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Abstract—We present a thread-modular proof method for
complexity and resource bound analysis of concurrent, shared-
memory programs, lifting Jones’ rely-guarantee reasoning to
assumptions and commitments capable of expressing bounds.
We automate reasoning in this logic by reducing bound analysis
of concurrent programs to the sequential case. Our work is
motivated by its application to lock-free data structures, fine-
grained concurrent algorithms whose time complexity has to our
knowledge not been inferred automatically before.

I. INTRODUCTION

A. Program Complexity and Resource Bound Analysis

Program complexity and resource bounds analysis (bound
analysis) aims to statically determine upper bounds on the
resource usage of a program as expressions over its inputs. De-
spite the recent discovery of powerful bound analysis methods
for sequential imperative programs (e.g., [1], [2], [3], [4], [5],
[6], [7]), little work exists on bound analysis for concurrent,
shared-memory imperative programs (cf. Section VII).

From a practical point of view, bound analysis is an im-
portant step towards proving functional correctness criteria of
programs in resource-constrained environments: For example,
in real-time systems intermediary results must be available
within certain time bounds, or in embedded systems applica-
tions must not exceed hard constraints on CPU time, memory
consumption, or network bandwidth.

B. Non-blocking Data Structures

We illustrate the necessity of extending bound analysis to
concurrent, shared-memory programs on the example of non-
blocking data structures: Devised to circumvent shortcom-
ings of lock-based concurrency (like deadlocks or priority
inversion), they have been adopted widely in engineering
practice [8]. For example, the Michael-Scott non-blocking
queue [9] is implemented in the Java standard library’s
ConcurrentLinkedQueue class.

Automated techniques have been introduced for proving
both correctness (e.g., [10], [11], [12], [13]) and progress (e.g.,
[14], [15]) properties of non-blocking data structures. In this
work, we focus on the progress property of lock-freedom, a
liveness property that ensures absence of livelocks: Despite
interleaved execution of multiple threads altering the data
structure, some thread is guaranteed to complete its operation
eventually.

From a practical, engineering point of view it is not enough
to prove that a data structure operation completes eventually.
Rather, it needs to make progress using a bounded, measurable
amount of resources: Petrank et al. [16] formalize and study
bounded lock-free progress as bounded lock-freedom, and
discuss its relevance for practical applications. They describe
its verification for a fixed number of threads and a given bound
using model checking, but leave finding the bound to the
user. Existing approaches for automatically proving progress
properties like the ones presented in [14], [15] are limited
to eventual progress. To our knowledge, bounded progress
guarantees have not been inferred automatically before.

C. Overview

Reasoning about the resource consumption of non-blocking
algorithms is an intricate and manually tedious problem. To
illustrate this point, consider the following common design
pattern for lock-free data structures: A thread aiming to
manipulate the data structure starts by taking as many steps
as possible without synchronization, preparing its intended
update. Then, it attempts to alter the globally visible state
by synchronizing on a single word in memory at a time.
Interference from other threads may cause this synchronization
to fail, and the thread to retry from the beginning. From the
viewpoint of a single thread that accesses the data structure:

1) The amount of interference by other threads directly
affects its resource consumption. In general, this means
reasoning about an unbounded number of concurrent
threads, even to infer resource bounds on a single thread.

2) The point of interference may occur at any point in the
execution, due to the fine granularity of concurrency.

In this paper, we present an automated bound analysis for
concurrent, shared-memory programs to remedy this situation:
In particular, our method analyzes the parameterized system of
N concurrent lock-free data structure client threads. To reason
about this infinite family of systems and its interactions, we
leverage and extend rely-guarantee (RG) reasoning [17]: RG
reasoning considers each thread separately, modeling inter-
leaved steps of other threads in an environment assumption.
However, we will see that classic RG reasoning is too weak
to obtain suitable bounds. Therefore, we extend RG reasoning
to bound analysis. In the following we outline the major
contributions of this paper.



D. Contributions

1) We present the first extension of rely-guarantee specifi-
cations to bound analysis (Section III).

2) We formulate inference rules to reason about these
extended specifications and instantiate them to derive
our method for bound analysis of concurrent programs
(Section IV).
Apart from their specific use case in this work, we
believe the inference rules are interesting in their own
right, for example in comparison to the reasoning rules
for liveness presented in [14] (cf. the discussion in
Section VII).

3) We reduce bound analysis of concurrent programs to
bound analysis of sequential programs, and obtain an
algorithm for rely-guarantee bound analysis (Section V).

