t << c) = (t + t) if c = 1
(t << c) = (2c · t) if 1 < c < m

(b) Examples of inference rules for bit-vector operations over the unsigned integers

t1 = t2 & t3
t1 ≤ t2

t1 = t2 & t3
t1 ≤ t3

t1 = t2 | t3
t1 ≥ t2

t1 = t2 | t3
t1 ≥ t3

t1 + t2 = t1
t2 = 0

0 ≥ t1
t1 = 0

1 > t1
t1 = 0

t1 6= 0 0 ≥ t1
false

t1 6= 0 t2 ≤ (t1 − 1)
t1 6= t2

t1 > t3 t3 6= 0 t2 ≤ (t1 − t3)
t1 6= t2

accompanying the Trans rule indicates how two transitive relations are combined. For

instance, the atoms x > y and y ≥ z entail x > z. Each chain of transitive relations

can be partitioned into sub-chains deriving from either partition A or partition B

(cf. [McM05]), enabling the construction of local derivations.

� Bit-vector operations which the procedure fails to rewrite are replaced with uninter-

preted function symbols. Moreover, uninterpreted functions are used in our implemen-

tation to model array accesses (which are common in software programs but ignored

in Table 3.1). The congruence closure rule requires special attention, since it may

introduce an equality f(t1) = f(t2) where either f(t1) or f(t2) are terms of “mixed”

locality. It is, however, still possible to transform a proof which uses the Cong rule

into a local proof [YM05, FGG+09]. We provide more details in Appendix A.

The following example provides a local proof for the bit-vector formula we encountered

in the Examples 3.4.2 and 3.4.3.

Example 3.5.1. Let A ∧B the unsatisfiable conjunction of the pair of bit-vector formulae

A ≡ (x 6= y) and B ≡ (y = z + z) ∧ (x = z� 1) .
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Table 3.7: Inference rules for EUF with transitive relations

t1 = t2
t2 = t1

Symm
t1 > t2
t1 6= t2

DisEq
t1 = t2
t1 ≥ t2

WeakenEq

t1 ≥ t2 t2 ≥ t1
t1 = t2

StrengthenInEq
t1 = t2

f(t1) = f(t2)
Cong

t1 �1 t2 t2 �2 t3
t1 �3 t3

Trans
with

�
2

�1

�3 = 6= ≥ >

= = 6= ≥ >
≥ ≥ ≥ >
> > > >

t1 6= t2 t1 = t2
false

Contra1
t1 ≥ t2 t2 > t1

false
Contra2

The term (z� 1) in B triggers the decision procedure to add to formula B the tautology

(z � 1) = z + z (cf. Table 3.6(a)). The following proof is a refutation of the resulting

conjunction of atoms:

x = z� 1 z� 1 = z + z

x = z + z
Trans

y = z + z

z + z = y
Symm

x = y
Trans x 6= y

false
Contra1

Since the set of rewriting and inference rules in the Tables 3.6(a) and 3.6(b) is incomplete,

the algorithm may fail to refute a formula. In this case, we can fall back on the techniques

described in Section 3.3 in order to obtain a complete interpolating decision procedure.

The formal definition of a proof resembles the definition of a resolution proof (Defini-

tion 3.3.2) but is slightly more general: It allows the application of general inference rules

(Definition 3.2.1).

Definition 3.5.1. A proof P in a theory T is a tree-shaped directed graph (VP , EP , `P , sP ),

where VP is a set of vertices, EP is a set of edges, `P is a function assigning formulae to

vertices, and sP ∈ VP is a unique vertex (called the sink of P ) with out-degree zero. An

initial vertex has in-degree zero and is called a leaf of P . All other vertices are internal

and have a non-zero in-degree. For each internal vertex v ∈ VP and its predecessor vertices
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v1, . . . , vn (where (vi, v) ∈ EP , 1 ≤ i ≤ n) it holds that

`(v1) · · · `(vn)
`(v)

,

i.e., `(v1) ∧ . . . ∧ `(vn) entails `(v) in T . A proof P is a refutation if `(sP ) = false. A

refutation is a refutation of a formula F if for each initial vertex v ∈ VP it holds that `(v)

is a conjunct of F .

We emphasise that this definition is not restricted to the inference rules presented in

this section. Moreover, the interpolation systems we discuss in the following can be applied

to arbitrary local proofs (as introduced in Definition 3.2.2).

The following section shows how a reverse interpolant can be extracted from a local

refutation of a pair of formulae.

3.5.2 Extracting Interpolants from Local Refutations

There is a variety of interpolation techniques for quantifier-free formulae in equality logic

with uninterpreted functions. McMillan presents an interpolating inference system support-

ing equality logic with uninterpreted functions and linear arithmetic [McM05]. The decision

procedure introduced in [FGG+09] constructs interpolants from congruence graphs repre-

senting EUF-formulae. In [KW09a], we present an approach which is similar to [FGG+09]

but provides support for bit-vector operations and transitive relations by means of the in-

ference rules presented in the previous section. Kovács and Voronkov [KV09b] presents

a more general technique which enables the construction of interpolants from local proofs

(defined in Section 3.2). To the best of our knowledge, there is no generalisation that sub-

sumes the individual techniques (like labelled interpolations systems do for the propositional

interpolation systems discussed in Section 3.3.3).

Despite the differences of the techniques listed above, the underlying principles are very

similar. Intuitively, a reverse interpolant for the formulae (A,B) represents assumptions

over facts derived from B and provides guarantees about facts derived from A. If the

assumptions about B hold, then so does the interpolant. Accordingly, the interpolant can

be regarded as a form of rely-guarantee reasoning or as a contract between two players (as
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suggested in [FGG+09]). The “facts” used to construct an interpolant can be extracted

from a refutation A,B `T false.

Kovács and Voronkov [KV09b] shows that, given a local derivation A,B `T C (Defini-

tion 3.2.2), there is a partial interpolant which is a Boolean combination of conclusions of

the sub-proofs of the derivation. A partial interpolant may only refer to symbols shared by

A and B. Accordingly, the conclusions containing variables local to either A or B may not

be used for the construction of an interpolant. For the remaining conclusions we need to

decide whether to attribute them to A or to B.

Definition 3.5.2 (Colour of Formulae/Vertices). Let P = (VP , EP , `P , sP ) be a local refu-

tation A,B `T false and let C = `(v) (where v ∈ VP ) be a formula occurring in this proof

either as a premise or as a conclusion.

Assume that Sym(C) ⊆ Sym(A) ∩ Sym(B) holds. Then we say that v is A-coloured if

one of the following conditions holds:

1. v is a leaf of A,B `T false and A `T C, or

2. v is the conclusion of an inference step

C1 . . . Cn

C

and at least one premise Ci (1 ≤ i ≤ n) contains symbols local to A.

Otherwise, v is A-coloured if Sym(C) ∩ (Sym(A) \ Sym(B)) 6= ∅.

B-coloured vertices are defined analogously. If the vertex v corresponding to C is clear

from the context, we also say that the formula C is A-coloured (or B-coloured).

In the terminology of [KV09b], an A-coloured formula using only shared symbols is a

formula “justified by A”. Note that Definition 3.5.2 leaves some freedom when it comes

to colouring conclusions whose premises do not contain symbols local to A or B. This is

explicitly acknowledged in [FGG+09], leaving room for variation. The other algorithms

consistently attribute such conclusions to B [McM05, KV09b] or do not provide specific

instructions for this case [KW09a]. We assume from now on that such conclusions are

coloured in an arbitrary but deterministic manner.
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Given an A-coloured conclusion C in a proof A,B `T false, it is possible to determine a

set of B-coloured formulae which, in conjunction with A, imply C. Intuitively, this set is the

recursively closed set of B-coloured premises in the respective sub-proof. In accordance with

[FGG+09, KW09a] we use B-premise(v) to denote this set. Given a single inference step

`(v1), . . . , `(vn) `T `(v) in a proof P = (VP , EP , `P , sP ) (i.e., (vi, v) ∈ EP for 1 ≤ i ≤ n), we

refer to the premises `(v1), . . . , `(vn) as direct premises of `(v) in order to avoid confusion.

Definition 3.5.3 (A-Premises, B-Premises). Let `(v1), . . . , `(vn) `T `(v) be an inference

step in a local refutation P = (VP , EP , `P , sP ) representing A,B `T false (i.e., (vi, v) ∈ EP ,

1 ≤ i ≤ n). Assume v ∈ VP is a B-coloured vertex. Then the A-premise of v is defined as

A-premise (v) def=

{`(vi) | (vi, v) ∈ EP and vi is A-coloured } ∪⋃
{A-premise (vi) | (vi, v) ∈ EP and vi is B-coloured } .

For an A-coloured conclusion `(v), the set B-premise(v) is defined analogously.

Lemma 1 in [KV09b] states that given an A-coloured conclusion `(v) in a local refutation

A,B `T false it holds that A,B-premise(v) `T `(v). This follows immediately from the

structural restrictions for local proofs. For a formal justification we refer the reader to

[KV09b, Lemma 1] and [FGG+09, Lemma 3]. We remark briefly that A-premises take the

role of ρ in McMillan’s interpolations [McM05] and B-premises correspond to justifications

in [FGG+09]. A detailed discussion of this aspect is provided in [FGG+09, Section 6].

We are now in a position to provide an inductive definition of partial interpolants for

local refutation proofs A,B `T false. We start by refining our definition of interpolation

systems (Definition 3.2.5) according to the current setting.

Definition 3.5.4 (Interpolation System for Local Refutations). An interpolation system

for a local refutation P of a pair of formulae (A,B) is a function mapping vertices v ∈ VP

for which Sym(`(v)) ⊆ Sym(A) ∩ Sym(B) holds to partial interpolants. Given a refutation

P representing A,B `T false we use ItpT (P,A, B) to denote the partial mapping from VP

to partial interpolants.
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An interpolation system ItpT for local refutations is correct if for every refutation P of

A ∧ B it holds that ItpT (P,A, B)(sP ) (where `(sP ) = false) is a Craig interpolant for the

pair of formulae (A,B).

The following definition introduces the interpolation system ItpTKV for local refutations

in a theory T presented by Kovács and Voronkov in [KV09b].

Definition 3.5.5. Let P = (VP , EP , `P , sP ) be a local refutation of the conjunction of the

pair of formulae (A,B). The interpolation system ItpTKV maps vertices v ∈ VP for which

Sym(`(v)) ⊆ Sym(A)∩Sym(B) holds to partial interpolants according to the following rules:

1. For each vertex v such that `(v) is derived from either A or from B in P let

ItpTKV(P,A, B)(v) =

 `(v) if A `T `(v) in P

¬`(v) if B `T `(v) in P
.

2. Otherwise, v is an internal vertex. We use {C1, . . . , Cn} to denote the elements of

the set B-premise(v) if v is A-coloured and A-premise(v) if v is B-coloured, respec-

tively. Furthermore, we use I1, . . . , In to denote the respective partial interpolants of

C1, . . . , Cn. Then

ItpTKV(P,A, B)(v) =


∧n

i=1(Ci ∨ Ii) ∧ ¬
∧n

i=1 Ci if v is A-coloured∧n
i=1(Ci ∨ Ii) if v is B-coloured

.

A proof of correctness for the interpolation system introduced in Definition 3.5.5 is

provided in [KV09b].

In the following, we introduce an alternative interpolation system. The interpolation

system ItpTKW presented in the following definition is similar4 to the interpolation system

presented in our paper [KW09a], where we provide an algorithmic description of our inter-

polation technique.

4The fact that interpolants are not defined inductively in [KW09a] allows us to construct formulae of a
structure that contains less nesting.
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Definition 3.5.6. Let P = (VP , EP , `P , sP ) be a local refutation of the conjunction of the

pair of formulae (A,B). The interpolation system ItpTKW maps vertices v ∈ VP for which

Sym(`(v)) ⊆ Sym(A)∩Sym(B) holds to partial interpolants according to the following rules:

1. For each vertex v such that `(v) is derived from either A or from B in P let

ItpTKW(P,A, B)(v) =

 `(v) if A `T `(v) in P

¬`(v) if B `T `(v) in P
.

2. Otherwise, v is an internal vertex. We use {C1, . . . , Cn} to denote the elements of

the set B-premise(v) if v is A-coloured and A-premise(v) if v is B-coloured, respec-

tively. Furthermore, we use I1, . . . , In to denote the respective partial interpolants of

C1, . . . , Cn. Then

ItpTKW(P,A, B)(v) =


∨n

i=1(¬Ci ∧ Ii) if v is A-coloured∨n
i=1(¬Ci ∧ Ii) ∨

∧n
i=1 Ci if v is B-coloured

.

Theorem 3.5.1 (Correctness of ItpTKW ). For any local refutation P of a formula A ∧ B,

ItpTKW (P,A, B)(sP ) is a reverse interpolant for the pair of formulae (A,B).

Before we provide a proof of Theorem 3.5.1 we present the following auxiliary result.

Lemma 3.5.1. Let P be a local refutation of the conjunction of a pair of formulae (A,B)

and let v ∈ VP be a vertex such that v is A-coloured (B-coloured, respectively). Let

{C1, . . . , Cn} denote the set B-premise(v) (A-premise(v), respectively). Then it holds for

all Ci, 1 ≤ i ≤ n, that Sym(Ci) ⊆ Sym(A) ∩ Sym(B).

Proof. W.l.o.g., we assume that v is B-coloured (Definition 3.5.2). Since P is a local proof

(Definition 3.2.2), it must hold for all predecessor vertices vi ∈ VP (i.e., (vi, v) ∈ EP )

that Sym(`(vi)) ⊆ Sym(B). Accordingly, it must holds for all A-coloured formulae C

in {`(v1), . . . , `(vn)} that Sym(C) ⊆ Sym(A) ∩ Sym(B). It follows immediately from the

inductive definition of the A-premise (Definition 3.5.3) that the same holds for all formulae

in the set A-premise(v).
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The following proof establishes the correctness of Theorem 3.5.1.

Proof. We prove Theorem 3.5.1 by using induction over the structure of P . Note that, if

{`(v1), . . . , `(vn)} denotes the set A-premise(v) (or B-premise(v), respectively), then the

vertices v1, . . . , vn are (not necessarily direct) predecessors of the vertex v ∈ VP . Let v ∈ VP

be a vertex such that C = `(v), Sym(C) ⊆ Sym(A) ∩ Sym(B), and I = ItpT (P,A, B)(v).

We show that I is a partial interpolant for v, i.e., the following conditions hold:

1. A ∧ ¬C |=T I,

2. B ∧ ¬C |=T ¬I, and

3. Sym(C) ⊆ Sym(A) ∩ Sym(B).

Base case. Let v ∈ VP be a vertex in the proof P and let C = `(v). Suppose that `(v)

is derived from either A or B in P (i.e., all leaves of the sub-tree rooted at v are either

labelled with premises from A or with premises from B). We need to distinguish two cases.

If A `T C and I = C, then A ∧ ¬C |=T I as well as B ∧ ¬C |=T ¬I hold trivially, and

the third condition holds by definition of v. The case in which B `T C and I = ¬C is

symmetric.

Induction hypothesis: Let v ∈ VP be a vertex in P . Suppose that v is a B-coloured (A-

coloured, respectively) formula. Let {C1, . . . , Cn} denote the set A-premise(v) (or the set

A-premise(v), respectively) and I1, . . . , In the respective partial interpolants. Then it holds

for all Ci (1 ≤ i ≤ n) that A∧¬Ci |=T Ii, B∧¬Ci |=T ¬Ii, and Sym(Ii) ⊆ Sym(A)∩Sym(B).

Induction step. Let v ∈ VP be an internal vertex and let C = `(v). Furthermore, let

{C1, . . . , Cn} denote the set B-premise(v) if v is A-coloured and A-premise(v) otherwise,

and let I1, . . . , In denote the respective partial interpolants. We need to distinguish two

cases.

1. The vertex v is A-coloured and ItpTKW(P,A, B)(v) =
∨n

i=1(¬Ci ∧ Ii). It follows from

A,B-premise(v) |=T C that
∨n

i=1(A ∧ ¬C |=T ¬Ci) holds. Using the induction hy-

142



pothesis A ∧ ¬Ci |=T Ii, we derive
∨n

i=1(A ∧ ¬C |=T Ii). If we conjoin these results,

we obtain
∨n

i=1(A ∧ ¬C |=T ¬Ci ∧ Ii) and subsequently A ∧ ¬C |=T
∨n

i=1 ¬Ci ∧ Ii.

For the second condition, we need to show that B ∧¬C |=T
∧n

i=1(Ci ∨¬Ii), i.e., that

B ∧ ¬C |=T (Ci ∨ ¬Ii) holds for all i ∈ {1..n}. This follows immediately from the

induction hypothesis B ∧ ¬Ci |=T ¬Ii.

The third condition follows immediately from the induction hypothesis and from

Lemma 3.5.1.

2. The vertex v is B-coloured and ItpTKW(P,A, B)(v) =
∨n

i=1(¬Ci ∧ Ii) ∨
∧n

i=1 Ci. It

follows from B,A-premise(v) |=T C that B ∧ ¬C |=T ¬
∧n

i=1 Ci holds. Moreover,

from the induction hypothesis B ∧ ¬Ci |=T ¬Ii (where 1 ≤ i ≤ n) we derive that

B |=T
∧n

i=1(Ci∨¬Ii). In conjunction with the previous result, this yields B∧¬C |=T∧n
i=1(Ci∨¬Ii)∧¬

∧n
i=1 Ci and subsequently B∧¬C |=T ¬(

∨n
i=1(¬Ci∧ Ii)∨

∧n
i=1 Ci).

Note that the first condition A ∧ ¬C |=T
∨n

i=1(¬Ci ∧ Ii) ∨
∧n

i=1 Ci holds if the con-

junction
∧n

i=1 Ci holds. Otherwise, at least one Ci (i ∈ {1..n}) must evaluate to false.

But then Ii must hold as well according to the induction hypothesis A ∧ ¬Ci |=T Ii.

Accordingly, ¬Ci ∧ Ii holds. This establishes that the first condition must hold, too.

The third condition follows again from the induction hypothesis and from Lemma 3.5.1.

The interpolation systems introduced in Definitions 3.5.5 and 3.5.6 differ in so far as

they map internal vertices to different partial interpolants. The following theorem states

that, similar to the propositional interpolation systems ItpM and ItpHKP (see Section 3.3.4),

the interpolants generated by ItpTKV(P,A, B) are logically stronger than the interpolants

obtained using ItpTKW(P,A, B).

Theorem 3.5.2. Let P = (VP , EP , `P , sP ) be a local refutation of the conjunction of the

pair of formulae (A,B). Furthermore, assume an arbitrary but fixed colouring of the ver-

tices. Then ItpTKV(P,A, B)(v) ⇒ ItpTKW(P,A, B)(v) holds for each vertex v ∈ VP for which

Sym(`(v)) ⊆ Sym(A) ∩ Sym(B) holds.
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A proof of this theorem is provided in Appendix B (Section B.5). The following ex-

ample shows that there are proofs for which the interpolation systems ItpTKV(P,A, B) and

ItpTKW(P,A, B) yield different interpolants.

Example 3.5.2. Consider the formulae

A ≡ (x = y) ∧ (u = v) ∧ (x = m) ∧ (n = v) and

B ≡ (y = u) ∧ (m 6= n) ∧ (x ≤ v) .

In the following annotated local refutation of the conjunction A ∧ B the atoms in grey

represent B-coloured formulae. Note that for all inner vertices we have the choice to colour

them either A or B, since all symbols are shared. The annotations generated by the inter-

polation systems are shown in square brackets. To improve the readability, we only show

the partial interpolants that are required to construct the final interpolant.

x = y [x = y] y = u

x = u [x = y] u = v

x = v

x = m [x = m] m 6= n

x 6= n [x = m] n = v

x 6= v
false [ see text ]

Both interpolation systems yield the same annotations for the initial vertices of the proof

and for all internal vertices except for the sink. We obtain the following interpolants:

ItpTKV(P,A, B)(sP ) = (x = u ∨ x = y) ∧ (x 6= n ∨ x = m) ∧ (x 6= u ∨ x = n)

ItpTKW(P,A, B)(sP ) = (x 6= u ∧ x = y) ∨ (x = n ∧ x = m)

Now consider a valuation to the symbols which makes the formulae x = n, x 6= m,

x 6= u, and x = y evaluate to true. Then ItpTKV(P,A, B)(sP ) evaluates to false and

ItpTKW(P,A, B)(sP ) evaluates to true, demonstrating that the interpolants are not logically

equivalent.

