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Abstract—The localisation of faults in integrated circuits is
a challenging problem and a dominating factor in the overall
verification effort. Electrical bugs, in particular, surface only
in the fabricated prototypes, leading to behaviour deviating
from the golden model. Limited observability complicates their
localisation: Logging mechanisms such as trace buffers allow us
to retain only a limited execution history.

A symbolic analysis of the RTL design can find discrepancies
between the values recorded in the trace buffer and the intended
behaviour. Contemporary MAX-SAT solvers are then able to
identify a maximal subset of the RTL design that is consistent
with the observed behaviour. The elements in the complement of
this subset represent potential locations of the fault.

The scalability of contemporary decision procedures dictates
the size of a window of execution cycles which we can analyse
using symbolic techniques. Current MAX-SAT-based fault locali-
sation techniques require this window to span the fault as well as
the error it causes. To address the scalability issues resulting from
large window sizes, we propose to slide a smaller window along
the temporal axis, constraining it with the information recorded
in the trace buffer for the respective execution cycles.

In this scenario, the localisation attempt may fail: The limited
information provided by the trace buffer may be insufficient
to pin down the exact temporal and spatial location of the
fault. We propose to use backbones to identify information that
can be propagated across sliding windows. The backbone of a
symbolic representation of a circuit is the set of signals that are
immutable under the given constraints (e.g., the output and trace
buffer values). This additional information has several benefits:
Firstly, it may be instrumental in locating the fault. Secondly,
it may enable a reduction of the size of the of trace buffers
and the sliding window. Our preliminary experimental results
demonstrate that the use of backbones allows us to reduce the
size of the sliding windows or the trace buffer.

I. INTRODUCTION

The localisation of faults in fabricated prototypes, referred
to as silicon debug or post-silicon validation, is a challenging
and time-consuming problem. According to [1], the temporal
and spatial isolation of a fault “typically dominate[s] the
effort expended during the debug process for a bug.” One
of the aspects that distinguishes post-silicon validation from
simulation or formal verification of the RTL design is the
ability to execute long test scenarios. This comes at the cost of
limited observability of signals in integrated circuits. Logging
techniques such as trace buffers enable us to track a relatively
small number of signals over a limited amount of time (e.g., a
few thousand execution cycles). If a test case reveals an error,
this limited execution history has to suffice to locate the fault
causing the erroneous behaviour of the chip.

To locate the fault, we require sufficient information about
the execution history to reconstruct the scenario that led to
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Fig. 1: Unfolded circuit encoding four execution cycles

the error. Such information can be obtained by augmenting
the processor with hardware recorders (referred to as trace
buffers) that keep track of limited information to enable the
reconstruction of the instruction sequence leading up to the
error. An architecture-specific analysis such as IFRA [2] can
then be used to narrow down the location of the fault. The
advantage of this approach is that the reproduction of the
failure is not required for localisation purposes. The design of
such an analysis, however, requires considerable insight and
needs to be adapted for individual processor architectures.

We propose an adaptation of a fault-localisation technique
which is architecture independent and has been successfully
applied for fault diagnosis [3] as well as design debugging [4],
[5], [6], [7]. Given the RTL design in a language such as
Verilog, it is possible to construct a symbolic representation
of k execution steps by unfolding the combinational logic
C of the sequential circuit. The unfolding yields an iterative
logic array [8] as illustrated in Figure 1. The resulting formula
encodes all correct executions within a window of length k.

To identify the spatial and temporal location at which the
behaviour of the device under test deviates from that of the
golden model, we constrain the symbolic representation with
the values recorded in the trace buffers. If the resulting formula
is unsatisfiable, the fault must have occurred within the given
window. Using the techniques presented in [9], [10], one
can then compute the maximal subsets of the circuit which
are consistent with the observed behaviour of the integrated
circuit. The complements of these subsets (known as minimal
correction sets) identify potential locations of the fault.

The success of this technique hinges on the size of the
window and the information recorded in the trace buffers. The
former is dictated by the scalability of the underlying decision
procedure. The latter is determined by practical issues such as
cost and required performance of the integrated circuit.