4) We implement our algorithm in the tool COACHMAN
and apply it to lock-free data structures from the liter-
ature. To our knowledge, we are the first to automati-
cally infer runtime complexity for widely studied lock-
free data structures such as Treiber’s stack [18] or the
Michael-Scott queue [9] (Section VI).

II. MOTIVATING EXAMPLE

We start by giving an informal explanation of our method
and of the paper’s main contributions on a running example.

A. Running Example: Treiber’s Stack

Fig. 1 shows the implementation of a lock-free concurrent
stack known as Treiber’s stack [18]. Our input programs
are represented as control-flow graphs with edges labeled by
guarded commands of the form g B c. We omit g if g = true.
We assume edges are executed atomically, and that programs
execute in presence of a garbage collector; the latter prevents
the so-called ABA problem and is a common assumption in
the design of lock-free algorithms [8].

Values stored on the stack do not influence the number of
times its operations are executed, thus we abstract them away
for readability. The stack is represented by a null-terminated
singly-linked list, with the shared variable T pointing to the
top element. The push and pop methods may be called
concurrently, with synchronization occurring at the guarded
commands originating in `3 for push and `13 for pop. These
low-level atomic synchronization commands are usually im-
plemented in hardware, through instructions like compare-and-
swap (CAS) [8].

The stack operations are implemented as follows: Initially,
T points to NULL. The push operation (Fig. 1a)

1) allocates a new list node n (`0 → `1)
2) reads the global stack pointer T (`1 → `2)
3) updates the newly allocated node’s next field to the read

value of T (`2 → `3)
4) atomically: compares the value read in (2) to the ac-

tual value of T; if equal, T is updated to point to n,
otherwise the operation restarts (`3 → `4 and `3 → `1
respectively).

The pop operation (Fig. 1b) proceeds similarly.

B. Problem Statement

Consider a general data structure client P = op1() [] · · · []
opM(), where op1, . . . , opM are the data structure’s operations,
and [] denotes non-deterministic choice. We compose N con-
current client threads P1 to PN accessing the data structure:

‖N P
def
= P︸︷︷︸

P1

‖ · · · ‖ P︸︷︷︸
PN

Our goal is to design an automated procedure that automat-
ically infers upper-bounds for all system sizes N on

1) the thread-specific resource usage caused by a control-
flow edge of a single thread P1 when executed concur-
rently with P2 ‖ · · · ‖ PN , or

2) the total resource usage caused by a control-flow edge
in total over all threads P1 to PN .

Remark (Cost model). To measure the amount of resource us-
age, bound analyses are usually parameterized by a cost model
that assigns each operation or instruction a cost amounting to
the resources consumed. In this paper, we adopt a uniform cost
model that assigns a constant cost to each control-flow edge.
When we speak of the complexity of a program, we adopt a
specific uniform cost model that assigns cost 1 to each control-
flow back edge and cost 0 to all other edges; this reflects the
asymptotic time complexity of the program.

Running example. Consider N concurrent copies P1 ‖ · · · ‖
PN of the Treiber stack’s client program push() [] pop(), and
the push operation’s control-flow edge `1 → `2. A manual
analysis yields a thread-specific bound for P1 telling us that
this edge is executed at most N times by P1: Each time that
another thread successfully modifies stack pointer T, P1’s copy
in t may become outdated, causing the test at `3 to fail (t 6=
T), and P1 to restart. After at most N − 1 iterations, all other
threads have finished their operations and returned, and P1

executes `1 → `2 → `3 → `4 without interference.
Similarly, a total bound for P1 ‖ · · · ‖ PN tells us that edge

`1 → `2 is executed at most N(N + 1)/2 times by all threads
P1 to PN in total: The first thread to successfully synchronize
at `3 sees no interference and executes `1 → `2 once. The
second thread may need to restart once due to the first thread
modifying T, and executes `1 → `2 at most twice, etc. The last
thread to synchronize has the worst-case bound we established
as thread-specific bound for P1: it executes `1 → `2 N times.
We obtain N(N + 1)/2 as closed form for the total bound.
In the following, we illustrate how to formalize and automate
this reasoning.

C. Environment Abstraction

Client program ‖N P from above is parameterized in the
number of concurrent threads N . To reason about this infinite
family of parallel client programs, we base our analysis on
Jones’ rely-guarantee reasoning [17]. For each thread, RG
reasoning over-approximates the following as sets of binary
relations over program states (actions):
• the thread’s effect on the global state (its guarantee)
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`A

AId: skip
APop:

T != null B
T := T.next

APush:
n := new Node(next=NULL);

n.next := T;
T := n

(c) Stateless program P (A) for ac-
tions A = {APush, APop, AId} [19].