A more detailed comparison of all interpolation systems [McM05, FGG+09, KV09b,

KW09a] exceeds the scope of this dissertation. We conclude the section revisiting two

examples we encountered in the Examples 2.2.2 and 3.5.1.
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Example 3.5.3. Consider the formulae A ≡ (x 6= y) and B ≡ (y = z + z) ∧ (x = z � 1)

previously presented in Example 3.5.1 in this section. In the following refutation for A∧B

we use the same colour coding as in Example 3.5.2:

x = z� 1 z� 1 = z + z

x = z + z
Trans

y = z + z

z + z = y
Symm

x = y [x 6= y]
x 6= y [x 6= y]

false [x 6= y]
Contra1

As expected, we obtain the interpolant x 6= y.

Example 3.5.4. Finally, we revisit the example presented in our introduction (Section 1.3.1).

A local refutation for the conjunction of the formulae A ≡ (y = x)∧ (y 6= 0) and B ≡ (y′ =

y&(y− 1)) ∧ (x = y′) is presented in Example 2.2.2:

y = x�� ��y ≤ x

�� ��y 6= 0
y′ = y&(y− 1)

y′ ≤ y− 1

y′ < y

y′ < x
x = y′

false

The A-premise of the B-coloured conclusion false is marked in the proof. Both interpolation

systems yield the interpolant (y 6= 0) ∧ (y ≤ x).

The following section describes the experimental results obtained by integrating our in-

terpolating decision procedure (described in more detail in Section A.2) into our interpolation-

based verification tool Wolverine.

3.6 Experimental Results

The simplified Windows device drivers presented in [HJMS02, McM06] have become the

baseline benchmark for software verification tools. In this section, we present an evaluation

of the performance of Wolverine on this benchmark. Wolverine is an implementation of

the interpolation-based verification algorithm presented in Section 2.5 and uses the refine-

ment approach of Section 2.5.3. Since the implementation of McMillan’s interpolation-based
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Table 3.8: Verification of the simplified Windows device drivers from [HJMS02, McM06]
and [BCG+09]. The performance is measured in seconds.

Wolverine Blast 2.5
device driver lifting no lifting DFS BFS
kbfiltr.i 00:01.84 00:02.18 00:02.22 00:04.54
cdaudio.i6 01:03.54 01:27.95 00:54.48 error
diskperf.i 01:11.80 06:17.63 06:14.41 00:40.03
floppy.i 02:02.36 03:16.22 14:18.92 01:40.05
parport.i 7:31.87 21:27.13 02:22:16 05:32.74

verification tool Impact [McM06] is not available, we provide the run-time of the program

verifier Blast as a reference point. Note that, unlike Wolverine, Blast performs a pred-

icate abstraction-based image computation. Moreover, Blast is a more mature tool featur-

ing a variety of optimisations not present in Wolverine.5 We abstain from performing a

comparison with the Blast-based verification tool CPAchecker presented in [BCG+09],

since its algorithm differs significantly from the path-based search algorithm discussed in

Section 2.5. Notably, [BCG+09] reports a significant improvement over the stand-alone

version of Blast. We emphasise, however, that the optimisations suggested in [BCG+09]

can also be implemented in Wolverine.

We obtained a binary release of Blast version 2.5 from the distribution provided

by [BCG+09].7 As suggested in [McM06], we ran the Blast executable pblast.opt with

the parameters -msvc -nofp -tproj -cldepth 1 -predH 6 -scope -lolattice -clock

-dfs (performing a depth-first search) and a second time with -msvc -nofp -craig 2

-scope -cldept 1 -bfs (running a breadth-first search). We ran all our experiments on

a 3 GHz Intel Xeon quad-core machine with 48 GB of memory. The verification tools we

evaluate are not parallelised and therefore only able to use a single core. Moreover, the tools

used less than 5% of the available memory. The performance results of these experiments

are presented Table 3.8. The verification of the device driver cdaudio.i using breadth-first

search terminated with an error message of Blast (adding the parameter -clock, as sug-
5Personal communication with Dirk Beyer, who calls Blast a “hybrid, highly-tuned monster”.
6The verification of this driver required the insertion of the code fragment IRP irp; pirp=&irp; at

the beginning of the main function, since Blast and the symbolic simulator of the CProver framework
(which adheres to the ANSI-C standard) differ in their interpretation of uninitialised global pointers and
data structures.

7We failed to compile or run the official version which is available from http://mtc.epfl.ch/

software-tools/blast/index-epfl.php.
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gested in [McM06], did not change this outcome). Furthermore, the version of Blast we

used is unable to parse the parclass.i device driver. This is consistent with the results

reported in [BCG+09]. While the parser of the CProver framework is capable of process-

ing the file parclass.i, our decision procedure fails on this example because of an error in

the current version of the implementation. Therefore, we refrain from listing the run-time

for parclass.i.

We evaluate the performance of our verification tool Wolverine with and without the

proof-lifting technique presented in Section 3.4 enabled. In the former case, Wolverine

uses the bit-flattening method described in Section 3.3.1 to compute an unsatisfiable core

and the lifting technique of Section 3.4.2 to derive blocking clauses. These blocking clauses

serve as an interface to the proof-generating decision procedure in Appendix A.2. The in-

terpolants are generated using a combination of the propositional interpolation system ItpM

(see Section 3.3.3) and a variant (described in [KW09a]) of the word-level interpolation

system ItpTKW introduced in Section 3.5. Wolverine uses this interpolation technique by

default. The column labelled “lifting” in Table 3.8 lists the results of running Wolver-

ine with the parameters --error-label ERROR --no-library --32 --i386-win32. To

obtain the results in the column labelled “no lifting”, we deactivated the proof-lifting tech-

nique using the command line parameter --no-proof-lifting. In this case, Wolverine

falls back to the basic SMT approach8 presented in Section 3.4. The results in Table 3.8

show that proof-lifting results in a consistently superior performance of the verification tool.

Blast, in contrast, relies on Foci, an implementation of the interpolating decision

procedure presented in [McM05]. Since Foci (as well as other available interpolation tools

such as CSIsat [BZM08] and MathSAT4 [BCF+08]) approximates the bit-vector semantics

of programs using linear inequalities over the reals, a comparison with our interpolation

system has limited informative value. While Wolverine is not faster than Blast, the

performance difference is not large. We attribute the advantage of Blast to its maturity.

We defer additional optimisations of Wolverine’s model checking algorithm to future

work.

Notably, the inference rules presented in Section 3.5 in combination with a small number
8Our basic SMT algorithm does not feature elaborate optimisations such as the ones described in [CGS10].
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of additional rules dealing with arrays (cf. Section A.2 in the appendix) and typecasts

(an artefact commonly encountered in ANSI-C programs) suffices to verify the simplified

Windows device drivers listed in Table 3.8. In order to corroborate this observation, we

use Wolverine to analyse the (unmodified) machzwd.c device driver for Linux provided

as part of our device driver verification framework DDVerify [WBKW07].

The DDVerify framework provides a simplified model of the operating system in order

to separate the verification of the operating system from the task of model checking the

device driver. Furthermore, given the source code of a Linux device driver, DDVerify

automatically generates a test-harness which contains calls to the functions of the driver

(in non-deterministic order). The original version of DDVerify (presented in [WBKW07])

uses the software model checker SatAbs [CKSY05]. SatAbs is a predicate-abstraction

based verification tool which generates Boolean programs (see Section 2.4.3) and uses the

SMV model checker [McM92] to check the abstraction. Accordingly, SatAbs uses an ea-

ger refinement strategy. A more recent version [KW09b] of DDVerify (available on

http://www.cprover.org/ddverify) also provides support for other verification tools such

as Cbmc [CKL04] and Wolverine.

The operating system model of DDVerify contains a number of assertions. These as-

sertions ensure, for instance, that resources are not used unless they have been allocated. In

particular, the option --check-io instructs DDVerify to generate assertions for verifying

the correct usage of IO ports. We ran ddverify machzwd.c --check-io --model seq1

to generate a sequential harness for the machzwd.c device driver provided with DDVerify.

This results in the verification conditions (claims) listed in Table 3.9. For clarity, Figure 3.25

illustrates these very results using a bar diagram. We used Wolverine and SatAbs to

check whether these claims hold. As reported in [WBKW07], the claims zf readw.1 and

zf readw.2 do not hold, since the driver accesses unallocated IO resources in its initialisa-

tion phase in an attempt to detect the presence of its related hardware logic. The remaining

claims listed in the lower section of Table 3.9 hold.

The fact that Wolverine avoids the use of predicate abstraction to construct an ab-

stract transition function gives it an advantage over SatAbs in the cases where the claims

do not hold (zf readw.1 and zf readw.2). This observation, however, cannot be gen-
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Table 3.9: Performance results (in seconds) for Wolverine and SatAbs on the machzwd.c
Linux device driver presented in [WBKW07]

Claim Wolverine SatAbs

zf readw.1 00:02.60 00:33.44
zf readw.2 00:02.56 00:35.04
zf set control.1 00:51.63 00:16.15
zf set control.2 00:51.15 00:17.17
zf set control.3 00:05.96 01:43.55
zf set control.4 00:05.88 01:44.39
zf set control.5 00:21.97 00:26.14
zf set control.6 error 00:26.64
zf set control.7 00:21.96 00:26.62
zf set control.8 error 00:26.97
zf set control.9 00:29.92 00:06.96
zf set control.10 00:29.73 00:06.96
zf timer on.1 00:06.74 00:30.36
zf timer on.2 00:06.73 00:30.83
zf set timer.1 00:07.41 00:36.70
zf set timer.2 00:07.48 00:30.34
zf set timer.3 00:07.41 00:40.63
zf set timer.4 00:07.44 00:35.21
zf ping.1 00:07.67 00:17.33
zf ping.2 error 00:17.52
zf set status.1 00:27.21 00:06.34
zf set status.2 00:28.37 00:06.35

eralised to the other experiments. In the case of claim zf set control.1, for instance,

SatAbs’ eager refinement approach pays off – Wolverine repeatedly derives the same

interpolants in different branches of the reachability tree, while SatAbs needs to discover

the corresponding predicates only once. In contrast, the picture is reversed for the claim

zf set control.3. The driver harness generated by DDVerify contains a case-construct

discriminating between 26 different calls to the functions of the driver, only one of which

is relevant to the claim. SatAbs generates 72 global predicates to model this case split,

thus putting significant strain on the SMV model checker. Wolverine, on the other hand,

is able to locally discharge the irrelevant branches in the reachability tree. This observa-

tion shows that neither an eager nor a lazy refinement strategy is consistently superior (cf.

Section 2.5.3).

During the verification of the machzwc.c driver, we encounter three cases (namely the

claims zf set control.6, zf set control.8, and zf ping.2) in which our decision pro-
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Figure 3.25: Results from Table 3.9 presented using a bar diagram

cedure fails to derive an interpolant from a spurious counterexample. In these three cases,

our inference rules dealing with arrays and compound data structures are not sufficient. We

intend to eliminate this shortcoming in a future version of Wolverine. SatAbs, in con-

trast, derives its refinement predicates using the weakest precondition, which is a much less

complex operation than our interpolation algorithm. In a future version of Wolverine,

we plan to implement a strategy that falls back on the weakest precondition to compute

interpolants in case the interpolating decision procedure fails.

We conclude the section with a preliminary evaluation of the impact of the strength

of interpolants. To this end, we compare the performance results of running Wolverine

on the machzwd.c driver, once using McMillan’s interpolation system ItpM(R,A, B) and a

second time using its weaker inverse counterpart ¬ItpM(R,B,A) instead (cf. Lemma 3.2.2

and Theorem 3.3.5). By default, Wolverine uses the stronger interpolation system. The

weaker version is activated using the parameter --weak-interpolants. Table 3.10 shows

the result of this experiment (also illustrated by Figure 3.26).
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Table 3.10: Performance results (in seconds) for Wolverine with strong and weak inter-
polants on the machzwd.c Linux device driver

Claim strong weak
zf set control.1 00:51.63 00:13.49
zf set control.2 00:51.15 00:13.59
zf set control.3 00:05.96 00:06.25
zf set control.4 00:05.88 00:06.27
zf set control.5 00:21.97 00:02.41
zf set control.7 00:21.96 00:02.15
zf set control.9 00:29.92 00:01.83
zf set control.10 00:29.73 00:01.82
zf timer on.1 00:06.74 00:06.78
zf timer on.2 00:06.73 00:06.76
zf set timer.1 00:07.41 00:07.45
zf set timer.2 00:07.48 00:07.48
zf set timer.3 00:07.41 00:07.47
zf set timer.4 00:07.44 00:07.56
zf ping.1 00:07.67 00:02.26
zf set status.1 00:27.21 00:01.80
zf set status.2 00:28.37 00:01.84

In the cases where interpolant strength makes a difference (zf set control.n, with

n ∈ {1, 2, 5, 7, 9, 10}, and zf set status.1 and zf set status.2) the results in Table 3.10

paint a picture in favour of weak interpolants. In order to verify claim zf set control.1,

for instance, Wolverine explores 103 nodes of the reachability tree when using weak inter-

polants, and 50% more when using strong interpolants. A cursory analysis shows that the

cause of this phenomenon is not so much the strength of the interpolants, but rather the fact

that the labelling functions LM and LM ′ (introduced in Lemma 3.3.1) result in a different

partitioning of the blocking clauses (see Lemma 3.4.1). This forces ItpTKW to use different

conclusions from the word-level refutation to construct the respective partial interpolants

(see Definition 3.5.6). Specifically, the labelling LM ′ assigns the label a to shared skeleton

literals, resulting in blocking formulae with a “larger” A-partition. Consequently, if we

colour the final conclusion of word-level refutations with “B” (as done in Example 3.5.4

and our implementation), the a-labelled theory-atoms are “more likely” to end up in the

interpolant generated by ItpTKW.

This delicate interaction of the propositional and the word-level interpolation system has

the side-effect that the word-level interpolants generated by combining ItpTKW with either
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Figure 3.26: Results from Table 3.10 presented using a bar diagram

ItpM(R,A, B) or ¬ItpM(R,B,A) are not necessarily ordered by strength. This observation

is also confirmed by our experiments.

Furthermore, to conclude that weak interpolants are always superior would be prema-

ture. In fact, Wolverine in combination with the weak interpolation system fails to find an

invariant for the simplified device drivers listed in Table 3.8 (except for kbfiltr.i, where

it performs slightly worse than Wolverine without proof lifting). In all cases, we observe

interpolants with a highly disjunctive structure that are significantly larger than the ones

obtained by means of ItpM. We defer detailed investigation of this problem to future work.

The conclusion that we can draw so far is that the verification techniques presented

in Chapter 2 are very sensitive to changes of the interpolation algorithm. This insight is

neither new nor particularly surprising: it is well known that the performance of pred-

icate abstraction-based verification tools is extremely contingent on the refinement algo-

rithm [HJMM04]. We conjecture that an interpolation algorithm which carefully includes

or avoids certain theory-atoms (enabled by Theorem 3.3.1) may have a larger impact on

the performance than interpolant strength. A further exploration of this idea, however, is

subject to future work.
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3.7 Related Work

The related work in the area of decision procedures is vast. We focus on recent interpo-

lating decision procedures. The first implementation of an interpolating decision proce-

dure widely used in verification is McMillan’s Foci [McM05]. This tool supports linear

inequalities over R and equality with uninterpreted functions (EUF), and introduces the

semantic discrepancy discussed in Example 3.1.1 when used for program verification. Beyer

et al. [BZM08] presents an interpolating decision procedure for the quantifier-free theory of

rational linear arithmetic and equality with uninterpreted function symbols. Based on the

ideas in [McM05], Fuchs presents a graph-based approach for EUF [FGG+09]. The inter-

polants in CNF generated by this technique are reported to be (syntactically) smaller than

the results of Foci. In comparison, the interpolation systems discussed in Section 3.5.2

support a strict super-set of EUF. Fuchs’ work has recently been extended to combined

theories [GKT09]. Section 3.5.1 presents an inference system for a single theory, which can

be integrated in Fuchs’ framework. An interpolating decision procedure for the theory of

unit-to-variable-per-inequality (UT VPI?), a logic with atoms of the form (0 ≤ ax1+bx2+k)

over Z, is presented in [CGS09]. Jain et al. [JCG09] presents an interpolating decision pro-

cedure for linear modular equations, but does not support uninterpreted functions. Brillout

et al. [BKRW10] presents an interpolation procedure (based on the sequent calculus) for

quantifier-free Presburger arithmetic. Interpolation techniques for modular and Presburger

arithmetic are most relevant to our work, since, unlike linear arithmetic, these formalisms

allow a faithful representation of bit-vector formulae. Both approaches, however, lack sup-

port for bit-wise operations, which are at least partially supported by our inference system.

Our algorithm can also be implemented in a Nelson-Oppen or SMT framework, and

interpolants can be generated using the mechanisms presented in [YM05] or [GKT09,

BCF+06]. An overview over interpolation techniques based on SMT solvers is provided

in [CGS10]. Moreover, [CGS10, Section 3.3] suggests a heuristic to strengthen interpolants

for linear arithmetic. Essentially, the approach is based on performing the elimination of

existential quantifiers on the partial interpolants contributed by A as dictated by a given

proof while setting the partial interpolants contributed by B to true. Intuitively, this re-
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sults in an interpolant which is structurally closer to the strongest interpolant specified in

Lemma 3.2.1.

Esparza, Kiefer, and Schwoon [EKS06] use binary decision diagrams (BDDs) [Bry86]

to generate propositional interpolants. Since the underlying data structure allows the effi-

cient elimination of quantifiers, this approach enables the construction of the strongest and

weakest interpolant (see Lemma 3.2.1). In many applications, however, BDDs have been

superseded by SAT solvers for reasons of scalability.

[RSS07] proposes to use a constraint solver for linear arithmetic to find coefficients for

formulae that enable the elimination of symbols local to a partition. Unlike all other tech-

niques discussed in this section, this approach does not extract interpolants from refutation

proofs.
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Chapter 4

Counterexamples and Refinement

with Loops

Iterative constructs are an integral feature of most programming languages. Cyclic control

flow structures and loop invariants are intrinsically tied together, and iterative programming

constructs often disclose crucial information about inductive invariants. Chapters 2 and 3,

however, neglect the existence of repetitive constructs (despite the fact that Hoare as well as

Dijkstra provide mechanisms to reason about loops [Hoa69, Dij75]). This chapter addresses

the problems arising from this omission and presents techniques which exploit the structural

information provided by iterative constructs.

CEGAR (described in Section 2.5.4) in combination with the refinement techniques

presented in Section 2.5.3 guarantees the elimination of the spurious counterexample trig-

gering the refinement step. In the presence of loops iterating over induction variables this

restrained refinement strategy may have the adversary effect of enumerating the loop it-

erations in the abstract domain. A refinement strategy which is unaware of the similarity

between two paths which traverse the same loop a different number of times but are oth-

erwise identical treats these counterexamples as entirely separate instances. In the worst

case, CEGAR eliminates one such spurious counterexample at a time, thus delaying the

detection of counterexamples and inductive invariants. In such a case, the refinement of

counterexamples which traverse “deep” loops turns out to be the Achilles’ heel of CEGAR.
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The problem affects the detection of counterexamples as well as the verification of programs.

� In order to detect a counterexample that traverses a program loop repeatedly, CEGAR

may require one refinement cycle for each iteration of the loop. Accordingly, the

abstract counterexample is gradually extended until it reaches the required length.

The motivating example in Section 1.3.2 illustrates this behaviour.

� Similarly, if the program is safe, the iterative refinement strategy may result in the

construction of an exact model of the induction variable. Accordingly, the loop invari-

ant is approximated from below. Example 2.5.6 demonstrates that this approach may

generate diverging sequence of refinement predicates which are insufficient to derive

an inductive invariant.

The issue of detecting counterexamples with loops is discussed in Section 4.1. Section 4.2

focuses on refinement in the presence of loops. These techniques enable the verification and

falsification of programs which can not be dealt with using the “uninformed” CEGAR

approach discussed in Chapter 2. Instances of such programs are presented in Section 4.3.

Finally, Section 4.4 provides a characterisation of the class of programs for which our loop

detection approach succeeds.

Contribution. This chapter presents techniques to detect potential loops and their re-

spective induction variables. This information is then exploited to either quickly detect

counterexamples which would otherwise only be discovered after a large number of refine-

ment steps, or to eliminate a family of spurious counterexamples in a single refinement

step.