Figure 2a illustrates the situation in which a transient
electrical fault in execution cycle i causes an error after cycle
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(a) Error localisation with limited window size
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(b) Additional state bits inferred using backbones

Fig. 2: Error localisation with and without backbones

n. The dashed bars represent the state bits of the circuit for
each execution step, and the shaded area indicates the fraction
of those bits recorded in the trace buffer. The diagram suggests
that we have near-complete information about the state bits
in the crash state (obtained by means of scan chains [11]),
but very limited information about what happened before the
error occurred. The curly brackets at the bottom of Figure 2a
illustrate two attempts to use a window of size four to locate
the fault. The first attempt fails because the fault does not
lie within the window. The second attempt fails because the
information recorded in the trace buffer is insufficient to derive
a contradiction: By shifting the window to the left, the analysis
drops crucial information about the crash state.

Figure 2b illustrates the use of backbones to infer additional
information that can be propagated across the sliding windows.
The backbone of an unfolding of a circuit is the set of
signals that are immutable under the respective constraints
(i.e., the bits of the crash state and the trace buffer values).
For instance, the backbone of the formula (x ⊕ y) · (x + z)
under the constraint x 7→ 1 is {x 7→ 1, y 7→ 0}. The
backbone of an unfolding (possibly smaller than the window
used for localisation) that is constrained by the recorded
state bits potentially provides additional state bits (indicated
by the black bars in Figure 2b) which can be subsequently
used in overlapping windows. Thus, backbones (which can
be computed using the algorithms in [12]) can be used to
propagate information from the crash state backwards in time
to earlier cycles. This additional information can be crucial to
fault localisation. We emphasise that our analysis is static and
therefore not restricted to reproducible permanent faults.

Contributions: We address the scalability limits of sym-
bolic reasoning by sliding an analysis window of fixed size
along the temporal axis. We present a novel application of
backbones allowing us to reduce the loss of information
resulting from limited observability in post-silicon validation.
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(c) CNF encoding of unfolded circuit. As usual, the operators + and ·
are dropped for compactness. The clauses are grouped with respect to
the gates and cycles by which they are contributed.

Fig. 3: A simple example

II. FAULT LOCALISATION USING MAX-SAT

In the following we use propositional operators (·,+,⊕) and
atoms (i, o, s, . . .) to represent gates and signals, respectively.
As usual, a literal is either an atom or its negation, a clause
is a sum of literals, and a formula in conjunctive normal form
(CNF) is a product of clauses. Every unfolded combinational
circuit has an equi-satisfiable representation in CNF which can
be obtained in polynomial time [13]. Each instance of a gate
in the unfolded circuit corresponds to a group of clauses in
the corresponding CNF representation. We use Ci to denote
the CNF instantiation of the combinational logic of the RTL
design representing the ith execution cycle (c.f. Figure 1).
Similarly, we use Ti, a conjunction of literals, to represent the
state bits recorded by the trace buffer after the ith execution
step. Note that Ti is simply 1 if no state bits were recorded
at that point. Moreover, we assume that T0 and Tn represent
the information available about the initial and the crash state,
respectively. Finally, Ii and Oi represent the input and output
constraints of cycle i. Accordingly, the CNF formula

W k
m

def=
m+k−1∧

i=m

T(i−1) · Ii︸ ︷︷ ︸
input constraints

· Ci︸︷︷︸
circuit

· Oi · Ti︸ ︷︷ ︸
output constraints

(1)

represents a window of k consecutive execution cycles starting
at cycle m constrained with the corresponding inputs, outputs,
and state bits recorded by the trace buffer.

Given an unsatisfiable instance of (1), the goal is to find the
clauses (gates, respectively) that are most likely responsible
for the fault. This can be achieved by identifying a minimal
correction set (MCS), i.e., a minimal set of gates that need to
be dropped from (1) such that the formula becomes satisfiable.
This corresponds to finding the maximum set of clauses that
are consistent, an NP-hard optimisation problem commonly
known as MAX-SAT. More specifically, we are only interested
in dropping clauses that correspond to gates; the constraints
introduced by trace buffer values and inputs or outputs are
hard constraints. This specialisation of MAX-SAT is known
as partial MAX-SAT. Algorithms to solve partial MAX-SAT
instances are discussed in [9] and [10], for instance.