The content of this chapter has previously been published in [KW10]. In this chapter,

we present an adapted and extended version of this paper.1 The journal paper [KW10]

in turn builds upon the work presented in [KW06]. Both publications are joint work with

Dr. Daniel Kroening, who provided a prototypical implementation of the counterexample
1With kind permission from Springer Science+Business Media: Formal Aspects of Computing, Verifica-

tion and falsification of programs with loops using predicate abstraction, volume 22, issue 2, 2010, pages
105–128, Daniel Kroening and Georg Weissenbacher, DOI 10.1007/s00165-009-0110-2, BCS© 2009
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x1:=true
x2, x3:=
true, true

[true]

[¬x1]

x1:=x1?false:*
x2, x3:=
x2?false : ∗,
x2?true : ∗assert(x3)

Figure 4.1: A refined version of the transition system in Figure 2.5(b). The variables x1 and
x2 represent the predicates (i = 0) and (j = 0), respectively. The variable x3 corresponds
to the predicate (j < 10).

detection algorithm in [KW06]. This work is extended and generalised by the author of this

dissertation in [KW10].

4.1 Counterexamples with Loops

The refinement techniques presented in Section 2.5.3 fail to take advantage of readily avail-

able information about the control flow structure of programs. The refinement algorithms

do not distinguish between spurious counterexamples which traverse loops repeatedly and

loop-free counterexamples. We illustrate in Example 4.1.1 in Section 4.1.1 that this unin-

formed strategy may lead to an enumeration of loop iterations. We emphasise that this

problem equally applies to interpolation-based as well as predicate abstraction-based ap-

proximations, but restrict our presentation to the latter.

4.1.1 How Predicate Abstraction Handles Loops

In order to detect a counterexample that contains several loop iterations, predicate abstrac-

tion may require at least one predicate for each iteration of the loop.2 This is illustrated

by the following example.

Example 4.1.1. Consider the abstract transition system in Figure 4.1, which rules out the

spurious counterexample

x1 := true; x2 := true; [true]; x1 := x1?false : ∗; x2 := x2?false : ∗
2Technically, dlog2(n)e predicates are sufficient to enforce n iterations through a loop in the abstract

Boolean program. However, we are not aware of any predicate abstraction-based tool that generates a
binary encoding of the loop counter.
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i:=0 j:=0 [i<10] i:=i+1 j:=j+1

assert(j<10)

[i<10] i:=i+1 j:=j+1 assert(j<10)

Figure 4.2: A concrete path with two loop iterations

present in Figure 2.5 in Example 2.5.5. This is achieved by adding the predicate (j < 10),

which we obtain by means of computing the weakest precondition for the concrete counterex-

ample trace. Unfortunately, the refined transition system does not exclude the path that

traverses the cycle in the control flow automaton twice. Figure 4.2 shows the corresponding

concrete path reaching the assertion.

Again, adding a refinement predicate (namely j + 1 < 10, which we can derive from

the path in Figure 4.2) to P eliminates the spurious counterexample that iterates the loop

twice. This predicate, however, fails to eliminate the spurious counterexample that executes

the loop three times. In order to find the only unsafe path, which iterates the loop ten times,

it is necessary to add all predicates from (j + 1 < 10) up to (j + 9 < 10). To achieve

this, at least ten refinement steps are required. The abstraction refinement scheme uses

the refinement predicates to encode a “one-hot” counter modelling the concrete induction

variable j.

A large number of refinement predicates may make computational effort required to ver-

ify the abstract model prohibitively large. In [BKW07b] we observe run-times of more than

one hour for Boolean program instances with 60 predicates. The effort increases exponen-

tially with each iteration of the CEGAR process (see [KW06] and Section 4.5, for instance).

The number of predicates in Boolean programs generated by predicate abstraction in the

presence of deep loops may easily exceed this limit. For successful verification attempts,

the number of predicates is typically much lower. Ball et al. [BBC+06] reports that the

average number of predicates required to verify Windows device drivers is eight.
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[true] x1:=x1?false:*

x2, x3:=
x2?false : ∗
x2?true : ∗

x2, x3:=
x2?false : ∗,
x2?true : ∗

assert(x3)

¬x1

¬x2

x3

¬x1

¬x2

x3

¬x1

¬x2

x3

¬x1

¬x2

¬x3

¬x1

¬x2

x3

Figure 4.3: Detecting potential loops in abstract paths

4.1.2 Detecting Loops in Abstract Counterexamples

By construction, the verification process (discussed in Section 2.5.1) or the model checking

algorithm reports only one path reaching the assertion. The abstract transition system in

Figure 4.1 contains not only a single counterexample, but a family of similar counterexam-

ples:

Example 4.1.2. Consider the path π in Figure 4.2. We examine the abstract states of

the corresponding abstract path, which we obtain by mapping π to a path of the abstract

transition system in Figure 4.1. Starting with an arbitrary state, we reach an abstract state

x1 = true, x2 = true, and x3 = true after two transitions. The first iteration of the loop

changes this state to x1 = false, x2 = false, and x3 = true (the first state in Figure 4.3).

Once we reach the transition x2, x3:= x2?false : ∗, x2?true : ∗, the non-deterministic transi-

tion function allows us to make a choice: Either we change x3 to false, which results in a

violation of the assertion in the subsequent transition, or we do not change x3 and iterate

the loop once more (see Figure 4.3). Alternatively, the program may terminate without vio-

lating the assertion. The transition system in Figure 4.1 allows to iterate the loop arbitrarily

often before the assertion is finally violated.

This suggests that there is a potential loop in the original program (as indicated by the

repetition signs ||: and :|| in Figure 4.4). The model checking tool, though, reports only a

finite path π (namely the shortest path potentially violating the assertion), but does not

provide information on potential loops that are traversed by this path.

The missing information can be added using a post-processing step: The algorithm
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i:=0 j:=0 [i<10] i:=i+1 j:=j+1

assert(j<10)

||:
[i<10] i:=i+1 j:=j+1 assert(j<10)

:||

Figure 4.4: The path from Figure 4.2 annotated with loop information

presented in Figure 4.5 searches for loops in abstract counterexamples. We use the relational

notation for statements introduced in Section 2.4.2. A loop has to contain a back-edge that

allows us to jump back to an earlier location in the path π. Using the techniques discussed

in Section 3.3, we construct a propositional formula (in step Á) that enables us to efficiently

search for back-edges ŝtmt in the abstract transition system. Intuitively, step Á corresponds

to a model checking run that checks for each location i in π whether there is a path that

leads back to i visiting only locations occurring in π. An example for such a back-edge is

the transition labelled assert(x3) in Figure 4.3 (as explained in Example 4.1.2).

This idea is formalised in Figure 4.5. The conjunction of abstract transition relations

in step À and Á can be encoded as a propositional formula, for which satisfiability (SAT)

is usually efficiently decidable [ES04]. The predicate path(s1, . . . , sn) is a symbolic repre-

sentation of the abstract counterexample π. The algorithm tries to find back-edges in the

abstract transition system for each sub-path stmti; . . .,stmtj of π, resulting in a quadratic

number of SAT-instances. Our experiments show that the overhead for detecting loops is

negligible compared to the time the model checking tool spends searching for counterex-

amples. Note that the algorithm is also able to detect nested loop structures. In the case

that the verification tool is not based on predicate abstraction (see [McM06], for instance),

the detection of abstract loops boils down to checking whether the counterexample visits a

loop head repeatedly.

4.1.3 Checking the Safety of Counterexamples with Loops

The existence one or more loops in the abstract counterexample does not imply that there

is a corresponding path that violates the assertion at the end of the counterexample π. The

question whether a counterexample with loops is safe is undecidable in general. It is, how-
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FindLoops(π) where π = stmt1; . . . ; stmtn−1

À The model checking tool determines a loop-free abstract counterex-
ample s1, . . ., sn using symbolic simulation:

path(s1, . . . , sn) :=
n−1∧
k=1

ŝtmtk(sk, sk+1)

Á For all pairs (i, j), where j ∈ {2, . . . , n} and i < j, check whether
there is a statement stmt that follows stmtj−1 in the CFA such that

∃s1, . . . , sn. path(s1, . . . , sn) ∧

∃s′i, . . . , s′j . ŝtmti−1(si−1, s
′
i) ∧

j−1∧
k=i

ŝtmtk(s′k, s
′
k+1) ∧ ŝtmt(s′j , s′i)

holds.

Â For each (i, j) for which the formula in step Á holds, add following
annotation to the path π:

||: stmti, . . . , stmtj :||

Figure 4.5: Algorithm to detect loops in abstract counterexamples

ever, possible to obtain a loop-free instance of the annotated counterexample by unrolling

the loops a certain number of times. Using forward symbolic simulation (which is equiva-

lent to computing the strongest post-condition of the path), we can then determine whether

this instance violates the assertion or not. Consider, for instance, the counterexample π9

obtained by unrolling the loop in Figure 4.2 nine times. Let π be the prefix of π9 that does

not contain the last assertion of π9. Then, we can show that ¬(sp(π, true) ⇒ (j ≥ 10))

is satisfiable (or even that {true} π {j ≥ 10} holds), i.e., that π constitutes a concrete

counterexample and that the program is therefore not safe.

In general, we do not know how many times we need to unroll the loops to obtain an

unsafe path (it might even be that there is no such path). Therefore, we use a heuristic to

find promising candidates.

The first step is to convert the counterexample π into static single assignment form

(SSA) [CFR+91]. The SSA form is a representation in which each variable of a program
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i0:=0 j0:=0 [i0<10] i1:=i0+1 j1:=j0+1

assert(j1<10)

||: [i1<10] i2:=i1+1 j2:=j1+1 assert(j2<10)
:||

Figure 4.6: The path from Figure 4.4 converted to Single Static Assignment form

is assigned exactly once (see page 29). For this purpose, we replace each existing variable

by an indexed version of this variable (see Figure 4.6, for example). Whenever we reach an

assignment, the version number is increased by one.3

As we unroll the loop, a pattern emerges: In each iteration, the variables in and jn

depend on in−1 and jn−1, respectively (see Figure 4.7). Since the counterexample is in SSA

form, it is easy to identify variants of the loop by means of a simple syntactic analysis. We

obtain a recurrence equation for each variable that is changed in the loop:

i0 = 0 , i1 = i0 + 1 in = in−1 + 1 (4.1)

j0 = 0 , j1 = j0 + 1 jn = jn−1 + 1 (4.2)

We proceed by computing the closed form of these recurrence equations. Computing the

closed form of an arbitrary recurrence equation is a non-trivial problem. In fact, in some

cases such a closed form may not even exist [vEBG04]. In many real-world programs,

however, the recurrence equations that occur in a loop are relatively simple. In our imple-

mentation, we consider only recurrence equations of the form

i0 = α, in = in−1 + β + γ · n

(where n > 0 and α, β, and γ are numeric constants or loop-invariant symbolic expressions

and i is the variant). According to [GKP89], the corresponding closed form is

in = α + βn + γ
n · (n + 1)

2
.

3The result of this process is similar to what we obtain by computing the strongest post-condition and
eliminating the existential quantifiers using Skolemisation.
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||: [in<10] in+1:=in+1 jn+1:=jn+1 assert(jn+1<10)
:||

Figure 4.7: A pattern derived by unrolling the loop in Figure 4.6

It follows that the closed form of the recurrence equations (4.1) and (4.2) is in = n

and jn = n, respectively. This translates to in+1 = i1 + n and jn+1 = j1 + n in our

example (see Figures 4.6 and 4.7). The variable n corresponds to the number of loop

iterations. If we replace the right-hand sides of the assignments in the loop in Figure 4.6

by their corresponding closed forms, we obtain a counterexample that is parametrised with

the number of loop iterations n. The instructions of the parametrised counterexample

constrain the indexed variables that occur in the path as well as the variable n. According

to Lemma 2.2.1, it is possible to represent this path as an existentially quantified formula.

Accordingly, Figure 4.8 shows the parametrised loop and the formula Fπ(n) derived from

the counterexample. Note that the condition contributed by the last assertion is negated

(cf. observation 3 on page 37). Using a constraint solver, we try to compute the smallest

value of n that occurs in a satisfying assignment of the formula Fπ(n).

The smallest value of n that is part of a satisfying assignment to the formula in Figure 4.8

is 9. This value is an educated guess for the number of iterations necessary to violate the

assertion. We unwind the loop of the counterexample according to the pattern in Figure 4.7

such that the last assignment is j10 := 10 and the last assertion is assert(j10 < 10). As

explained above, this path constitutes a concrete counterexample showing that the program

is not safe.

Figure 4.9 shows the algorithm we use to compute candidates for the number of iterations

of the loops in a counterexample. Note that the algorithm is able to handle more than

one loop, and even nested loops. If the algorithm encounters a recurrence equation for

which it fails to compute its closed form,4 then the corresponding variable is assigned non-

deterministically, i.e., the assignment does not contribute a constraint to the formula. Even

though this may result in wrong guesses for the number of iterations, the soundness of the
4While it would certainly be feasible to support a larger class of recurrence equations (see for in-

stance [vEBG04]), it turns out that our approach is sufficient to cover the most common cases like linear
counters. We do not need to support cases in which the loop counter increases exponentially: These cases
can be handled efficiently by traditional unwinding if the bounded range of the program variables is taken
into account.
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||: [i1<10] i2:=i1+n j2:=j1+n assert(j2<10)
:||

(i1 < 10) ∧ (i2 = i1 + n) ∧ (j2 = j1 + n) ∧ (j2 ≥ 10)

(i0 = 0) ∧ (j0 = 0) ∧ (i0 < 10) ∧ (i1 = i0 + 1) ∧ (j1 = j0 + 1) ∧ (j1 < 10)∧
Fπ(n) ≡

Figure 4.8: Constraints derived from the parametrised loop

approach is guaranteed by checking the safety of the unwound counterexample by means of

forward symbolic simulation.

In general, the parametrised formula is not necessarily satisfiable. If, however, the path

π constitutes a counterexample, then Fπ(n) is satisfiable. This follows from the fact that

step Á in Figure 4.9 constructs a correct upper approximation of the strongest postcondition.

Lemma 4.1.1. Let π be the SSA-form of a path, i.e., each assignment to a variable in

(n ≥ 1) is preceded by an assignment to in−1. Furthermore, let α, β, and γ be numeric

constants or invariant symbolic expressions in π, and let f(in) denote an arbitrary (but

fixed) function over in, α, β, and γ. Given a sequence of (not necessarily consecutive)

assignment statements in−1:=α and in:=f(in−1) (where n ∈ {1..m} for some m ≥ 0)

which occur in π, let π′ be a path obtained by replacing all assignments in:=f(in−1) in π

with  in := α + β · n + γ n·(n+1)
2 if f(in−1) = in−1 + β + γ · n

in:= ∗ otherwise.

Then it holds that sp(π, true)⇒ sp(π′, true).

Proof. By induction on m. Let πm be a prefix of π such that all for assignments in:=f(in−1)

in πm it holds that n ≤ m (and similarly for π′m and π′). If m = 0, then π0 = π′0, which

constitutes the base case. The induction hypothesis is that sp(πm, true) ⇒ sp(π′m, true).

W.l.o.g., let πm+1 be πm; stmt. We perform a case split for stmt.

� If stmt is not an assignment of the form im+1:=f(im), then it follows immediately

from the monotonicity of the strongest postcondition and the induction hypothesis

that sp(πm; stmt, true)⇒ sp(π′m; stmt, true)
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GuessIterations(π), where π is annotated with loops

À Transform π into SSA.

Á For each loop in π (as reported by FindLoops):

Ê Generate a recurrence equation for each variable that is up-
dated in the loop.

Ë Introduce a fresh variable n for the loop and try to calculate the
closed forms for the recurrence equations. If unable to compute
a closed form, leave the corresponding variable unconstrained
(i.e., assign it non-deterministically).

i0 = α
in = in−1 + β + γ · n

}
−−−−→ in = α + β · n + γ n·(n+1)

2

otherwise −−−−→ in = ∗

Ì Substitute the right-hand sides of the assignments in π with
the corresponding closed forms.

Â Generate the constraints for the parametrised path. Search for a
satisfying assignment for the corresponding formula that minimises
the parameters {n1, n2, . . .} introduced in step Á. If such an as-
signment exists, return the parameter values. Otherwise, return
“unsatisfiable”.

Figure 4.9: Computing the number of iterations for a counterexample with loops

� If stmt is an assignment of the form im+1:= im + β + γ · (m + 1) then

sp(πm; im+1:= im + β + γ · (m + 1), true)⇒

sp(π′m; im+1:=α + β · (m + 1) + γ
(m + 1) · (m + 2)

2
, true)

follows from the monotonicity of the strongest postcondition and the equivalence of

recurrence equations and their closed form [GKP89]. The implication still holds if we

replace m + 1 with a fresh variable.
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� Otherwise, since im+1 does not occur in πm or π′m, it holds that

sp(πm; im+1:=f(im), true)⇒ ∃v . im+1 = v ∧ sp(πm, true)

⇒ ∃v . im+1 = v ∧ sp(π′m, true)

= sp(π′m; im+1:= ∗, true) ,

where v is a fresh variable not occurring in sp(πm, true) and sp(π′m, true).

On the other hand, the satisfiability of the formula Fπ(n) does not imply that unwinding

the loop gives us a counterexample that violates the assertion. In Section 4.2, we discuss

how to refine the abstract transition system if our heuristic fails.

4.2 Refinement in the Presence of Loops

The heuristic presented in Section 4.1.3 may fail to determine the number of iterations

necessary to obtain an unsafe path. We distinguish two causes of failure: Either there is

no valuation to the parameters {n1, n2, . . .} that satisfies the constraints of the path, or

the heuristic suggests values for the parameters that result in an unwound counterexample

that does not violate the assertion. We discuss the former cause in Section 4.2.1, and the

latter cause in Section 4.2.2.

4.2.1 Refinement Using Closed Recurrence Equations

Figure 4.10 shows a safe program. The traditional refinement approach described in Sec-

tion 2.5.3 may require ten refinement steps to introduce all predicates necessary to show

the safety of the program (unless the predicate transformer used for refinement yields the

interpolant i = j). After two abstraction refinement cycles, the FindLoops algorithm (Fig-

ure 4.5) detects a loop in the abstract transition relation. The suffix of the corresponding

annotated concrete path is shown in Figure 4.11.
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i:=0 j:=0

[i<10]

[i≥10]

i:=i+1

j:=j+1

assert(j≥10)

Figure 4.10: A safe program

||: [i1<10] i2:=i1+n j2:=j1+n
:|| [i2 ≥10] assert(j2 ≥10)

Figure 4.11: A loop detected in the abstraction of the program in Figure 4.10

GuessIterations in Figure 4.9 fails to compute a valuation for the parameter n, since

the formula

. . . ∧ (i1 < 10) ∧ (i2 = n) ∧ (j2 = n) ∧ (i2 ≥ 10) ∧ (j2 < 10) (4.3)

is unsatisfiable. The formula derived from the parametrised path may have more satisfying

assignments than the formula corresponding to the loop-free path. This stems from the

potentially introduced non-determinism and from the fact that it encodes an arbitrary

number of iterations of the loop (cf. Lemma 4.1.1). Therefore, its unsatisfiability implies

the infeasibility of the original counterexample. Therefore, it is of course possible to fall back

to the traditional refinement approach (using predicate transformers and the limited set of

rules in Figure 2.1) for the counterexample without loops to refine the abstract transition

relation. This approach, however, does not exploit the knowledge we have about the loop in

the abstract program. Instead, we take advantage of this information by using a Hoare logic

rule that allows us to reason about loops: Figure 4.12 shows the rule for while-loops. It

states that, given P is an invariant of the loop body π1, the execution of the entire loop also

maintains this invariant. This rule is not as easy to apply as the rules in Figure 2.1: There

is no general technique to automatically infer a loop invariant P that is strong enough to

show the safety of a path with loops.

{P ∧Q} π1 {P}
{P} ||: [Q] ; π1 :|| [¬Q] {¬Q ∧ P}

loop

Figure 4.12: Hoare logic rule for loops
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In our example, we already have a sufficiently strong loop invariant at hand: The con-

junction of the closed forms of the recurrence equations (i = 1+n) and (j = 1+n) implies

that (i = j) is an invariant of the loop in Figure 4.11. This predicate is sufficient to show

that (i ≥ 10) ∧ (j < 10) can not hold. Therefore, we can apply the rule in Figure 4.12 to

show the safety of the program and of the path in Figure 4.11. By applying the loop rule

to the loop in Figure 4.10, we infer

{(i = j)} ||: [i < 10]; i := i + 1; j := j + 1 :|| [i ≥ 10] {(i ≥ 10) ∧ (i = j)} . (4.4)

The prefix i := 0; j := 0 establishes the precondition. Note that (i = j) is an inductive

invariant for the loop. Since the postcondition of (4.4) implies (j ≥ 10), the assertion

cannot be violated.