Consider the sequential circuit in Figure 3a. After a reset
of the flip-flop, we expect the output o to remain 0 as long
as the input signal i2 is constantly 0. Assume, however,
that we observe an output value of 1 after two cycles when
executing the described scenario on the chip. Figure 3b depicts
a two-cycle unfolding of the circuit. Figure 3c shows the
corresponding CNF encoding. Assume that we observe and
record the values o1 7→ 0 and o2 7→ 1 during a test-run with
the initial state s 7→ 0 and the stimuli i12 7→ 0, and i22 7→ 0.
Note that we have no information about the signal r. These
observations contribute the hard constraint o1 · o2 · s · i12 · i22,
which is not satisfiable in conjunction with the formula in 3c.
Using a MAX-SAT solver, we can derive that the conjunction
becomes satisfiable if we drop either (r s) or (o2 i22 r) (both of
which are an MCS) from 3c. Accordingly, either the AND-gate
in cycle one or the OR-gate in cycle two must have defaulted.

This approach also addresses multiple faults by using fault
cardinality constraints [3]. Existing MCS-based fault localisa-
tion techniques require the window W k

m (Formula 1) to span
the fault as well as the crash state, which may result in a large
formula exceeding the capabilities of the decision procedure.

In contrast, we restrict the analysis to a window of fixed
size which we slide along the temporal axis. In the following
section, we discuss a novel application of backbones allowing
us to reduce the loss of information resulting from the limited
window size.

III. PROPAGATING INFORMATION USING BACKBONES

We will now consider the case in which the scalability
of the underlying decision procedure dictates a window size
smaller than the number of cycles of the entire test run. For
the purpose of an example, we revisit the scenario in Figure 3
and assume that the window size is limited to a single cycle.
Observe that neither the first line of Figure 3c in conjunction
with o1 · s · i12 nor the second line in conjunction with o2 · i22
yields a contradiction; the technique introduced in §II fails.
The reason is that we lack crucial information, namely the
value of the signal r. We propose the use of backbones to aid
the reconstruction of this information.

Formally, the backbone of a satisfiable propositional for-
mula F comprises the values of all atoms p in F for which
either (F + p) or (F + p) holds, i.e., p takes the same value
in all satisfying assignments of F . We use a SAT solver to
compute an initial satisfying assignment and subsequently try
to flip the value of each literal, thus changing the assignment.
Literals whose values differ in subsequent assignments are not
part of the backbone. This algorithm performs one call to the
SAT solver per literal in the worst case. Only the first call
has to solve the instance from scratch; the subsequent calls
are incremental, making the algorithm practical on large scale
circuits [12]. The backbone of the formula from our example

(t i21) (t r) (i21 r t) (i22 o2) (r o2) (o2 i22 r)︸ ︷︷ ︸
cycle Á

(o2) (i22)︸ ︷︷ ︸
hard constraints

,

is o2 7→ 1 i22 7→ 0, and r 7→ 1. This backbone provides a value
for the previously unknown signal r. In general, backbones

under-approximate the information available to the SAT solver
in the analysed time-frame.

Effectively, this computation propagates the error encoded
in the constraint (o2) (i22) backwards. By propagating the
newly learnt information to cycle À we obtain the desired
contradiction:

(r i11) (r s) (i11 s r) (i12 o1) (s o1) (o1 i12 s)︸ ︷︷ ︸
cycle À

(o1) (s) (i12)︸ ︷︷ ︸
constraint

(r)︸︷︷︸
backbone

As expected, a MAX-SAT solver is able to determine that
(rs) must be dropped, and that the AND-gate in cycle À
is a potential culprit. Notably, we missed the second fault
candidate due to the limited window size and the resulting lack
of information.1 We emphasise, however, that in the absence
of the information provided by the backbone, the approach
described in §II is unable to diagnose the fault altogether.

In general, we use the information provided by the backbone
of an instance of Formula (1) for a given m and k to augment
the trace buffer (c.f. Figure 2b) of windows overlapping the
interval of cycles [m − 1,m + k). To this end, we compute
the largest conjunctions B(m−1), . . . , B(m+k−1) of literals
over the signals in the respective cycles which are implied by
Formula (1). Accordingly, Bi ⇒ Ti for i ∈ [m − 1,m + k).
We use Bk

m
def=

∧m+k
i=m B(i−1) to denote the backbone of W k

m.
Let W k

m and W l
n be two satisfiable windows with overlap o

(i.e., n = m + k − o and 0 ≤ o ≤ min(k, l)). Then, W k
m ·

W l
n = W

(k+l−o)
m , according to Formula (1). Now assume that

W
(k+l−o)
m is unsatisfiable but too large for a MAX-SAT solver.