One might argue that the interpolation techniques presented in Chapter 3 already en-

able us to find the inductive invariant (i = j). However, the closed forms of the recurrence

equations are always loop invariants for their corresponding parametrised counterexam-

ples. Adding these loop invariants to the set of predicates P can result in a significantly

smaller number of refinement iterations. Note that these predicates refer to the param-

eters {n1, n2, . . .} introduced by GuessIterations (see Figure 4.9). The interpolation

algorithms in Chapter 3 enable us to eliminate these parameters from the predicates (by

means of quantifier elimination). In general, however, predicates generated using the weak-

est precondition or strongest postcondition may contain parameters. Therefore, instead of

trying to eliminate {n1, n2, . . .} from the predicates, we instrument the original program

with corresponding induction variables (see Figure 4.13). For each loop, we introduce an

induction variable ni, which is initialised before the loop is entered, and increased at the

end of the loop body. This modification has no impact on the safety of the current coun-

terexample or the program. The advantage of this approach is that it is not necessary

to modify the abstraction algorithm (see Section 2.4.2): In order to make sure that the

information about the loop invariant is preserved, we add three versions of the recurrence

predicate P to P, namely P [n/0], P , and P [n/n + 1]. Then, the resulting abstraction is

strong enough to show that P is preserved when the loop is traversed along the path of the
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i:=0 j:=0 n:=0

[i<10]

[i≥10]

i:=i+1
j:=j+1

n:=n + 1

assert(j≥10)

Figure 4.13: The program of Figure 4.10 augmented with an induction variable n

spurious counterexample:

1. First, {P [n/0]} n:= 0 {P} establishes P upon entrance to the loop.

2. Let stmt be the statement that modifies the induction variable. Then the Hoare triple

{P} stmt {P [n/n + 1]} holds.

3. Finally, by the assignment rule, {P [n/n + 1]} n:=n + 1 {P} holds upon exit from the

loop.

Intuitively, we avoid the universal quantification over n by an induction over the param-

eter n. In our example in Figure 4.13, the predicates (i = 0), (i = n), (i = n+1), (j = 0),

(j = n), and (j = n + 1) are sufficient to prove the loop invariant (i = n) ∧ (j = n). In

combination with the predicates (i ≥ 10) and (j ≥ 10), this invariant is strong enough to

show the safety of all unwindings of the counterexample in Figure 4.11.

The loop invariant given by the conjunction of the recurrence predicates is not always

strong enough to eliminate the spurious counterexample. The reason is that the approach

presented above ignores all statements in the loop body except the ones that contribute a

recurrence equation. We observe that the original counterexample is also infeasible, since the

parametrised path is more general than the original path. Therefore, adding the predicates

that we can extract from the non-parametrised path is sufficient to eliminate the original

counterexample. In addition, we add the recurrence predicates, hoping that they eliminate

other potential counterexamples that contain more than one loop iteration from the model.

Predicate abstraction is able to establish disjunctive invariants that can be expressed in

terms of the predicates [BMMR01]. Therefore, our technique is also able to establish the

safety of programs with disjunctive loop invariants. In Section 4.3, we will give an example

for such a program.
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i:=0 j:=k

[i<10]

[i≥10]

i:=i+1

j:=2·j

assert(j= k · 1024)

Figure 4.14: A safe program

||: [i1<10] i2:=i1+n j2:=*
:|| [i2 ≥10] assert(j2 = k·1024);

Figure 4.15: A parametrised path with a loop for the program in Figure 4.14

4.2.2 Refinement Using Unwound Spurious Counterexamples

The scheme we use to solve recurrence equations matches only the cases specified in step Á.Ë

of Figure 4.9. It fails to solve recurrences as simple as jn = 2·jn−1. Therefore, the approach

described in Section 4.1.3 yields the parametrised path in Figure 4.15 for the program in

Figure 4.14. The resulting formula does not constrain the variable j2:

. . . ∧ (i1 < 10) ∧ (i2 = n) ∧ (i2 ≥ 10) ∧ (j2 6= k · 1024) (4.5)

GuessIterations determines that 10 is the smallest value for n such that Formula (4.5) is

satisfiable. The corresponding unwound path, however, is safe. Even though the predicate

(i = n) is a loop invariant, it is not strong enough to show the safety of the program.

In that case, we fall back on the traditional refinement approach. To eliminate all

spurious counterexamples represented by the path with loops, it is necessary to add the

refinement predicates from the proof of safety for the unwound counterexample. In our

example, the weakest precondition yields the predicates (j = 2 · k), (j = 4 · k), (j = 8 · k),

. . ., (j = 1024 · k) and (i < 10), (i + 1 < 10),. . ., (i + 9 < 10), which are sufficient to show

the safety of the path.

An obvious disadvantage of this approach is that it generates a large number of predi-

cates. The traditional refinement technique, however, yields the same set of predicates, but

needs at least ten refinement steps, while our technique shows the safety of the program in

only three abstraction refinement cycles. In Section 4.5, we present benchmarks for which

this eager refinement approach performs better than traditional iterative refinement.
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FindLoops(π)
r:=GuessIterations(π)
if r =“unsatisfiable” then

π′:=π
else

π′:=Unroll(π, r)

Verify

Simulate π′

Abstract

Refine

π′[π′ is infeasible]

predicates

abstract model counterexample π

original
program

[safe]

[π′ feasible]

program is safe

report error

recurrence
predicates

Figure 4.16: Integrating loop detection into the abstraction refinement cycle

Integrating our Techniques into CEGAR Figure 4.16 shows how our loop detection

algorithm and the improved refinement technique are integrated into the traditional abstrac-

tion refinement cycle (see Figure 2.9 in Section 2.5.4). The analyses presented in Section 4.1

(Figures 4.5 and 4.9) are introduced between the model checking step and the simulation

phase. Depending on the result r of the GuessIterations heuristic, the potential loops in

the counterexample π may be unrolled accordingly (indicated by Unroll(π, r)), yielding

a loop-free counterexample π′. As explained in Section 4.2, the recurrence predicates are

added to the set of predicates P in the refinement step (indicated by the dashed arrow

in Figure 4.16). Notably, our approach does not require any major modifications of the

original steps of the CEGAR algorithm.

4.3 Examples

Figure 4.17 shows three programs which are slightly more sophisticated than the examples

discussed so far. (Recall that we already encountered the example in Figure 4.17(b) in

Section 2.5.4, where we demonstrated that CEGAR may fail to terminate.) We discuss how

these programs are verified using the approach presented in the previous sections.
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Alternating Branches. The program in Figure 4.17(a) is not safe: The assertion can

be violated by iterating the loop 40 times. Note that the branches of the conditional

statement in the loop body are alternating. Initially, our approach detects a potential

loop that repeatedly executes the same branch (for instance, the branch in which i and

j are increased). The corresponding parametrised counterexample is infeasible, since x is

initialised to 0 in the prefix of the path and never modified when traversing the loop. The

predicates (i < 20), (x < 20), and ¬b, which are determined using the traditional refinement

approach, eliminate this spurious counterexample and force the execution of both branches

of the conditional statement in the correct order. The model checker is now forced to

unwind the loop twice and reports a corresponding abstract counterexample. Again, this

counterexample contains a potential loop, namely

. . . ||: [(i < 20) ∨ (x < 20)]; [b]; x := x + 1; y := y + 1; b :=¬b;

[(i < 20) ∨ (x < 20)]; [¬b]; i := i + 1; j := j + 1; b :=¬b :|| . . . .

The body of this loop is an unwinding of the cycle in the control flow graph in Figure 4.17(a).

GuessIterations (see Figure 4.9) yields 20 as a promising candidate for the number

of iterations of this loop. Finally, the forward simulation of the corresponding unwound

counterexample confirms that it is indeed a feasible path that violates the assertion.

In the setting described above, adding the recurrence predicates x =n, y =n, i =n, and

j =n fails to provide any benefit. If, however, we change the assertion in Figure 4.17(a) to

assert((j ≥ 20) ∧ (y ≥ 20)), the resulting loop invariant (x = y) ∧ (i = j) is sufficient to

show the safety of the modified program.

Diverging Sequence of Predicates. Figure 2.10 shows a program presented by Jhala

and McMillan [JM06]. For this example, the traditional refinement heuristic5 yields a diverg-

ing sequence of predicates insufficient to represent the loop invariant (i = j)⇒ (x = y). Our

approach is capable of detecting the loop and inferring the recurrence predicates x = i− n

and y = j− n. In combination with the conditions (i = j) and (x = 0), the resulting loop
5Jhala and McMillan refer to what we call the traditional refinement heuristic as “typical predicate

heuristic”.
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invariant (x = i− n) ∧ (y = j− n) is sufficient to establish the safety of the program.

Disjunctive and Non-Linear Invariants. The program in Figure 4.17(c) has two in-

teresting aspects: The loop invariant is non-linear; moreover, it is disjunctive. Similar

to Figure 4.17(a), the loop contains a conditional statement with two branches. In the

program in Figure 4.17(c), however, only one of the two branches can be executed. The

non-deterministic assignment b:=* determines which branch is selected. Depending on this

choice, either the assertion (i= 2·j) or the assertion (2·i>j2) holds. Therefore, the in-

variant of the whole loop is the disjunction (i= 2·j) ∨ (2·i>j2) Our approach detects the

two parts of the invariant separately and leaves the task to merge this information into a

disjunction to the predicate abstraction framework. Our algorithm detects two alternative

loops, namely

||: [j < 10]; j := j + 1; [¬b]; i := i + 2; assert((i = 2 · j) ∨ (2 · i > j2)) :|| and

||: [j < 10]; j := j + 1; [b]; i := i + j; assert((i = 2 · j) ∨ (2 · i > j2)) :|| .

The recurrence predicates (j =n) and (i =2 · n) are sufficient to show the safety of

the first loop. The latter case is more complicated, since the two assignments are interde-

pendent. We resolve this dependency by processing the recurrence equations in topological

order. First, we determine the closed form j =n for the assignment j:=j+1. Using this

closed form, we eliminate j from the assignment i:=i+j and obtain the instruction i:=i+n.

For the corresponding recurrence equation, in:=in−1+n, we compute the closed form

in = i0 +
n · (n + 1)

2

(as explained in Figure 4.9). Since i0 is 0, the resulting recurrence predicate is i =n·(n+1)
2 .

This predicate, in combination with j =n, implies 2 · i > j2. Therefore, the recurrence

predicates generated by the algorithm proposed in Section 4.2.1 are (in theory) sufficient to

prove the safety of the program. In practice, unfortunately, it turns out that most predicate-

abstraction-based model checking tools do not support non-linear arithmetic operations at

all. Even though our verification tool SatAbs [CKSY05] is able to handle non-linear arith-
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metic by converting the operations to propositional formulas, the SAT instances generated

during the verification of the program in Figure 4.17(c) turn out to be too complex for the

underlying SAT solver.

This negative result, however, must not be mistaken as evidence that our approach does

not scale in the presence of non-linear arithmetic in general. For the following counterex-

ample, for instance, our implementation is able to determine 20 as the number of iterations

for which the assertion is violated. This takes only two refinement cycles and less than one

second:

i = 0; j = 0; ||: [∗]; j := j + 1; i := i + j; assert(i < 210) :||

(Here, [∗] denotes a condition that non-deterministically evaluates to either true or false in

each iteration of the loop.)

4.4 Conditions for Completeness

The examples in the previous section raise the question of whether the class of programs for

which our approach is complete (i.e., able to prove safety) can be defined rigorously. Even

though the traditional CEGAR approach discussed in Section 2.5.4 may succeed to establish

an invariant that is sufficiently strong to show the safety (this is the case for the program

in Figure 4.10, for instance), it fails to do so in general: As discussed in Section 2.5.4, the

traditional refinement algorithm yields a sequence of diverging predicates for the program

in Figure 2.10. Our algorithm is able to find loop invariants for a larger class of programs

than the traditional refinement approach and may avoid divergence.

In order to define the class of programs for which our approach is complete, we start

with a characterisation of the paths for which our algorithm finds sufficiently strong loop

invariants. Given a path π with a loop, where π0, π1, and π2 are loop-free sub-paths, and

π
def= π0 ; ||: [P ];π1 :|| [¬P ];π2; assert(Q) , (4.6)

a predicate R is a sufficiently strong loop invariant if all of the following conditions hold:

� R is an invariant of the loop, i.e., {P ∧R} π1 {R} holds,
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b:=true i:=0 j:=0 x:=0 y:=0

[(i<20)∨(x<20)]

[b]

[¬b]

x:=x+1

i:=i+1

y:=y+1

j:=j+1 b:=¬b

[(i≥20)∧(x≥20)]

assert((j>20)∧(y>20))

(a) Loop body with alternating branches

x:=i y:=j

[x 6= 0] x:=x-1

y:=y-1

[x= 0]
[i = j]

[i6=j]

assert(y=0)

(b) A program presented by Jhala and McMillan in [JM06]

b:=* i:=0 j:=0

[j<10]
j:=j+1

[b]

[¬b]

i:=i+j

i:=i+2

assert((i=2·j)∨(2·i>j2))
[j≥10]

(c) A loop with a disjunctive invariant

Figure 4.17: A panopticon of programs that can be handled using the approach presented
in this chapter
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� there is a predicate Q0 such that {true} π0 {Q0} holds and Q0 ⇒ R, i.e., sp(πo, true)

implies R and the prefix π0 establishes the invariant R,

� there is a predicate P2 such that {P2} π2 {Q} holds and (¬P ∧ R) ⇒ p2, i.e., the

negated loop condition combined with the invariant R implies the pre-condition of π2

with respect to the post-condition Q.

These conditions follow immediately from the rule in Figure 4.12. Under the implication

order, the loop invariant R is bounded from below by the strongest post-condition of π0

(denoted by sp(π0, true)), and bounded from above by the weakest pre-condition for π2

terminating with Q true (denoted by wp(π2, Q)) (cf. Definition 2.2.1). Note that these

bounds are not necessarily loop invariants. Our algorithm is able to prove the path π safe

if it manages to compute a loop invariant that lies within these bounds, i.e., the predicates

P , which determine the abstract domain, must contain an exact representation of such an

invariant.

Our algorithm is succeeds in more cases than the traditional CEGAR approach, since

it is able to compute invariants not detected by a refinement approach that does not take

the information about loops into account. The class of loop invariants our heuristic is able

to infer is restricted, though. Currently, we support only invariants of the form

x = α + β · n + γ
n · (n + 1)

2
(4.7)

(where x and n are variables and α, β, and γ are expressions constant throughout the loop).

Furthermore, an invariant of this kind can only be constructed if the sub-paths π0 and π1

of the path π (as defined in (4.6)) match the following pattern:

π0 = . . . ; x := α0; . . . ; y := α1; . . .

π1 = . . . ; x := x + β0; . . . ; y := y + β1 + x; . . .
(4.8)

As before, α0, α1, β0, and β1 are expressions not modified in the loop body, and x and y are

arbitrary scalar variables. The ellipses indicate arbitrary instructions that do not modify

x and y, and the instructions y:=α1 and y:= y+β1+ x are optional. Our implementation
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simplifies arithmetic expressions in order to increase the number of matches. Furthermore,

if the pattern matches more than one set of instructions, the algorithm constructs one

invariant for each matching combination of assignments. Since all these invariants hold by

construction for the detected loop, this does not lead to a combinatorial explosion.

A syntactic definition more restrictive than the pattern in (4.8) would be too strong:

The invariant that is required depends on the assertion that is checked, and a slice of the

path may be sufficient to show the safety of the path. Furthermore, we are not restricted

to purely arithmetic invariants: If the instructions indicated by the ellipses contain array

accesses, pointer arithmetic, or non-linear operations, the resulting loop invariant may use

a combination of these theories. If necessary, the set of invariant templates can be in-

creased by using more sophisticated algorithms for solving recurrence equations (see, for

instance, [vEBG04]).

We conclude that our algorithm is complete for programs for which all paths with loops

are of the form (4.8), and the conditions listed above hold for the resulting invariants.

If the sub-paths π0 and π2 (see (4.6)) also contain loops, then the conditions have to

be strengthened: The upper and lower bounds for the invariant are not determined by

the strongest and weakest pre- and postconditions of the paths, respectively, but by the

strongest and weakest predicates that the abstraction refinement algorithm can infer at the

loop entry and loop exit locations.

The completeness of the traditional abstraction refinement algorithm is analysed and

compared to a iterative fixed point algorithm with oracle-guided widening in [BPR02].

The results presented there also apply to our algorithm, since the invariants our algorithm

detects are a superset of the invariants detected by the traditional refinement technique.

4.5 Experimental Results

We evaluate our approach using a set of programs that contain known buffer overflows.

For this purpose, we implemented the technique described in the previous sections into

our predicate abstraction-based verification tool SatAbs [CKSY04, CKSY05]6. SatAbs

6Available at http://www.cprover.org/satabs/
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i:=0 assert(i≤ MAX) dest[i]:=src[i] [src[i]=0]

[src[i]6=0]i:=i+1

Figure 4.18: A model of the strcpy function

uses a SAT-solver [ES04] as decision procedure. SatAbs translates arithmetic operations

into propositional formulas representing the corresponding hardware implementation (cf.

Section 3.3), i.e., the bounded size and the bit-vector semantics of integers are modelled ac-

curately. Thus, we rely on efficient satisfiability checking algorithms to solve the constraint-

satisfaction problem in step Â in Figure 4.9. While the SAT-solver may be a potential

bottle-neck of the verification process (as indicated at the end of Section 4.3), modern

SAT-solvers tend to cope extremely well with problems that do not contain complicated

arithmetic expressions.

Table 4.1 shows a comparison of the loop detection algorithm and a version of SatAbs

in which the loop detection feature is disabled. We measure the effect of the loop detection

algorithm on the number of iterations, the number of predicates generated, and the total

runtime of the tool. The experiments discussed in this section were done on an Intel Pentium

4 with 3 GHz and 2 GB of memory. The Aeon benchmark, also presented in [KW06] and

listed in the upper section of Table 4.1, demonstrates the potential of our approach: Aeon

0.02a is a mail transfer agent that contains a buffer overflow, which can be triggered by

means of an overly long environment variable HOME. The content of this variable is obtained

using the getenv POSIX API function and is copied (by means of strcpy) to a buffer of

fixed size without checking the length of the string.

We replaced the getenv function by a model that returns a string of non-deterministic

size and content. Figure 4.18 shows the implementation of strcpy, augmented with an

assertion7 that fails if i exceeds the upper bound of the string dest. In the original program,

the size of the dest buffer is 512 bytes. Our implementation detects the relevant loop

immediately and reports the buffer overflow within 15 seconds, half of which are spent
7Our tool SatAbs automatically generates assertions for array bounds, division by zero, and pointer

validity. For the Aeon program, which has approximately 800 lines of code, SatAbs generates 576 such
assertions.
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simulating the unwound counterexample. Without loop detection, SatAbs is unable to

provide an answer within a reasonable amount of time. Therefore, we reduced the size of

the buffer to 5 and 10 bytes, respectively. As expected, the number of iterations necessary

to detect the buffer overflow increases linearly with the size of the buffer. As we report

in [KW06], the runtime of traditional predicate abstraction tools grows exponentially with

the number of iterations of the loop [KW06], while our loop detection algorithm is not

sensitive to the size of the buffer. For a buffer size of 10, our loop detection algorithm

is already 400 times faster than the version of SatAbs not supporting the loop detection

feature. A similar comparison (also based on Aeon) of our approach to Slam and Blast

can be found in [KW06], showing that our heuristic can prevent the exponential increase of

the runtime both Slam and Blast exhibit in the presence of loops.

We obtained the remaining entries in Table 4.1 by running our algorithm on problems

selected from a buffer overflow benchmark presented by Ku et al. [KHCL07]. These test-

cases are simplified versions of a variety of buffer overflow vulnerabilities in open source

programs like OpenSER, bind, and apache. We used the unmodified, publicly available

benchmark to generate the entries in Table 4.1. The bounds of the loops in these programs

are very small, since the benchmark was designed to evaluate software model checking tools

that are based on traditional predicate abstraction. If we increase the bounds to a realistic

size, the runtime of the traditional algorithm increases exponentially, while the runtime

of the loop detection algorithm is mainly determined by the simulation of the unwound

counterexample and remains almost unchanged.

The benchmark comprises unsafe programs and their corresponding patched (and there-

fore safe) counterparts. Our experiments show that our approach works particularly well for

unsafe programs, like the OpenSER benchmark [KHCL07]. For the corresponding patched

version of OpenSER, the speedup is less impressive but still measurable: Once the loop is

detected, our refinement algorithm adds the relevant predicates in a single iteration. In

the case of the bind benchmark [KHCL07], our algorithm has no positive impact on the

performance. Even though it detects the loop, the number of iterations is too small to

result in a significant improvement in runtime. The reason for the performance penalty

is that our model checker for abstract programs, in which we implemented the detection
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algorithm for abstract loops (see Figure 4.5), is not as fast and optimised as the SMV model

checker [McM92], which SatAbs uses by default. Our algorithm fails to detect the loop in

the patched version of bind and in the apache benchmark [KHCL07]. In both cases, this

has no significant impact on the number of predicates and iterations.

Our experimental results confirm that the technique typically yields a significant per-

formance improvement if our heuristic manages to detect the loop. If, on the other hand,

our algorithm fails to detect the crucial loop, the performance impact is negligible.

4.6 Related Work

The approach we present extends the loop detection algorithm in [KW06]. The algorithm

presented in [KW06] is covered in Section 4.1. The refinement technique based on adding

recurrence predicates (see Section 4.2) is an improvement of the traditional refinement

algorithm [BR02a] applied in [KW06].

Beyer et al. [BHMR07b] proposes to combine counterexample-guided abstraction re-

finement (CEGAR) [CGJ+00] and invariant synthesis to prove the absence of counterex-

amples. Similar to our approach, the algorithm aims at computing invariants of loops in

counterexamples. The resulting path invariants contain universal quantifiers. Unlike the

recurrence predicates generated by our technique, universally quantified predicates are not

readily integrated into existing predicate abstraction-based software verification tools (e.g.,

Slam [BR02b, BCLR04], Blast [HJMS02], Magic [CCG+04], F-Soft [IYG+05], and Sa-

tAbs [CKSY05]) and require special treatment in the abstraction phase. Similar to our

recurrence equation-based approach, the algorithm used to generate path invariants is only

complete for a certain class of invariant templates (specified in the language of linear arith-

metic with uninterpreted function symbols) [BHMR07a]. The class of invariants covered by

our approach is discussed in Section 4.4.

Daikon [EPG+07] is a tool that dynamically detects potential (“likely”) invariants of

a program. It relies on executing the program using a suite of test cases (e.g., regression

tests). Daikon traces the values of variables at appropriate points in the program (e.g.,

procedure entries and exits) by means of instrumenting the code. Using the resulting data,
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Daikon evaluates a large number of potential invariants (applying pre-defined patterns

including linear relations over two or three variables, intervals, ordering of sequences, etc.)

and reports the invariants that it observes to hold for the recorded test runs. This approach

suffers from the same problems as testing, since it depends heavily on the test suite. A

single additional test run may invalidate the reported invariants. Thus, the results are

not guaranteed to be invariants of the program, though the precision is claimed to be

high [EPG+07]. The invariants generated by our approach are guaranteed to be invariants

of the analysed paths and not just of a concrete run of that path. Furthermore, Daikon

generates a large number of potential invariants, which makes it unsuitable in our setting,

since the scalability of predicate abstraction decreases rapidly with an increasing number

of predicates. Our technique generates only invariants that are promising candidates to

eliminate a spurious counterexample.

The Daikon tool is highly extensible and allows the user to add new types of invariants.

Our implementation would certainly benefit from such a flexibility. We intend to investigate

the feasibility of extending our approach to more complex data-types such as those provided

by the C++ template library (see Section 5.2).

Jain et al. [JIG+06] proposes to strengthen the transition relation of the original program

using statically computed linear invariants of the form ±x ± y ≤ c. They observe that

predicate abstraction generates a more precise abstraction if the original transition relation

is strengthened. Since using all generated invariants may not be beneficial, they use a

heuristic to filter out invariants not deemed important. In contrast, we compute invariants

on demand, and our technique detects a different class of invariants, including nonlinear

ones.

Leino and Logozzo suggest to strengthen loop invariants on demand, as the need for

stronger invariants arises during the verification process [LL05]. The accuracy of the (nu-

meric) domain used by the abstract interpreter is increased if the theorem prover fails to

show the safety of a path. The technique combines invariants generated by means of abstract

interpretation with automatic theorem proving. In contrast, our technique and the path

invariants approach are based on predicate abstraction and model checking. Furthermore,

neither path invariants, nor Leino and Logozzo’s or Jain’s approach aim at accelerating the
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detection of counterexamples.

The incompleteness of traditional predicate-abstraction based CEGAR implementations

(e.g., [BR02b, BCLR04]) is a well known problem [Cou00]: If the program is safe, the ab-

straction refinement algorithm is incomplete unless the refinement step introduces a pred-

icate that represents a (sufficiently strong) invariant of the program. Jhala and McMil-

lan [JM06], to whom we owe the example in Figure 2.10, address this issue by avoiding the

generation of a diverging sequence of refinement predicates by restricting the search space of

the interpolation-based [HJMM04] refinement algorithm. Unlike our recurrence-based tech-

nique and the path invariant approach, their refinement algorithm considers only loop-free

counterexamples.

The existence of a counterexample with loops can also be shown by means of induction

on the loop bound [WGI07]. This approach has the advantage that it is not necessary

to unwind the counterexample. The approach, as presented in [WGI07], is restricted to

non-nested loops with a single induction variable and a loop condition that is monotonic

with respect to the loop bound. Moreover, it is not suitable for showing the absence of

counterexamples.

Path Slicing is an approach that shortens counterexamples by dropping the statements

that have no impact on the reachability of the program location in question [JM05]. The

statements and branches that can be bypassed are eliminated by backward slicing: For

each program location, the set of relevant variables whose valuations at that point deter-

mine whether or not the error location is reachable is computed. The feasibility of a path

slice implies the feasibility of the original counterexample, but assumes termination of the

omitted code sequences. Path slicing eliminates loops during the symbolic simulation if and

only if they do not contribute to the reachability of the error location. Therefore, path

slicing is orthogonal to our approach, since it prevents expensive unrolling of loops that are

not related to the error.

Ball et al. [BKS07] proposes a technique based on identifying a sequence of must-

transitions through loops in an abstract transition system generated by predicate abstrac-

tion. In order for this approach to succeed, the concrete transition system must adhere to

a set of restrictions, for instance, the abstract state a at the loop entry must represent a

183



finite set of concrete states, and each concrete state represented by a must not have more

than one successor in a. This technique aims at proving the termination of loops in order to

leap loops in the abstraction refinement process without the need for further refinement. In

contrast, our approach does not impose any restrictions on the concrete transition system.

Furthermore, our goal is not proving loop termination, but to find a single counterexample

that traverses the loop and violates an assertion.

Linear programs have been proposed by Armando as an alternative, more fine-grained

formalism for abstractions of sequential programs [ACM04]. Due to the higher expressive-

ness of linear programs (in comparison to Boolean programs), this approach yields a smaller

number of spurious execution traces. However, the abstraction algorithm is restricted to

a pointer-free subset of the C programming language that employs linear arithmetic and

arrays [ABM06, ABC+07].

Rybalchenko and Podelski present a complete method for detecting linear ranking func-

tions of non-nested program loops [PR04]. The inferred ranking function poses an upper

bound for the iterations of the loop. This bound is not necessarily tight. Combined with

abstraction-refinement, this approach enables proofs of program termination [CPR05]. A

proof of termination is insufficient to show the feasibility of counterexamples with loops,

since the violation of the property usually depends on the number of iterations. Therefore,

we utilise a method that provides the exact number of loop iterations necessary to reach

the error state.

Acceleration is a technique that aims at computing the repeated iteration of a sequence

of transitions of a symbolic transition system in one step [BFLP03, FL02]. It targets finite

linear systems and counter automata. The technique accelerates the computation of the

reachable states of the system, but does not specifically target the detection of counterexam-

ples. Acceleration is also called exact widening [CC77]. Our heuristic GuessIterations(π)

(see Figure 4.9) may also be interpreted as a widening and acceleration step on the transition

function defined by the body of the detected loop.
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Chapter 5

Future Directions and Conclusion

Our dissertation presents novel techniques for interpolation-based software model checking,

an approximate method which uses Craig interpolation [Cra57a, Cra57b] to construct ab-

stractions. We consider two aspects of program analyses based on model checking: verifica-

tion (the construction of Hoare proofs [Hoa69] for programs) and falsification (the detection

of counterexamples that violate the specification).

A Hoare proof comprises assertions and loop invariants which serve as a certificate of

the correctness of a program with respect to a given specification. Chapter 2 provides an

overview of state-of-the-art techniques aimed at computing such proofs by means of symbolic

simulation and automated abstraction. The principal challenge is to select appropriate

assertions and loop invariants from a range of potential candidates.

Craig interpolation is a promising technique to aid this selection. A Craig interpolant

can be derived from a symbolic representation of an execution trace that does not violate

the specification. The resulting interpolant represents a set of states which is (a) an upper

estimation of the states reachable along the trace and (b) a lower estimation of the safe

states from which no “bad” states can be reached along the trace. The construction of a

Hoare proof is based on iteratively considering execution traces and their corresponding

interpolants until an invariant establishing the safety of the program is found. The success

of this approach depends on whether the resulting sequence of interpolants converges.

Convergence, in turn, inherently depends on the choice of interpolants. The work of

Ranjit Jhala [Jha04] demonstrates that the use of Craig interpolants leads to a better
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performance than traditional techniques such as Dijkstra’s predicate transformers [Dij75]

(within the same verification framework). McMillan’s results in [McM06] corroborate this

observation. The improved performance is attributed to the fact that the abstraction ob-

tained using Craig interpolation is more “parsimonious” [HJMM04].

Both implementations, however, are based on an interpolation technique that is entirely

ad-hoc and yields only a single interpolant [McM05], affording no other choice of assertions

for the respective execution trace. The same restriction applies to other recent interpola-

tion procedures (for instance [KMZ06, KW07, BZM08, FGG+09, GKT09, KV09b, KW09a,

BKRW10]).1 The interpolation techniques presented in Chapter 3 lift this restriction: we

show that the logical strength and the symbols occurring in the interpolants can be sys-

tematically tuned. The preliminary experiments in Section 3.6 show that the impact of

interpolant strength on the performance of the verification tool cannot be neglected.

Moreover, our interpolation techniques target three different levels of abstraction. The

interpolation system discussed in Section 3.3 extracts propositional interpolants from bit-

flattened representations of symbolic execution traces, targeting the lowest level of abstrac-

tion. Section 3.5 covers interpolation systems for word-level formulae. These systems, while

sound with respect to the bit-level semantics of software programs, yield interpolants which

preserve the integrity of variables and word-level operations encountered in the program.

This approach maintains a higher level of abstraction than propositional interpolation sys-

tems. Section 3.4 presents a technique which enables us to combine bit-level and word-level

interpolation systems. Finally, the approach discussed in Section 4.2 takes the control-

flow structure of programs into account. This approach is orthogonal to the interpolation

techniques presented in Chapter 3. We exploit the information about repetitive program-

ming constructs in order to accelerate the convergence of the sequence of the interpolants

obtained by exploring execution traces of the program.

The information about loops in execution traces proves particularly advantageous in

the context of program falsification. We present a technique to obtain and exploit this

information in Chapter 4. Equipped with the information about repetitive constructs in
1The interpolation procedures presented in [FGG+09, GKT09, KW09a] leave some room for variation in

the colour of a limited number of partial interpolants, c.f. Section 3.5.
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an execution trace, we construct a parametric representation of the trace which encodes

arbitrarily many repetitions. We then use a decision procedure to examine the parametrised

trace for counterexamples. Our technique helps to avoid the repeated and computationally

expensive construction of interpolants for structurally similar execution traces if one of these

traces violates the specification. It enables the detection of counterexamples that contain

deep loops. A typical example of program defects demonstrated by such counterexamples

are buffer overflows. The experimental evaluation in Section 4.5 shows that our approach

enables the detection of bugs of this nature: our implementation outperforms the traditional

abstraction-refinement approach based on predicate abstraction on many typical buffer

overflow examples.

5.1 Open Issues

While Section 3 presents a range of different interpolation systems which allow for variation

of the strength and structure of the interpolants, it leaves the question of how to choose

a promising candidate for the invariant open. The experiments in Section 3.6 show that

the impact of interpolant strength on the performance of the verification tool cannot be

neglected. At this point, however, we fail to provide a method to determine whether it is

beneficial to strengthen or weaken interpolants: our experiments show that neither choice

is consistently superior. We believe that this problem can only be solved empirically. A

wider evaluation based on a more diverse set of programs is required to provide a more

sophisticated analysis of the impact of interpolant strength. We defer this detailed analysis

to future work.

5.2 Future Directions

The experimental results in Chapter 4 indicate that an informed refinement approach which

exploits information about the program structure can enable a significant improvement

of the performance of a verification tool. The interpolation-based refinement technique

presented in Section 2.5.3, however, considers only single execution traces. Moreover, while

the interpolation systems presented in Chapter 3 enable the construction of a wider range
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of Craig interpolants, we currently lack the means to guide the selection of interpolants.

We conjecture that factors other than interpolant strength may have a significant impact

on the performance of the tool. For instance, Theorem 3.3.1 enables a systematic inclusion

or exclusion of word-level atoms in interpolants. It is possible to guide the construction of

interpolants using external information about the program provided by the model checking

algorithm. Information about the program structure or a computationally inexpensive static

analysis can aid the choice of potential invariants (see, for instance, [KV09a] and [JIG+06],

respectively).

In many software verification tools (e.g., Slam [BCLR04], Blast [HJMS02], SatAbs

[CKSY05], and Wolverine) the underlying interpolating decision procedure is only loosely

coupled with the component performing the static analysis. The recent advances of SMT

solvers led to verification tools (such as CPAchecker [BCG+09]) which delegate more

work to the decision procedure by encoding control flow constructs (such as conditional

statements) in the formula presented to the solver. While this approach enables us to

encode a large number of execution traces in a single formula, the decision procedure is not

aware of the semantics of control flow constructs. Therefore, it cannot take advantage of

potentially available information about the control flow structure of the program. In the

future, we expect to see interpolating decision procedures which are more tightly integrated

into the static analysis.

Furthermore, we intend to investigate the impact of interpolant properties other than

logical strength and structure. For instance, we conjecture that proof restructuring tech-

niques (as presented in [BIFH+09]) and an opportunistic choice of the colour of conclusions

in refutation proofs (c.f. Section 3.5) enable a reduction of the size of interpolants. A first

step in this direction is reported in [FGG+09]. While the size of interpolants is not an

immediate problem in our setting, it may become a paramount factor in the presence of

more complex transition functions (which typically derive from hardware models or may

arise from the encoding of control flow constructs presented in [BCG+09]).

Finally, our idea to exploit the information about the control flow structure of a program

in order to obtain “better” interpolants is not restricted to the simple invariants discussed

in Section 4.4. We plan to extend our approach to invariants over more complicated data-
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types such as those provided by the C++ template library. We intend to base this work

on the verification technique presented in [BGK07], which is based on an abstract model of

the template library that preserves relevant facts such as the size of C++ containers (e.g.,

lists). Furthermore, we have plans to integrate our approach into our interpolation-based

model checking tool Wolverine.

The idea of extracting invariants from paths is very promising and has recently been

successfully applied in a number of different ways (e.g., see [KW06, BHMR07b, EPG+07],

discussed in Section 4.6). It is particularly powerful in combination with a refinement-based

static analysis technique, allowing it to derive non-trivial disjunctive invariants. We expect

to see extensions of our idea that enable the verification of a larger, more general class of

programs.

5.3 Conclusion

Our dissertation discusses interpolation algorithms which afford us a choice of different in-

terpolants. Furthermore, our interpolation systems are sound with respect to the bit-vector

semantics of software programs. Finally, we present a technique which exploits information

about the presence of loops in order to accelerate the detection of counterexamples or to

derive interpolants for a family of safe execution traces in a single step. Each single con-

tribution is, to the best of our knowledge, an improvement over the state-of-the-art. The

experimental evaluation of the implementation of the techniques presented in this disserta-

tion demonstrates their potential to improve the performance of verification tools. While

a further investigation of the impact of a different choice of interpolants is required, the

promising experimental results suggest that a further pursuit of this line of research is

worthwhile.
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Appendix A

Implementation

A.1 Implementation Details of Wolverine

Our interpolation-based software verification tool Wolverine is an implementation of the

algorithm presented in [McM06]. It is based on Daniel Kroening’s CProver framework,1

which provides a mature and robust front-end for ANSI-C and C++ programs and a bit-

level accurate symbolic simulator for these programming languages.

Wolverine aims at constructing the complete complete reachability tree (see Defini-

tion 2.5.1 in Section 2.5.1) of a program. To this end, it unwinds the control-flow graph (see

Section 2.3) in a depth-first search manner. Each path in this graph which reaches an as-

sertion is a potential counterexample. The feasibility of the corresponding program paths is

checked using the symbolic simulator of the CProver framework, which generates an SSA

representation of the respective strongest postcondition (see page 29 in Section 2.1). The

simulator uses the SAT solver MiniSAT [ES04] to decide the satisfiablity of the formulae

(generated by the bit-flattening approach discussed in Section 3.3.1) representing program

paths.

Spurious counterexamples are eliminated by refining the parametrised predicate trans-

former (defined at the end of Section 2.2). We rely on the interpolation-based refinement

technique discussed in Section 2.5.3. The underlying interpolating decision procedure is
1The CProver framework comprises the components the verification tools Cbmc [CKL04] and Sa-

tAbs [CKSY05] are based on.
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described in Section A.2. An algorithmic description of our interpolation technique is pre-

sented in [KW09a]. The algorithm there is essentially an implementation of the interpolation

system described in Section 3.5. We deal with the propositional structure of formulae using

the proof lifting technique introduced in Section 3.4 (which is based on the idea presented

in [KW07]): We use MiniSAT to find an unsatisfiable core of an inconsistent formula and

use the simple SMT-algorithm presented in Section 3.4.1 to construct a refutation of the

conjunction of the propositional skeleton and the blocking clauses.

Wolverine is available from the website http://www.cprover.org/wolverine.

A.2 A Graph-Based Decision Procedure

This section describes a graph-based decision procedure for the conjunctive fragment of

bit-vector arithmetic formulae. The section contains excerpts of our publication [KW09a].2

The grammar for bit-vector formulae is specified in Table 3.1 in Section 3.1, and the

restricted conjunctive fragment is defined in Table 3.5 in Section 3.5.1. In the following,

we explain how formulae in this logic (to which we refer to as L in this section) can be

represented as graphs.

Graph representation of L formulae. The fact that an L-formula F is a conjunction

of atoms of the form ti � tj enables us to represent F using a graph [MS05].

Definition A.2.1 (L-graph). Given a formula F , let GF (V,E) be a directed graph, where

each term ti in F corresponds to a node vi in V , and each atom ti � tj corresponds to a

�-labelled edge (vi
�→ vj) ∈ E, � ∈ {=,≥, >, 6=}. Atoms ti � tj with a symmetric relation

� ∈ {=, 6=} additionally contribute an edge (vj
�→ vi). For convenience, we use undirected

edges to depict equalities and disequalities. In accordance to [McM05], we write vi ' vj if

and only if i = j.

Due to the presence of functions in L-terms, the congruence rule in Table 3.7 may

give rise to additional equality edges in the graph: The congruence relation satisfies, in
2With kind permission from Springer Science+Business Media: Haifa Verification Conference, An Inter-

polating Decision Procedure for Transitive Relations with Uninterpreted Functions, October 2009, Daniel
Kroening and Georg Weissenbacher, © 2009-2010
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Figure A.1: Congruence edges and derived edges

addition to the properties of the equality relation, the monotonicity axioms, i.e., for all n-

ary functions f , it holds that f(s1, . . . , sn) = f(t1, . . . , tn) whenever si = ti holds for all i in

{1, .., n}. We use congruence edges to depict such equalities (see Fig. A.1(a)). The dashed

arrows indicate that f(x) = f(y) is derived from the equality of the sub-terms x = y.

Definition A.2.2 (Contradictory and equality-entailing cycles). A contradictory cycle in

an L-graph is a cyclic path consisting of either

a) edges labelled with = and a single edge labelled with 6=, or

b) edges labelled with either = or ≥ and at least one edge labelled with >.

An equality-entailing cycle in an L-graph is a cyclic path consisting of edges labelled with

either = or ≥. For any two terms ti and tj corresponding to nodes in an equality-entailing

cycle, it holds that ti ≥ tj and tj ≥ ti, and thus ti = tj.

We depict derived edges using a graphical representation similar to congruence edges

(see Fig. A.1(b)). In this example, the equality x = y is derived from the equality-entailing

cycle x
≥→ y

≥→ v
≥→ u

≥→ x.