Using backbones, we approximate W l
n using Bl

n, i.e., W l
n ⇒

Bl
n. The information in Bl

n can enable the localisation of faults
that W k

m failed to reveal. We construct Ŵ k
m = W k

m · Bl
n. If

Ŵ k
m is unsatisfiable, we use the approach described in §II to

find the gates that need to be dropped from W k
m to make Ŵ k

m

satisfiable. Since W k
m ·W l

n ⇒ Ŵ k
m, these gates are necessarily

a subset of the gates that need to be dropped to make W k
m ·W l

n

(i.e., the larger window W
(k+l−o)
m ) satisfiable.

IV. EXPERIMENTAL RESULTS

We evaluated our approach using the 68hc05 and 8051
processor designs used as case study in [14] (obtained from
opencores.org). We converted the Verilog RTL designs into the
DIMACS CNF format using the following translation steps:

Verilog Altera Quartus2−−−−−−−−→ blif
ABC3

−−−−→ aig
AIGER4

−−−−→ cnf

We randomly injected permanent stuck-at-constant faults
(though we emphasise that our approach supports arbitrary
fault models) into the RTL designs and obtained 26 failing test
scenarios (13 for each design) of 2000 cycles length by means
of SAT-based symbolic simulation. In each test scenario, we
injected one fault at a time for the smaller 68hc05 design

1Note though, that a forward analysis yields the second fault candidate in
our example: The backbone of cycle À under the constraint o1 · s · i12 yields
r 7→ 0, which is inconsistent with the observations in cycle Á.

2altera.com 3www.eecs.berkeley.edu/∼alanmi/abc/ 4fmv.jku.at/aiger/
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(b) Reduction of trace buffer size with backbones (using a fixed window size
of 3 for the 68hc05 and 5 for the 8051 design)

Fig. 4: Experimental evaluation of backbones

and five faults at a time for the 8051 logic. All faults surface
up to 1000 cycles before the end of the trace.

We recorded different percentages of the latches (chosen at
random) in the trace buffer. We used the tool CAMUS [10],
which implements the fault localisation algorithm discussed in
§II, and the iterative SAT-testing algorithm described in [12]
to compute backbones. The window size k is the same for
computing backbones and localisation. Our implementation
uses a fixed overlap of o = k − 1. We slid the window
backwards in time along the temporal axis of the test scenarios,
propagating the backbones from previously analysed windows.

Using this setup, we ran two experiments: We (a) deter-
mined the minimum window size required to detect a fault for
a fixed trace buffer size of 5% (Figure 4a) and (b) fixed the
window size and increased the size of the trace buffer until
the fault could be detected (Figure 4b). (Spiked bars indicate
values that are off the scale.) We found that backbones enable
a significant reduction of (a) the window size as well as (b)
the size of the trace buffer required to locate faults.

V. RELATED WORK

Instruction footprints [2] (c.f. §I) enable the localisation of
faults by providing sufficient information about the execution.
This approach requires a design dependent localisation analy-
sis which needs to be adapted for individual architectures.

Smith et al. [3] describes a technique similar to the one
in §II. The approach covers multiple faults and different fault
models, but requires the window to span all cycles of the test
run. The work does not address limited observability.
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The figure to the
right relates our ap-
proach and the work
presented in [2] and
[3]. Our approach ad-
dresses limited ob-

servability and window-size using a generic SAT-based analy-
sis. Yang et al. [15] proposes a SAT-based technique that, given
a test scenario that results in a failure, identifies signals that are
relevant to the analysis of the failure and should therefore be
recorded in (configurable) trace buffers. This technique could
potentially be helpful to increase the size of the backbones.

Paula et al. [14] proposes to compute signatures of states
to narrow down the set of predecessor states of the crash
state, effectively enabling backwards stepping. This allows to
identify the error in an earlier cycle in a subsequent test run.
The approach requires the repeated reproduction of the failure,
which renders the approach infeasible for the localisation of
transient electrical faults (which our approach makes possible).

There is a number of papers based on the the approach
described in §II that address pre-silicon debugging (with full
observability) by constraining a faulty RTL model with correct
input/output pairs (given as a specification) [4], [5], [6], [7].

VI. CONCLUSION

We presented a novel fault localisation technique which
addresses the limited observability in post-silicon validation
and demonstrated its applicability using small case studies.
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