We provide a brief outline of our decision procedure for L-formulæ followed by a detailed

description of the proof-generating algorithm. Let G(V,E) be the L-graph for a given

formula F . The decision procedure is subdivided into two phases, which are repeatedly

iterated until the formula can be refuted or until no new facts can be derived:

1. In the first phase, the algorithm searches for contradictory or equality-entailing cycles

with edges labelled =, ≥, and > (Def. A.2.2a) in the graph G(V,E=), where E=

denotes E \{(vi
6=→ vj) ∈ E}. If a contradictory cycle exists, the algorithm terminates.
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Figure A.2: Strongly connected components (SCCs) in L-graphs

Otherwise, the procedure adds to E the edges vi
=→ vj and vj

=→ vi for all nodes vi,

vj adjacent in an equality-entailing cycle.

2. In the second phase, additional equalities are inferred by means of constant propaga-

tion and congruence closure and searches for contradictory cycles with edges labelled

= or > (Def. A.2.2b) in the graph G(V,E 6=), where E 6= = {(vi � vj) ∈ E |� ∈ {=, 6=}}.

The phases are iterated until no new equalities can be inferred. Both phases use well-

known and efficient graph algorithms such as Tarjan’s algorithm for the computation of

strongly connected components (SCCs) and a graph-based union-find data structure. In a

pre-processing step, we form two (possibly non-disjoint) sets of the atoms in F , one of which

contains the inequalities and equalities, and one which contains equalities and disequalities.

Phase I: Inequalities. Let G(V,E=) be the L-graph corresponding to the equality and

inequality atoms of F . Using Tarjan’s algorithm, we compute all strongly connected com-

ponents in G(V,E=) and classify them as contradictory or equality-entailing cycles, respec-

tively:

1. A SCC is contradictory if it contains at least one edge vi
>→ vj (see component B in

Fig. A.2(a)). Then, any path from vj to vi forms a contradictory cycle with vi
>→ vj .

If our algorithm finds a contradictory SCC, we compute the shortest such path and

report it as a proof of inconsistency.

2. A SCC is equality-entailing if it contains no edge labelled with > (see component A

in Fig. A.2(a) or the SCCs in Fig. A.2(b)). In this case, we conclude that for any edge

vi
�→ vj in the SCC ti = tj holds for the corresponding terms. The derived equalities

are passed on to the second phase.
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Phase II: Equalities and Disequalities. The second phase starts with computing the

equivalence closure of the equality atoms (and the equalities derived in the first phase).

For this purpose, we use a proof-generating union-find data structure that incrementally

constructs an L-graph G(V,E=), where E= denotes a set of edges labelled with =. In the

following, we present the modifications necessary to generate a proof of inconsistency. In

a union-find data structure, each equivalence class corresponds to a sub-graph of G(V,E=)

identified by its representative, and each node which is not a representative holds a reference

to its parent node (indicated by an directed edge in our illustrations). The data structure

supports two operations:

1. Find(vi) returns the representative of the node vi.

2. Union(vi, vj) adds an (undirected) equality edge to the graph G(V,E=) and merges

the two equivalence classes containing vi and vj , respectively.

s

u

v
rep(s, u, v)

2

1

(a) Path compression

1

3

2

s

rep(s) rep(t)

t
(b) Triangulation

assert v1 6' v2 ∧ r1 6' r2

if v1 ' r1 then
if v2 6' r2 then

E= := E= ∪ {r2
〈v2〉→

r1}
end if

else
if v2 6' r1 then

E= := E= ∪ {v2
〈v1〉→

r1}
end if
if v2 6' r2 then

E= := E= ∪ {r2
〈v2〉→

r1}
end if

end if
(c) Implementation of A.3(b)

Figure A.3: An illustration of union-find operations

The Find(vi) operation performs path compression in order to reduce the computational

effort in case of repeated queries for vi. During this process, it adds new derived edges to

E=, which connect vi directly with its representative. This is illustrated by the example in

Fig. A.3(a). Find follows the parent nodes until it reaches the representative. In Fig. A.3(a),
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the call to Find(v1) results in two recursive calls Find(v2) and Find(v3). The latter call

returns v4 as the representative for v3. We add v2
〈v3〉→ v4 to E= (step 1 in Fig. A.3(a)) and

replace the parent v3 with v4. Here, the label 〈v3〉 is used to memorise the fact that v2
=→ v3

derives from v2
=→ v3

=→ v4 (visualised by the dashed arrow). Finally, Find(v2) yields v4

and we add v1
〈v3〉→ v4 to E= and replace the parent v2 with v4. Thus, Find(v1) returns v4.

The Union(v1, v2) operation merges two equivalence classes with the representatives r1,

r2 (obtained using Find). We assume that redundant unions are ignored, i.e., v1 6' v2

and r1 6' r2. Consider the example in Fig. A.3(b). We add the edge v1
=→ v2 (step 1) and

conclude that the terms corresponding to r1 are r2 equivalent. The algorithm chooses a new

representative (r1 in our example), favouring nodes with a higher in-degree. The resulting

edge v2
〈v1〉→ r1 is labelled accordingly in step 2, in order to memorise its derivation. Finally,

we connect r2 and r1; the corresponding edge derives from r2
=→ v2

=→ r1.

Observe that Union triangulates the sub-graph spanning V = {v1, v2, r1, r2}. Fig. A.3(c)

shows the general algorithm for this triangulation (where r1 is the representative node with

the higher in-degree), which is a constant time operation.

Using Union, we compute the equivalence closure for F by adding all equivalence

atoms and derived equalities to G(V,E=). We can now efficiently query whether a dise-

quality ti 6= tj contradicts the equality relations stored in G(V,E=) by checking whether

Find(vi) 'Find(vj). If this is the case, we obtain a contradictory cycle vi
6=→ vj

=→ r
=→ vi.

From this cycle, we obtain a proof for the inconsistency by repeatedly expanding derived

edges vi
〈vj〉→ vk to vi

=→ vj
=→ vk. Edges derived in Phase I are justified by their respective

equality-entailing cycles.

Congruence closure. The decision procedure described above lacks a provision for de-

riving congruence edges (Fig. A.1(a)) and is therefore not sufficient to support uninterpreted

functions. An equality relation ti = tj in the congruence graph G(V,E=) gives rise to a

congruence edge representing f(ti) = f(tj), which, in return, may entail additional equal-

ity relations in G(V,E=). Therefore, we use an incremental congruence closure algorithm

(following the ideas presented in [NO05]) that is closely intertwined with the construction

of the L-graph for equalities.
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The algorithm uses the union-find data-structure representing G(V,E=). It indexes

each representative in G(V,E=) with a term tc. Thus, all terms in an equivalence class

of G(V,E=) are associated with the same term tc. If the equivalence class contains an

interpreted constant (e.g., a numeral), we choose it as the index term,3 otherwise, we use

the term corresponding to the representative of the equivalence class as index. In this

setting, an equivalence class containing terms with function symbols represents a set of

congruence relations. Consider two terms f(ti) and f(tj), where ti and tj have the same

representative indexed with tc. Then f(ti) and f(tj) belong to the same equivalence class.

In addition, we maintain a function Lookup(f(tc)) which maps f(tc) to a term f(ti)

such that ti belongs to an equivalence class indexed with tc, or ⊥ if there is no such term

in G(V,E=).

The Union operation potentially changes the representatives of the equivalence classes

in G(V,E=). Therefore, the algorithm maintains for each index term tc a list UseList(tc)

of terms that contain a sub-term indexed with tc. This list is updated whenever Union

merges two equivalence classes. W.l.o.g., assume that Union merges an equivalence class

indexed with tc with an equivalence class indexed with t′c, choosing the latter term as the

new index. Then, for each f(ti) ∈ UseList(tc), where tc is the index term associated with

ti, the algorithm proceeds as follows:

� If Lookup(f(t′c)) returns f(tj), it uses Union to add a the congruence edge for f(ti) =

f(tj) to G(V,E=) and memorises that the edge is derived from ti = tj . Furthermore,

f(ti) is moved from UseList(tc) to UseList(t′c).

� If Lookup(f(t′c)) returns⊥, it sets Lookup(f(t′c)) to f(ti) and moves f(ti) to UseList(t′c).

Example A.2.1. Consider a union-find data structure with four equivalence classes {f(z)},

{f(x), f(y)}, {x}, and {z} (see Fig. A.4, on the left). UseList[z] contains f(z), since z is a

sub-term of f(z). Adding x = z yields a new equivalence class {x} ∪ {z}. Assume that the

representative of the resulting equivalence class {x, z} is x and that Lookup(f(x)) = f(y).

Then the algorithm infers f(z) = f(y).
3Note this constant is unique, since an equivalence class that contains two constants with a different

interpretation contains a contradictory cycle.
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Figure A.4: A 3-step example illustrating the congruence closure algorithm

The extension to n-ary functions is straight-forward. An efficient implementation based

on currifying is presented in [NO05].

Bit-vector theory axioms, constant propagation, and interpreted functions. Our

decision procedure provides limited support for the theory of bit-vectors by integrating a

small set of bit-vector inference and axiom instantiation rules. Furthermore, whenever pos-

sible, it uses interpreted functions and constants in order to simplify terms. This is achieved

by the following mechanisms:

1. We order all interpreted constants c1, . . . , cn processed in Phase I and add n − 1

inequality relations of the form ci < ci+1, 1 ≤ i < n to G(V,E=) before computing

the SCCs.

2. In Phase II, if Union is applied to two terms indexed with different interpreted con-

stants c1 and c2, we introduce the disequality c1 6= c2.

3. Let T be the set of terms corresponding to the nodes in G(V,E=). For each f(ti) ∈ T

such that f is an interpreted function symbol in a given theory T and ti is a term

indexed with an interpreted constant c, we check whether f(c) can be simplified to a

term tj not containing any variables or function symbols that do not occur in f(c).

If this is the case, and tj ∈ T or tj is an interpreted constant, we add the equivalence

relations f(ti) = f(c) (derived from ti = c) and f(c) = tj (a tautology in T ) to

G(V,E=). This technique allows us to perform bit-level-accurate simplifications of

terms.

4. We instantiate a fixed set of axioms of the form t�t′ if we encounter the term t, where

t′ is the term obtained by instantiating the axiom for t. All rules have the property
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(t2 + c) 6= t2 if c 6= 0mod 2m

(t2 + c) = t2 if c = 0mod 2m
(t << c) = (t + t) if c = 1
(t << c) = (2c · t) if 1 < c < m

Figure A.5: Two examples for axioms for m-bit variables

t1 = t2 & t3
t1 ≤ t2 t1 ≤ t3

t1 = t2 | t3
t1 ≥ t2 t1 ≥ t3

t1 + t2 = t1
t2 = 0

Figure A.6: Examples of rules for bit-vector operations for unsigned integers

that they do not introduce variables. Examples of such axioms are listed in Fig. A.5.

If t and t′ correspond to nodes in G(V,E=), we add the relation t � t′.

5. Inference rules of the form (t1 �1 t2) ` (t3 �2 t4) may be applied if t3 and t4 refer to

a subset of the non-logical symbols in t1 and t2. Examples of such inference rules are

provided in Fig. A.6 and Table 3.7.4

Array accesses. We provide limited support for arrays based on the extensionality rule,

which defines the equality of two arrays as element-wise equality by means of universal

quantification. In accordance with [KS08], we use a{x ← y} to denote the array a where

the element with index x has been replaced with y. Array updates a[i]:=t are then handled

by introducing an assignment am+1:=am{i ← t} in SSA form (cf. page 29), which in turn

is encoded as

am+1[i] = t ∧ ∀j 6= i . am+1[j] = am[j] . (A.1)

Since our decision procedure does not support universal quantification, we instantiate un-

quantified equalities on demand. If the terms am+1[n] and am[n] occur in the set of terms

T which corresponds to the nodes in G(V,E=) when we encounter the fact (A.1), we de-

termine the representatives of the terms n and i. If these representatives are indexed with

two different constants, we conclude that n 6= i and instantiate am+1[n] = am[n] according

to the rule in Figure A.7. Furthermore, we treat each array access a[t] as an uninterpreted

function a with the parameter t (i.e., as term a(t)).
4The näıve application of such axioms increases the complexity of the algorithm significantly. Therefore,

we apply each axiom only once in an initial rewriting phase.
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am+1[i] = t ∧ ∀j 6= i . am+1[j] = am[j] n 6= i

am+1[i] = t am+1[n] = am[n]
(am+1[n], am[n] ∈ T )

Figure A.7: Quantifier instantiation for arrays

Combining both phases. As explained above, equality relations derived from equality-

entailing cycles in Phase I are passed on to Phase II. Now consider the L-graph in Fig. A.2(b).

Adding the congruence edge corresponding to f(x) = f(y) results in a new SCC, which,

depending on the label � in Fig. A.2(b), is either contradictory or equality-entailing. There-

fore, the congruence edges generated in Phase II must be added to G(V,E=), necessitating

an additional iteration of Phase I. The two phases need to be iterated until no more new

congruence edges are generated. Since both phases are exchanging equalities exclusively,

our implementation is essentially a Nelson-Oppen-style decision procedure.

Complexity. Tarjan’s algorithm applied in Phase I has a run-time linear in the number

n of edges of the graph. The computation of the equivalence closure in the second phase

takes O(n · α(n)) time, where α is the inverse of the Ackermann function A(n, n). The

congruence closure is of complexity O(n · log n) [NO05]. Thus, a single iteration of Phase I

and Phase II takes O(n · log n) time.

It remains to determine how often the phases need to be iterated. Since the algorithm

never adds redundant congruence edges, the congruence closure adds at most O(n) equali-

ties (see [NO05]). Due to the restrictions on the application of rules and axioms, rewriting

interpreted functions increases the number of sub-terms by at most a constant factor. Al-

together, we face a run-time complexity of O(n2 · log n) for our decision procedure.

Finally, the extraction of an explanation from a contradictory cycle can be performed

in O(n · log n) time, since the derived edges form a tree.

Proofs of inconsistency. We review the artefacts generated by our decision procedure.

A proof of inconsistency of an L-formula F is a contradictory cycle comprising

� edges directly corresponding to relations in F ,

� edges derived from equality-entailing cycles, and
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� congruence edges, derived from a number of equality relations.

Analogously to the colouring of formulae (Definition 3.5.2), we introduce the concept of

coloured L-graphs.

Colouring L-graphs Given an L-formula F ∧G, we say that a node vi of the correspond-

ing graph G(V,E) is F -colourable if the corresponding term ti refers only to uninterpreted

symbols in F ; similarly for G. We use VF and VG to refer to the set of F -colourable and

G-colourable nodes, respectively. This definition splits V = VF ∪ VG into two non-disjoint

sets of vertices. It leaves us a choice for a subset VS
def
= (VF ∩ VG) of V . We refer to VS as

shared vertices.

An edge vi
�→ vj is F -colourable if and only if {vi, vj} ⊆ VF ; analogously for G. We

use EF (EG) to refer to the F -colourable (G-colourable, respectively) edges in E. An edge

is colourable if it is either F -colourable or G-colourable. The edges of the initial L-graph

G(V,E), in which each edge corresponds to an atom in F ∧G, are always colourable. This is

not necessarily the case for the graph that we obtain by computing the congruence closure (in

Phase II). Consider the nodes labelled f(x) and f(y) in the L-graph in Fig. A.2(b). Assume

that the variable x occurs only in F and y occurs only in G. If we deduce f(x) = f(y) from

x = y, then the corresponding edge is not colourable.

It is, however, possible to transform a congruence-closed L-graph into a colourable

graph [FGG+09, YM05]. We provide a constructive proof based on structural induction

over an L-graph with congruence edges:

1. Base case. Colour the equality edges of the L-graph according to their respective

atoms in the formula F ∧G.

2. Induction step. The argument is split into two cases:

(a) Derived edges. For each edge vi
=→ vj derived from an equality-entailing cycle,

there exists an edge vi
�→ vj (� ∈ {≥,=}) in that cycle, which is, by the induction

hypothesis, colourable. Let vi
=→ vj take the colour of that edge.

(b) Congruence edges. Pick any non-colourable congruence edge with nodes vf(x)

and vf(y) labelled f(x) and f(y), respectively. By the induction hypothesis, all
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edges in the path vx → . . . → vy entailing x = y can be coloured. Since vx

and vy are of different colour, there is a path prefix vx → . . . → vz such that

all nodes in the prefix are of the same colour and vz ∈ VS . Let z be the term

that corresponds to vz. Then, the term f(z) refers only to non-logical symbols

common to F and G. Introduce a new node vf(z) representing f(z) and add an

equality edge vf(x) → vf(z) justified by vx → . . . → vz, and a new congruence

edge vf(z) → vf(y) justified by vz → . . . → vy. All these new elements are

colourable.

This proof translates into an algorithm of complexity O(n · log n). The transformation

yields a graph representing a formula equisatisfiable with F ∧ G, i.e., the modified graph

contains a contradictory cycle if and only if the original congruence-closed graph G(V,E)

contains one.

It is straight-forward to extend this argument to the edges introduced by the term

rewriting rules and axioms in Section A.2. Consider, w.l.o.g., an F -coloured node vi cor-

responding to a term t, and a node vj corresponding to the rewritten term t′. Due to the

restriction that the rewriting rule t ; t′ must not introduce new non-logical symbols,5 the

edge vi → vj can be coloured with ‘F ’. A similar argument holds for axioms, which do not

change the colour of the affected edge.

This line of reasoning leads to the following observation:

Lemma A.2.1. A proof of inconsistency, which is a sub-graph of the congruence-closed

L-graph G(V,E) obtained using the algorithm in Section A.2, can be transformed into a

colourable graph.

Furthermore, given that an L-graph G(V,E) represents a formula F ∧ G, which is a

conjunction of atoms, the formula represented by a sub-graph is implied by F ∧G. Thus,

the proof of inconsistency is implied by the original formula F ∧G.

It is straight forward to map a proof of inconsistency represented by a graph to a

tree-shaped proof graph as described in Definition 3.5.1 in Section 3.5.1. Essentially, the

tree-shaped proof (VP , EP , `P , sP ) is the dual graph of the graph G(V,E) representing the
5Interpreted function symbols and constants are considered logical symbols.
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proof of inconsistency. Each edge (vi
�→ vj) ∈ E maps to a vertex v ∈ EP such that

`(v) = (ti � tj). Each congruence edge (Figure A.1(a)) maps to an application of the

inference rule Cong in Table 3.7. Similarly, each derived edge (Figure A.1(b)) maps to

the respective inference rule. The contradictory cycle corresponds to a final inference step

deriving false.
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Appendix B

Proofs

B.1 Proofs for Section 2.4

Lemma B.1.1. The strongest postcondition distributes over disjunctions:

sp(stmt, P1 ∨ P2) = sp(stmt, P1) ∨ sp(stmt, P2)

Conversely, the weakest (liberal) precondition distributes over conjunctions:

w(l)p(stmt, P1 ∧ P2) = w(l)p(stmt, P1) ∧ w(l)p(stmt, P2)

Proof. We consider each type of statement in Table 2.1 in Section 2.1 separately.

� x :=e

sp(x :=e, P1 ∨ P2) = ∃x′ . x = e[x/x′] ∧ (P1 ∨ P2)[x/x′]

= ∃x′ . x = e[x/x′] ∧ (P1[x/x′] ∨ P2[x/x′])

= ∃x′ . (x = e[x/x′] ∧ P1[x/x′]) ∨ (x = e[x/x′] ∧ P2[x/x′])

= ∃x′ . (x = e[x/x′] ∧ P1[x/x′]) ∨ ∃x′ . (x = e[x/x′] ∧ P2[x/x′])

= sp(x :=e, P1) ∨ sp(x :=e, P2)
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w(l)p(x :=e, P1 ∧ P2) = (P1 ∧ P2)[x/e]

= P1[x/e] ∧ P1[x/e]

= w(l)p(x :=e, P1) ∧ w(l)p(x :=e, P2)

� [R]

sp([R], P1 ∨ P2) = (R ∧ P1) ∨ (R ∧ P2) = sp([R], P1) ∨ sp(R,P2)

w(l)p([R], P1 ∧ P2) = (R⇒ (P1 ∧ P2)) =

(R⇒ P1) ∧ (R⇒ P2) = w(l)p([R], P1) ∧ w(l)p([R], P2)

� assert(R)

sp(assert(R), P1 ∨ P2) = (R ∧ P1) ∨ (R ∧ P2) =

sp(assert(R), P1) ∨ sp(assert(R), P2)

wp(assert(R), P1 ∧ P2) = (R ∧ P1) ∧ (R ∧ P2) =

wp(assert(R), P1) ∧ wp(assert(R), P2)

wlp(assert(R), P1 ∧ P2) = (R⇒ (P1 ∧ P2)) =

(R⇒ P1) ∧ (R⇒ P2) = wlp(assert(R), P1) ∧ wlp(assert(R), P2)

� stmt1; stmt2

sp(stmt1; stmt2, P1 ∨ P2) = sp(stmt2, sp(stmt1, P1) ∨ sp(stmt1, P2))

= sp(stmt2, sp(stmt1, P1)) ∨ sp(stmt2, sp(stmt1, P2))

= sp(stmt1; stmt2, P1) ∨ sp(stmt1; stmt2, P2)
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w(l)p(stmt1; stmt2, P1 ∧ P2) = w(l)p(stmt1, w(l)p(stmt2, P1) ∧ w(l)p(stmt2, P2))

= w(l)p(stmt1, w(l)p(stmt2, P1))∧

w(l)p(stmt1, w(l)p(stmt2, P2))

= w(l)p(stmt1; stmt2, P1) ∧ w(l)p(stmt1; stmt2, P2)

The last case can be extended to arbitrary paths π length by means of induction over the

length of π.

B.2 Proofs for Section 3.3.3

Remark. It follows from Definitions 3.3.7 and 3.3.10 that `(v)�⊥,L = ∅ for all vertices

v. Therefore, the following two equalities hold for any clause C = `(v) in a resolution

refutation R:

� C�b,L = (C�b,L \ C�a,L)

� C�a,L = (C�a,L \ C�b,L)

We make repeated use of these equalities in this section.

The proofs in this section owe their concise form to my collaborator Vijay D’Silva, who

significantly improved my initial version. Also, Theorem 3.3.4 is a generalised version of his

initial proof showing that McMillan’s interpolation system is stronger than the interpolation

system of Huang, Kraj́ıček, and Pudlák.

Theorem 3.3.3 (Correctness of Labelled Interpolation Systems). For any resolution refu-

tation R of a formula A ∧ B and locality preserving labelling function L, Itp(L,R,A, B) is

a reverse interpolant for (A,B).

Proof. By induction over the structure of the refutation R for A ∧B. Let I be the partial

interpolant at a vertex v labelled with a clause C = `(v). We show that every such I and

C satisfy the following conditions:

1. A ∧ ¬(C�a,L)⇒ I,

2. B ∧ ¬(C�b,L)⇒ ¬I, and
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3. Atoms(I) ⊆ Atoms(A) ∩Atoms(B).

For the sink sR with `(sR) = 2, this establishes Theorem 3.3.3. The labelling function L,

being unique in this proof, is omitted from subscripts.

Base case. Let v be an initial vertex and let C = `R(v).

1. C ∈ A:

(a) A∧¬(C�a)⇒ C�b, is equivalent to A⇒ (C�b \C�aL)∨C�a. This holds because

(C�b \ C�a) ∨ C�a = C, and A⇒ C because C ∈ A.

(b) B ∧ ¬(C�b) ⇒ ¬(C�b) , is equivalent to B ∧ (C�b \ C�a) ⇒ C�b. This holds

because (C�b \ C�a) ⊆ C�b and clauses represent disjunctions.

(c) For all literals l ∈ (C�b \ C�a) the following conditions hold:

� Atoms(l) ⊆ Atoms(A), since C ∈ A.

� L(v, l) = b. Therefore, by Definition 3.3.8, Atoms(l) ⊆ Atoms(B).

This establishes that Atoms(C�b \ C�a) ⊆ Atoms(A) ∩Atoms(B).

2. C ∈ B: Symmetric to C ∈ A.

Induction step. We first prove a useful equality. Let v be an internal vertex of R, and

piv(v) = x. Observe that

(`(v+) \ {x})�c ∨ (`(v−) \ {¬x})�c = `(v)�c (B.1)

holds for a symbol c ∈ {a, b}. This is because for any l ∈ `(v+), if Atoms(l) 6= {x}, then

L(v+, l) v L(v, l). The same holds for l ∈ `(v−). Thus, if Atoms(l) 6= {x} and l ∈ C�c,

then l ∈ `(v)�c. Conversely, if l ∈ `(v)�c, then c v L(v, l) by the definition of projection.
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From Definition 3.3.8, L(v, l) = L(v+, l) t L(v−, l), thus, if c v L(v, l) and c 6= ab, then

c v L(v+, l) or c v L(v−, l). It follows that l ∈ (`(v+) \ {x})�c or l ∈ (`(v−) \ {¬x})�c.

For the induction step, let `(v+) = x ∨ C, `(v−) = ¬x ∨D and piv(v) = x. We perform

a case split on L(v+, x) t L(v−,¬x):

1. L(v+, x) t L(v−,¬x) = a:

Induction hypothesis:

A ∧ ¬x ∧ ¬(C�a)⇒ I1 and B ∧ ¬(C�b)⇒ ¬I1 and

A ∧ x ∧ ¬(D�a)⇒ I2 and B ∧ ¬(D�b)⇒ ¬I2 .

It follows that A ∧ x⇒ I1 ∨ C�a and A ∧ ¬x⇒ I2 ∨D�a ,

and that A ∧ (x ∨ ¬x)⇒ I1 ∨ I2 ∨ C�a ∨D�a︸ ︷︷ ︸
(C∨D)�a by (B.1)

, by disjunction,

wherefore A ∧ ¬((C ∨D)�a)⇒ I1 ∨ I2 as required.

Similarly, B ⇒ ¬I1 ∨ C�b and B ⇒ ¬I2 ∨D�b .

Thus, B ⇒ (¬I1 ∧ ¬I2) ∨ (C ∨D)�b by conjunction

hence, B ∧ ¬((C ∨D)�b)⇒ ¬(I1 ∨ I2) as required.

Atoms(I1∨I2) ⊆ Atoms(A)∩Atoms(B) holds because both Atoms(I1) and Atoms(I2)

are contained in Atoms(A) ∩Atoms(B).

2. L(v+, x) t L(v−,¬x) = b: The proof is symmetric to the first case.

3. L(v+, x) t L(v−,¬x) = ab:
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Induction hypothesis for L(v+, x) = a and L(v−,¬x) = b:

A ∧ ¬x ∧ ¬(C�a)⇒ I1 and B ∧ ¬(C�b)⇒ ¬I1 and

A ∧ ¬(D�a)⇒ I2 and B ∧ x ∧ ¬(D�b)⇒ ¬I2 .

All cases in which L(v+, x) 6= L(v−,¬x) are similar. The induction hypothesis in

these cases can be extended to the induction hypothesis for L(v+, x) = L(v−,¬x) = ab

below:
A ∧ ¬x ∧ ¬(C�a)⇒ I1 and B ∧ ¬x ∧ ¬(C�b)⇒ ¬I1 and

A ∧ x ∧ ¬(D�a)⇒ I2 and B ∧ x ∧ ¬(D�b)⇒ ¬I2 .

We can infer that

A ∧ ¬(C�a) ∧ ¬(D�a)⇒ (x ∨ I1) ∧ (¬x ∨ I2) and so

A ∧ ¬((C ∨D)�a ⇒ (x ∨ I1) ∧ (¬x ∨ I2).

Finally,

B ∧ ¬(C�b) ∧ ¬(D�b)⇒ (x ∨ ¬I1) ∧ (¬x ∨ ¬I2) is equivalent to

B ∧ ¬(C ∨D)�b ⇒ ¬((x ∨ I1) ∧ (¬x ∨ I2)) .

Note that x ∈ Atoms(A) ∩ Atoms(B) due to L(v+, x) t L(v−,¬x) = ab and Defini-

tion 3.3.8, and therefore Atoms((x ∨ I1) ∧ (¬x ∨ I2)) ⊆ Atoms(A) ∩Atoms(B) holds.

Lemma 3.3.1. Let R be a resolution refutation for the formula A ∧ B. The labelling

functions LHKP , LM and LM ′ are defined for initial vertices v and literals l ∈ `(v) as

follows:

Atoms(l) LM (v, l) LHKP (v, l) LM ′(v, l)

A-local a a a

shared b ab a

B-local b b b
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The following equalities hold for all vertices v in the proof R:

ItpM(R,A, B)(v) ≡ Itp(LM , R, A,B)(v)

ItpHKP(R,A, B)(v) ≡ Itp(LHKP , R, A,B)(v)

¬ItpM(R,B,A)(v) ≡ Itp(LM ′ , R, A,B)(v)

Proof. We prove the three equalities

ItpM(R,A, B)(v) ≡ Itp(LM , R, A,B)(v) ,

ItpHKP(R,A, B)(v) ≡ Itp(LHKP , R, A,B)(v) , and

¬ItpM(R,B,A)(v) ≡ Itp(LM ′ , R, A,B)(v)

separately, by induction over the structure of R. For each vertex v in R with `R(v) = C, let

Iv
L be the annotation corresponding to Itp(L,R,A, B)(v) where L ∈ {LM , LHKP , LM ′}, and

let Iv
M , Iv

HKP , and Iv
M ′ be the annotations generated by ItpM(R,A, B)(v), ItpHKP(R,A, B)(v),

and ItpM(R,B,A)(v), respectively.

ItpHKP(R,A, B)(v) = Itp(LHKP , R, A,B)(v).

Base case. Let v be an initial vertex and let C = `(v).

� If C ∈ A, then Iv
L = C�b = ⊥ = Iv

HKP , since C�b is empty.

� If C ∈ B, then Iv
L = ¬(C�a) = > = Iv

HKP , since C�a is empty.

Induction hypothesis: Iv+

L = Iv+

HKP and Iv−
L = Iv−

HKP .

Induction step. Let v in R be an internal vertex and let x = piv(v).

1. If x ∈ Atoms(A) \ Atoms(B), then LHKP (v+, x) = LHKP (v−,¬x) = a, since x is

A-local. It follows that Iv
L = Iv+

HKP ∨ Iv−
HKP .

2. If x ∈ Atoms(B) \ Atoms(A), then LHKP (v+, x) = LHKP (v−,¬x) = b, since x is

B-local. It follows that Iv
L = Iv+

HKP ∧ Iv−
HKP = Iv

HKP .
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3. If x ∈ Atoms(B)∩Atoms(A), then LHKP (v+, x) = LHKP (v−, x) = ab, because x and

¬x are have the label ab in all initial clauses. As ab is the top of the lattice of symbols,

it follows that Iv
L = (x ∨ Iv+

HKP ) ∧ (¬x ∨ Iv−
HKP ) = Iv

HKP .

ItpM(R,A, B)(v) = Itp(LM , R, A,B)(v).

Base case. Let v in R be an initial vertex and let `R(v) = C.

� If C ∈ A, then Iv
L = C�b = C|B = Iv

M , because if l ∈ C�b then Atoms(l) ∈ Atoms(B).

� If C ∈ B, then Iv
L = ¬(C�a) = > = Iv

M , since C�a is empty.

Induction hypothesis: Iv+

L = Iv+

M and Iv−
L = Iv−

M .

Induction step. Let v in R be an internal vertex and let x = piv(v).

1. If x ∈ Atoms(A) \Atoms(B), then LM (v+, x) = LM (v−,¬x) = a, because x is A-local

and all literals over x are labelled a. Thus, Iv
L = Iv+

M ∨ Iv−
M = Iv

M .

2. If x ∈ Atoms(B), then LM (v+, x) = LM (v−,¬x) = b, because all literals that are not

A-local are labelled b. Thus, Iv
L = Iv+

M ∧ Iv−
M = Iv

M .

¬ItpM (R,B,A)(v) = Itp(LM ′ , R, A,B)(v).

Base case. Let v in R be an initial vertex and let `R(v) = C. Then

� If C ∈ A, then Iv
L = C�b = ⊥ = ¬> = ¬ItpM (R,B,A)(v) = ¬Iv

M ′ , since C�b is empty.

� If C ∈ B, then Iv
L = ¬(C�a) = ¬(C|A) = ¬ItpM (R,B,A)(v) = ¬Iv

M ′ .

Induction hypothesis: Iv+

L = ¬Iv+

M ′ and Iv−
L = ¬Iv−

M ′ .

Induction step. Let v in R be an internal vertex and let x = piv(v).
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1. If x ∈ Atoms(A), then LM ′(v+, x) = LM ′(v−,¬x) = a, because literals that are not

B-local are labelled a. It follows that

Iv
L = Iv+

L ∨ Iv−
L = ¬Iv+

M ′ ∨ ¬Iv−
M ′

= ¬(ItpM (R,B,A)(v+) ∧ ItpM (R,B,A)(v−)) .

Since LM ′(v, x) = LM ′(v,¬x) = a in the (A,B)-refutation R, we have that x /∈

Atoms(B) \Atoms(A). It follows that in ItpM (R,B,A)

¬ItpM (R,B,A)(v) = ¬(ItpM (R,B,A)(v+) ∧ ItpM (R,B,A)(v−)) = ¬Iv
M ′ .

2. If x ∈ Atoms(B) \ Atoms(A), then LM ′(v+, x) = LM ′(v+,¬x) = b, because B-local

variables are labelled b. Thus,

Iv
L = Iv+

L ∧ Iv−
L = ¬Iv+

M ′ ∧ ¬Iv−
M ′

= ¬(Iv+

M ′ ∨ Iv−
M ′)

Since x ∈ Atoms(B) \Atoms(A), it follows that in ItpM (R,B,A)

¬ItpM (R,B,A)(v) = ¬(ItpM (R,B,A)(v+) ∨ ItpM (R,B,A)(v−)) = ¬Iv
M ′ .

B.3 Proofs for Section 3.3.4

Lemma 3.3.2. Let L and L′ be labelling functions for a resolution refutation R for A∧B.

If L(v, l) � L′(v, l) for all initial vertices v and literals l ∈ `(v), then L � L′.

Proof. We show that L(v, l) � L′(v, l) for all v in R by means of structural induction.

Base case. If v ∈ VR is an initial vertex, L(v, l) � L′(v, l) holds by definition.
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Induction hypothesis: For an internal vertex v and its ancestors v+ and v− and a literal

l it holds that

L(v+, l) � L′(v+, l) and L(v−, l) � L′(v−, l).

Induction step. Let v ∈ VR be an internal vertex with the ancestors v+ and v−. Fur-

thermore, let `R(v+) = C ∨ x, `R(v−) = D ∨ ¬x, where x = piv(v).

We consider two cases:

1. If l /∈ `(v), then L(v, l) = L′(v, l) = ⊥.

2. If l ∈ `(v), there are three cases:

� If L(v, l) = b, then L(v, l) � L′(v, l) because b is the infimum of (S,�).

� If L(v, l) = ab then ab � L′(v, l). For assume that this does not hold. Then

L′(v, l) must be b, implying that L′(v+, l) and L′(v−, l) are both b (by the def-

inition of t and Definition 3.3.7). Using the induction hypothesis, we further

conclude that L(v+, l) = L(v−, l) = b, which contradicts L(v, l) = ab.

� If L(v, l) = a then, by the induction hypothesis, L′(v+, l) and L′(v−, l) are either

a or ⊥. In both cases, the lemma holds.

Theorem 3.3.4. Let L and L′ be labelling functions for an refutation R of the formula

A ∧B. If L � L′, then Itp(L,R,A, B)(sR)⇒ Itp(L′, R, A,B)(sR).

Proof. By structural induction over R. For any vertex v ∈ VR, let C = `R(v) and let Iv

and I ′v represent the annotations Itp(L,R,A, B)(v) and Itp(L′, R, A,B)(v), respectively. We

show that Iv ⇒ I ′v ∨ (C|A ∩ C|B) for all vertices v ∈ VR. This establishes IsR ⇒ I ′sR
, i.e.,

Itp(L,R,A, B)(sR)⇒ Itp(L′, R, A,B)(sR).

Base case. Let v be an initial vertex and let `R(v) = C.

1. If C ∈ A, then Iv = C�b,L = (C�b,L \ C�a,L). From Definition 3.3.8, it follows that

C�b,L and hence Iv is a subset of (C|A ∩ C|B). Thus, Iv ⇒ I ′v ∨ (C|A ∩ C|B).
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2. If C ∈ B, then I ′v = ¬(C�a,L′) = ¬(C�a,L′ \ C�b,L′). Thus, ¬I ′v = (C�a,L′ \ C�b,L′).

From Definition 3.3.8, we have that ¬I ′v ⊆ (C|A ∩ C|B). It follows that, ¬I ′v ⇒

¬Iv ∨ (C|A ∩ C|B), which is equivalent to Iv ⇒ I ′v ∨ (C|A ∩ C|B).

Induction step. Let v be an internal vertex in R and let `R(v+) = (C ∨x) and `R(v−) =

(D ∨ ¬x), where x = piv(v). The partial annotations are indicated as before.

Induction hypothesis:

Iv+ ⇒ I ′v+ ∨ (C|A ∩ C|B) and Iv− ⇒ I ′v− ∨ (C|A ∩ C|B)

Recall from the proof of Lemma 3.3.2, that if L(v+, x) � L′(v+, x) and L(v−,¬x) �

L′(v−,¬x), then,

(L(v+, x) t L(v−,¬x)) � (L′(v+, x) t L′(v−,¬x)) . (B.2)

We proceed by performing a case split over L(v+, x) t L(v−,¬x). Let I and I ′ be the

partial interpolants due to Itp(L,R,A, B) and Itp(L′, R, A,B), respectively.

1. L(v+, x) t L(v−,¬x) = a: Then Iv = (Iv+ ∨ Iv−), and by applying the induction

hypothesis we derive (Iv+ ∨ Iv−) ⇒ (I ′v+ ∨ I ′v−) ∨ (C|A ∩ C|B). From (B.2) we con-

clude that L′(v+, x) t L′(v−,¬x) = a, and therefore I ′v = (I ′v+ ∨ I ′v−). It follows that

Iv ⇒ I ′v ∨ (C|A ∩ C|B).

2. L(v+, x) t L(v−,¬x) = ab: Then Iv = (x ∨ Iv+) ∧ (¬x ∨ Iv−), and by applying the

induction hypothesis we derive

(x ∨ Iv+) ∧ (x ∨ Iv−)⇒ ((x ∨ I ′v+) ∧ (x ∨ I ′v−)) ∨ (C|A ∩ C|B) .

From equation (B.2), we have that ab � L′(v+, x)tL′(v−,¬x), so I ′v is either (I ′v+∨I ′v−)

or (x ∨ I ′v+) ∧ (¬x ∨ I ′v−). In either case, I ′v is implied by (x ∨ I ′v+) ∧ (¬x ∨ I ′v−), and

therefore Iv ⇒ I ′v ∨ (C|A ∩ C|B).
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3. L(v+, x) t L(v−,¬x) = b: Then I = (Iv+ ∧ Iv−), and by applying the induction

hypothesis we derive (Iv+ ∧ Iv−)⇒ (I ′v+ ∧ I ′v−) ∧ (C|A ∩ C|B). Since b � L′(v+, x) t

L′(v−,¬x), I ′ is either (I ′v+ ∧ I ′v−), (x∨ I ′v+)∧ (¬x∨ I ′v−), or (Iv+ ∨ Iv−). In all cases,

I ′ is implied by (I ′v+ ∧ I ′v−), and thus Iv ⇒ I ′v ∨ (C|A ∩ C|B).

Theorem 3.3.5. Let R be a refutation of A ∧ B and LR be the set of locality preserving

labelling functions over R. The structure (LR,�,⇑,⇓) is a complete lattice with LM as the

least and LM ′ as the greatest element.

Proof. We show that � is a partial order, that ⇑ is the least upper bound on LR and that

⇓ is the greatest lower bound on LR.

� is a partial order: The relation � is a total order on S, extended pointwise to vertices

of R and their literals. The point-wise extension preserves reflexivity, anti-symmetry and

transitivity.

(L1 ⇑ L2) ∈ LR: Let l be a literal that Atoms(l) ⊆ Atoms(A) \ Atoms(B) or Atoms(l) ⊆

Atoms(B) \ Atoms(A) and let v be an initial vertex. Then L1(v, l) and L2(v, l) are equal

to max(L1(v, l), L2(v, l)). Therefore, L1(v, l) ⇑ L2(v, l) satisfies the conditions in Defini-

tion 3.3.8.

⇑ is the least upper bound: We show that for any L′, if L1 � L′ and L2 � L′, then

(L1 ⇑ L2) � L′. Consider an initial vertex v and l ∈ `(v). If L1(v, l) � L′(v, l) and

L2(v, l) � L′(v, l), then max(L1(v, l), L2(v, l)) � L′(v, l). Recall that (L1 ⇑ L2)(v, l) =

max(L1(v, t), L2(v, l)). The case for internal nodes follows from Lemma 3.3.2.

⇓ is the greatest lower bound: This case is similar to the above.

The lattice (LR,�,⇑,⇓) is complete because it is finite.
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Least and greatest elements: We show that LM and LM ′ are the least and greatest

elements of LR. For this, we show that if L is a locality preserving labelling function, then

LM � L. Let v be an initial vertex and l ∈ `(v). If Atoms(l) ⊆ Atoms(A) \ Atoms(B),

it follows from Definition 3.3.8 that L(v, l) = a and that LM (v, l) = a, thus, LM (v, l) �

L(v, l). If If Atoms(l) ⊆ Atoms(B), from the definition of LM , we have that LM (v, l) = b,

so LM (v, l) � L(v, l) because b is the least element of (S,�). For an internal vertex

v and l ∈ `(v), LM (v, l) � L(v, l) by Lemma 3.3.2. The case for LM ′ is similar with

Atoms(l) ⊆ Atoms(A) being the distinguishing case.

B.4 Proofs for Section 3.3.5

For convenience, the proofs from Figure 3.15(a) are shown in Figure B.1 for reference.

Furthermore, we write Res(`(v+), `(v−), piv(v)) to denote the resolvent `(v) of the clauses

`(v+), `(v−) with respect to the pivot piv(v). Moreover, given a literal l, we write Atom(l)

to denote the single element in the set Atoms(l).

Lemma 3.3.3. Let R be a proof with vertices v1, v2, v3, v, w and labels as in Figure 3.15(a).

If l0 /∈ `R(v3) and l1 /∈ `R(v2), then R[w 
 v] is a resolution proof.

Proof. Let `′ be the labelling function for R[w 
 v]. We show that for every internal vertex

u in R[w 
 v], `′(u) = Res(`′(u+), `′(u−), piv′(u)).

There are two cases. If u is not a descendant of w or v, then `(u) = `′(u) and piv(u) =

piv′(u). The clause and pivot labels of these vertices does not change so `′(u) labels u with

the resolvent of its parents.

We now show that `′(w) = Res(`′(v1), `′(v2), piv′(w)).

`′(w) = l0 ∨ C1 ∨ C3

= ((l0 ∨ l1 ∨ C1) \ {l1}) ∨ ((¬l1 ∨ C3) \ {¬l1})

because l1 /∈ C1 and ¬l1 /∈ C3

= Res ((l0 ∨ l1 ∨ C1), (¬l1 ∨ C3),Atom(l1))

= Res
(
`′(v1), `′(v2), piv′(w)

)
(B.3)
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l0l1C1 [I1] l0C2 [I2]

l1C3 [I3]l1C1C2

C [I]
(a) Original refutation

l0l1C1 [I1] l1C3 [I3]

l0C2 [I2]l0C1C3

C [I ′]
(b) Transformed refutation

Figure B.1: Transformation of a proof by swapping resolution steps.

Next, we show that `′(v) = Res(`′(w), `′(v3), piv′(v)).

`′(v) = `R(v), from the definition of R[w 
 v]

= Res(`(v+), `(v−), piv(v))

= Res(Res(`R(v1), `R(v2), piv(w)), `(v3), piv(v))

= Res(((l0 ∨ l1 ∨ C1) \ {l0}) ∨ (¬l0 ∨ C2) \ {¬l0},¬l1 ∨ C3,Atom(l1))

= ((l0 ∨ l1 ∨ C1) \ {l0} ∨ (¬l0 ∨ C2) \ {¬l0}) \ {l1} ∨ (¬l1 ∨ C3) \ {¬l1}

= (l0 ∨ l1 ∨ C1) \ {l0, l1} ∨ (¬l0 ∨ C2) \ {¬l0} ∨ (¬l1 ∨ C3) \ {¬l1}

because l1 /∈ C2

= (l0 ∨ l1 ∨ C1) \ {l0, l1} ∨ (¬l0 ∨ C2) \ {¬l0} ∨ (¬l1 ∨ C3) \ {¬l1, l0}

because l0 /∈ C3

= ((l0 ∨ l1 ∨ C1) \ {l1} ∨ (¬l1 ∨ C3) \ {¬l1}) \ {l0} ∨ (¬l0 ∨ C2) \ {¬l0}

= Res((l0 ∨ l1 ∨ C1) \ {l1} ∨ (¬l1 ∨ C3) \ {¬l1},¬l0 ∨ C2,Atom(l0))

= Res(Res(l0 ∨ l1 ∨ C1,¬l1 ∨ C3,Atom(l1)),¬l0 ∨ C2,Atom(l0))

= Res
(
`′(w), `′(v3), piv′(v)

)

(B.4)

Theorem 3.3.6. Let R be a refutation of A ∧ B, L a labelling function, w an internal

vertex of R and (w, v) a merge-free edge. Let c = L(w+, piv(w)) t L(w−,¬piv(w)) and

d = L(v+, piv(v)) t L(v−,¬piv(v)). Let Itp be a labelled interpolation system annotating

vertices with partial interpolants I1, I2 and I3 as in Figure 3.15(a).

1. If c � d and either c 6= d or c 6= ab, Itp(L[w 
 v], R[w 
 v])⇒ Itp(L,R).
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(a) Partial interpolants for Figure B.1(a) and Figure B.2(a)
d

=
L

(v
,l

1
)
t

L
(v

,¬
l 1

) c = L(w, l0) t L(w,¬l0)
a ab b

a (I1 ∨ I2) ∨ I3
(l0 ∨ I1) ∧ (¬l0 ∨ I2)

∨I3
(I1 ∧ I2) ∨ I3

ab
(l1 ∨ (I1 ∨ I2))
∧(¬l1 ∨ I3)

(l1 ∨ ((l0 ∨ I1) ∧ (¬l0 ∨ I2)))
∧(¬l1 ∨ I3)

(l1 ∨ (I1 ∧ I2))
∧(¬l1 ∨ I3)

b (I1 ∨ I2) ∧ I3
(l0 ∨ I1) ∧ (¬l0 ∨ I2)

∧I3
(I1 ∧ I2) ∧ I3

(b) Partial interpolants for Figure B.1(b)

L
′ (

w
,l

1
)
t

L
′ (

w
,¬

l 1
)

L′(v, l0) t L′(v,¬l0)
a ab b

a (I1 ∨ I3) ∨ I2
(l0 ∨ (I1 ∨ I3))
∧(¬l0 ∨ I2)

(I1 ∨ I3) ∧ I2

ab
(l1 ∨ I1) ∧ (¬l1 ∨ I3)

∨I2

(l0 ∨ ((l1 ∨ I1) ∧ (¬l1 ∨ I3)))
∧(¬l0 ∨ I2)

(l1 ∨ I1) ∧ (¬l1 ∨ I3)
∧I2

b (I1 ∧ I3) ∨ I2
(l0 ∨ (I1 ∧ I3))
∧(¬l0 ∨ I2)

(I1 ∧ I3) ∧ I2

Table B.1: Interpolants for two subsequent resolution steps

2. In all other cases, if I2 ⇒ I3, then Itp(L[w 
 v], R[w 
 v])⇒ Itp(L,R).

Proof. The two proofs R and R[w 
 v] are shown in Figure B.1. We show that I ′ ⇒ I for

the different cases of the pair 〈c, d〉 in the theorem.

(1) c � d ∧ (c 6= ab ∨ c 6= d)

� 〈b, b〉: I ′ ⇒ I because I ′ is equivalent to I.

� 〈b, ab〉:

I ′ ≡ (l1 ∨ I1) ∧ (¬l1 ∨ I3) ∧ I2

⇒ (l1 ∨ I1) ∧ (l1 ∨ I2) ∧ (¬l1 ∨ I3)

≡ (l1 ∨ (I1 ∧ I2)) ∧ (¬l1 ∨ I3)

≡ I
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� 〈b, a〉:

I ′ ≡ (I1 ∨ I3) ∧ I2

⇒ (I1 ∧ I2) ∨ I3

≡ I

� 〈a, a〉: I ′ ⇒ I because I ′ is equivalent to I.

� 〈ab, a〉 :

I ′ ≡ (l0 ∨ (I1 ∨ I3)) ∧ (¬l0 ∨ I2)

≡ ((l0 ∨ I1) ∧ (¬l0 ∨ I2)) ∨ (I3 ∧ (¬l0 ∨ I2))

⇒ ((l0 ∨ I1) ∧ (¬l0 ∨ I2)) ∨ I3

≡ I

(2) ¬(c � d) ∨ (c = d = ab) Assume that I2 ⇒ I3.

� 〈ab, b〉:

I ′ ≡ (l0 ∨ (I1 ∧ I3)) ∧ (¬l0 ∨ I2)

≡ (l0 ∨ I1) ∧ (l0 ∨ I3) ∧ (¬l0 ∨ I2)

(I2⇒I3)⇒ (l0 ∨ I1) ∧ (¬l0 ∨ I2) ∧ (l0 ∨ I3) ∧ (¬l0 ∨ I3)

≡ (l0 ∨ I1) ∧ (¬l0 ∨ I2) ∧ I3 ∧ (l0 ∨ ¬l0)

≡ (l0 ∨ I1) ∧ (¬l0 ∨ I2) ∧ I3 ≡ I

� 〈ab, ab〉:

I ′ ≡ (l0 ∨ ((l1 ∨ I1) ∧ (¬l1 ∨ I3))) ∧ (¬l0 ∨ I2)

≡ (l0 ∨ l1 ∨ I1) ∧ (l0 ∨ ¬l1 ∨ I3) ∧ (¬l0 ∨ I2) ∧ (l1 ∨ ¬l1)

≡ (l0 ∨ l1 ∨ I1) ∧ (l0 ∨ ¬l1 ∨ I3) ∧ (¬l0 ∨ l1 ∨ I2) ∧ (¬l0 ∨ ¬l1 ∨ I2)

(I2⇒I3)⇒ (l0 ∨ l1 ∨ I1) ∧ (¬l0 ∨ l1 ∨ I2) ∧ (l0 ∨ ¬l1 ∨ I3) ∧ (¬l0 ∨ ¬l1 ∨ I3)

≡ (l0 ∨ l1 ∨ I1) ∧ (¬l0 ∨ l1 ∨ I2) ∧ (¬l1 ∨ I3) ∧ (l0 ∨ ¬l0)

≡ (l1 ∨ ((l0 ∨ I1) ∧ (¬l0 ∨ I2))) ∧ (¬l1 ∨ I3)

≡ I
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l0l1C1 [I1] l0l1C2 [I2]

l1C3 [I3]l1C1C2

C [I]
(a) Original refutation

l0l1C1 [I1] l1C3 [I3] l0l1C2 [I2]

l0C2C3l0C1C3

C ′ [I ′]
(b) Transformed refutation

Figure B.2: Transformation of a refutation in which l1 is a merge literal

L
(l

1
)
t

L
(¬

l 1
)

L(l0) t L(¬l0)
a ab b

a I1 ∨ I2 ∨ I3
(l0 ∨ I1 ∨ I3)
∧(¬l0 ∨ I2 ∨ I3)

(I1 ∨ I3) ∧ (I2 ∨ I3)

ab (l1 ∨ I1) ∧ (¬l1 ∨ I3)∨
(l1 ∨ I2) ∧ (¬l1 ∨ I3)

(l0 ∨ ((l1 ∨ I1) ∧ (¬l1 ∨ I3)))∧
(¬l0 ∨ ((l1 ∨ I2) ∧ (¬l1 ∨ I3)))

(l1 ∨ I1) ∨ (l1 ∧ I2)
∧(¬l1 ∨ I3)

b (I1 ∧ I3) ∨ (I2 ∧ I3)
(l0 ∨ (I1 ∧ I3))
∧(¬l0 ∨ (I2 ∧ I3))

I1 ∧ I2 ∧ I3

Table B.2: Partial interpolant I ′ for different label values in Figure B.2(b)

� 〈a, b〉:

I ′ ≡ (I1 ∧ I3) ∨ I2

≡ (I1 ∨ I2) ∧ (I2 ∨ I3)

(I2⇒I3)⇒ (I1 ∨ I2) ∧ I3

≡ I

� 〈a, ab〉:

I ′ ≡ (l1 ∨ I1) ∧ (¬l1 ∨ I3) ∨ I2

≡ (l1 ∨ I1 ∨ I2) ∧ (¬l1 ∨ I2 ∨ I3)

(I2⇒I3)⇒ (l1 ∨ (I1 ∨ I2)) ∧ (¬l1 ∨ I3)

≡ I

The different cases of the proof are summarised in Table B.1.

Lemma B.4.1 shows that the transformation proposed by Jhala and McMillan [JM07]

for the case that l1 ∈ C2 in Figure 3.15(a) (depicted in Figure B.2(a)) does not strengthen

the resulting partial interpolant. Two cases of this lemma are shown in Figure B.3, where

the partial interpolants correspond to a proof graph as in Figure B.2(a). In the first case,

L(v1, l0) t L(v2,¬l0) = b and L(v1, l1) t L(v2,¬l1) = a . In the second case, L(v1, l0) t
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I3

I1 I2

I

I3I1 I2

I ′

1 0

1 0

l0

l1

I1 I2

I3

I

−→
1 0

1 0

0 1l1

l0

l1

I1
I3 I2

I ′

Figure B.3: Circuits representing the annotations I and I ′ in Figure B.2(a) and Fig-
ure B.2(b) for the cases 〈c, d〉 = 〈b, a〉 and 〈c, d〉 = 〈ab, ab〉.

L(v2,¬l0) = ab and L(v1, l1)tL(v2,¬l1) = ab . One can verify that the circuits are logically

equivalent. Though this transformation does not impact interpolant strength, it may be a

useful intermediate step that enables other transformations.

Lemma B.4.1 (Redundant Transformation). Let R be a proof as illustrated in Figure B.2(a),

and let R′ the proof in Figure B.2(b). Furthermore, let I and I ′ be interpolants generated

using either Itp(LM , R, A,B), Itp(LHKP , R, A,B), or Itp(LM ′ , R, A,B). Then I ′ ⇔ I.

Proof. Table B.2 summarises the possible partial interpolants at the vertex v for different

labels of a literal. The labelling functions LM , LHKP and LM ′ assign the same label to all

occurrences of a literal, hence we need not consider cases in which a literal has different

labels in different clauses. For the proof, we show for each of these cases that the partial

interpolant I ′ is logically equivalent to I.

We perform a case split on the tuple 〈L(l0) t L(¬l0), L(l1) t L(¬l1)〉:

� 〈a, a〉: holds trivially.

� 〈ab, a〉:

I ′ ≡ (l0 ∨ I1 ∨ I3) ∧ (¬l0 ∨ I2 ∨ I3)

≡ (l0 ∨ I1) ∧ (¬l0 ∨ I2) ∨ I3 ≡ I

� 〈b, a〉:

I ′ ≡ (I1 ∨ I3) ∧ (I2 ∨ I3) ≡ (I1 ∧ I2) ∨ I3 ≡ I
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� 〈a, ab〉:

I ′ ≡ (l1 ∨ I1) ∧ (¬l1 ∨ I3) ∨ (l1 ∨ I2) ∧ (¬l1 ∨ I3)

≡ (l1 ∨ (I1 ∨ I2)) ∧ (¬l1 ∨ I3) ≡ I

� 〈ab, ab〉:

I ′ ≡ (l0 ∨ ((l1 ∨ I1) ∧ (¬l1 ∨ I3))) ∧ (¬l0 ∨ ((l1 ∨ I2) ∧ (¬l1 ∨ I3)))

≡ (l0 ∨ l1 ∨ I1) ∧ (l0 ∨ ¬l1 ∨ I3) ∧ (¬l0 ∨ l1 ∨ I2) ∧ (¬lo ∨ ¬l1 ∨ I3)

≡ (l0 ∨ l1 ∨ I1) ∧ (¬l0 ∨ l1 ∨ I2) ∧ (¬l1 ∨ I3) ∧ (l0 ∨ ¬l0)

≡ (l1 ∨ ((l0 ∨ I1) ∧ (¬l0 ∨ I2))) ∧ (¬l1 ∨ I3) ≡ I

� 〈b, ab〉:

I ′ ≡ (l1 ∨ I1) ∧ (l1 ∨ I2) ∧ (¬l1 ∨ I3)

≡ (l1 ∨ (I1 ∧ I2)) ∧ (¬l1 ∨ I3) ≡ I

� 〈a, b〉:

I ′ ≡ (I1 ∧ I3) ∨ (I2 ∧ I3) ≡ (I1 ∨ I2) ∧ I3 ≡ I

� 〈ab, b〉:

I ′ ≡ (l0 ∨ (I1 ∧ I3)) ∧ (¬l0 ∨ (I2 ∧ I3))

≡ (l0 ∨ I1) ∧ (¬l0 ∨ I2) ∧ I3 ≡ I

� 〈b, b〉: Trivial.

B.5 Proofs for Section 3.5.2

Theorem 3.5.2. Let P = (VP , EP , `P , sP ) be a local refutation of the conjunction of the

pair of formulae (A,B). Then ItpTKV(P,A, B)(v)⇒ ItpTKW(P,A, B)(v) holds for each vertex

v ∈ VP for which Sym(`(v)) ⊆ Sym(A) ∩ Sym(B) holds.

Proof. We prove Theorem 3.5.2 by induction over the structure of P . The base case is

trivial, since ItpTKV(P,A, B) and ItpTKW(P,A, B)(v) assign the same partial interpolants to

223



the initial nodes of P .

Induction hypothesis: Let v ∈ VP be a vertex in P . Suppose that v is B-coloured

(A-coloured, respectively). Let {C1, . . . , Cn} denote the set A-premise(v) (or B-premise(v),

respectively). Furthermore, let I1, . . . , In and I ′1, . . . , I
′
n be the corresponding partial inter-

polants generated by ItpTKV(P,A, B) and ItpTKW(P,A, B), respectively. Then it holds for all

i ∈ {1..n} that Ii ⇒ I ′i.

Induction step. For an internal node v with C = `(v), we need to distinguish the

following cases:

1. C is A-coloured. Then

ItpTKV(P,A, B)(v) =
n∧

i=1

(Ci ∨ Ii) ∧ ¬
n∧

i=1

Ci and

ItpTKW(P,A, B)(v) =
n∨

i=1

(¬Ci ∧ I ′i) .

We reason as follows:

ItpTKV(P,A, B)(v) =
n∧

j=1

(Cj ∨ Ij) ∧
n∨

i=1

(¬Ci)

=
n∨

i=1

(¬Ci) ∧
n∧

j=1

(Cj ∨ Ij)


=

n∨
i=1

n∧
j=1

((¬Ci ∧ Cj) ∨ (¬Ci ∧ Ij))

=
n∨

i=1

(¬Ci ∧ Ii) ∧
n∧

j=1,i6=j

(¬Ci ∧ Cj) ∨ (¬Ci ∧ Ij)


⇒

n∨
i=1

(¬Ci ∧ Ii)

⇒
n∨

i=1

(¬Ci ∧ I ′i) (by the induction hypothesis)
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2. C is B-coloured. Then

ItpTKV(P,A, B)(v) =
n∧

i=1

(Ci ∨ Ii) and

ItpTKW(P,A, B)(v) =
n∨

i=1

(¬Ci ∧ I ′i) ∨
n∧

i=1

Ci .

We reason as follows:

ItpTKW(P,A, B)(v) =
n∧

i=1

Ci ∨
n∨

j=1

(¬Cj ∧ I ′j)


=

n∧
i=1

n∨
j=1

(
(Ci ∨ ¬Cj) ∧ (Ci ∨ I ′j)

)

=
n∧

i=1

(Ci ∨ I ′i) ∨
n∨

j=1,i6=j

(Ci ∨ ¬Cj) ∧ (Ci ∨ I ′j)


Since the induction hypothesis warrants that

∧n
i=1(Ci ∨ Ii)⇒

∧n
i=1(Ci ∨ I ′i) holds, we

conclude that ItpTKV(P,A, B)(v)⇒ ItpTKW(P,A, B)(v).
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Lazy abstraction. In Principles of Programming Languages (POPL), pages
58–70. ACM, 2002.

[HK76] Sidney L. Hantler and James C. King. An introduction to proving the correct-
ness of programs. ACM Computing Surveys, 8(3):331–353, 1976.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576–580, 1969.

[Hua95] Guoxiang Huang. Constructing Craig interpolation formulas. In Computing
and Combinatorics, volume 959 of Lecture Notes in Computer Science, pages
181–190. Springer, 1995.
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[Mae61] Shôji Maehara. On the interpolation theorem of Craig (in Japanese). Sûgaku,
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