Fig. 1: Treiber’s lock-free stack [18]. Stack pointer T is the sole global variable.

• the effect of all other threads (its rely) as the union of
those threads’ guarantees.

The effect of all other threads (the thread’s environment) is
thus effectively abstracted into a single relation. Crucially,
this also abstracts away how often each environment action
is performed, rendering Jones’ RG reasoning unsuitable for
concurrent bound analysis.

Running example. The program in Fig. 1c with actions
A = {APush, APop, AId} summarizes the globally visible effect
of P1’s environment P2 ‖ · · · ‖ PN for all N > 0. In
particular, APush summarizes the effect of an environment
thread executing edge `3 → `4 from the point of view1 of
thread P1, APop that of `13 → `14, and AId that of all other
edges. We discuss how to obtain A in Section V-A.

As is, the actions in A may be executed infinitely often. Our
informal derivation of the bound in Section II-B however, had
to determine how often other threads could interfere with the
reference thread P1 (altering pointer T) to bound its number
of loop iterations.

Hence, we lift Jones’ RG reasoning to concurrent bound
analysis by enriching RG relations with bounds. We emphasize
our focus on progress properties in this work: although our
framework extends Jones’ RG reasoning and can express
safety properties, we only use it to reason about bounds; tighter
integration is left for future work.

D. Rely-Guarantee Reasoning for Bound Analysis
In particular, relies and guarantees in our setting are maps

{A1 7→ b1, . . . } from actions Ai (which are binary relations
over program states) to bound expressions bi. Each relation
describes an environment action, and the bound expression
describes how often that action may occur on a run of the
program.

We present a program logic for thread-modular [20] reason-
ing about bounds: A judgement in our logic takes the form

R,G ` {S} P {S′}
1Note that changes to local variables of P2, . . . , PN are not visible to P1.

where {S} P {S′} is a Hoare triple, and R,G are a rely
and guarantee. Its informal meaning is: For any execution
of program P starting in a state from {S}, and environment
interference described by the relations in R and occurring at
most the number of times given by the respective bounds in
R, P changes the shared state according to the relations in G
and at most the number of times described by the respective
bounds in G. In addition, the execution is safe (does not reach
an error state) and if P terminates, its final state is in {S′}.

Running example. For readability, we focus on the analysis
of Treiber’s push method. The steps for pop are similar. To
obtain one bound per edge, we split action AId : skip from
Fig. 1c into several actions Ai,jId : skip, one for each edge
`i → `j . For a rely or guarantee {A0,1

Id 7→ b1, A
1,2
Id 7→ b2,

A2,3
Id 7→ b3, A

3,1
Id 7→ b4, APush 7→ b5}, we fix the order of

actions and write (b1, b2, b3, b4, b5) for short.
First, our method states the following RG quintuple:

R,G ` {Inv} P1 {true}

where Inv is a data structure invariant stated over shared
variables in a suitable assertion language (e.g., separation
logic), R = (∞,∞,∞,∞,∞), and G = (1,∞,∞,∞, 1).
Despite the unbounded environment R (which corresponds
to Fig. 1c), we can already bound two edges, `0 → `1 and
`3 → `4 of P1, and thus the corresponding actions in G: These
edges are not part of a loop and – despite any interference from
the environment – can be executed at most once.

We show how to automatically discharge (or rather, dis-
cover) such RG quintuples in Section V. Next, we use the
bound information obtained in G to refine the environment R
until a fixed point of the rely is reached.

Running example (continued). We established that thread
P1 can perform actions A0,1

Id and APush at most once. In our
example, all threads are symmetric, thus each of the N − 1
other threads can execute A0,1

Id and APush at most once as well.
The abstract environment representing these N−1 threads can



thus execute each action A0,1
Id and APush at most N −1 times.

We obtain the refined rely R′ = (N − 1,∞,∞,∞, N − 1).
As we have reasoned in Section II-B, once the number of

APush environment actions is bounded, P1 loops only that
number of times. We obtain the refined guarantee

G′ = (1, N,N,N − 1, 1).

By the same reasoning as above, we multiply G′ with (N−1)
(componentwise) and obtain the refined rely

R′′ = (N − 1, N(N − 1), N(N − 1), (N − 1)2, N − 1).

From R′′, we cannot obtain any tighter bounds, i.e., G′′ = G′
is a fixed point, and we report G′′ and G′′+R′′ as the thread-
specific and total bounds of P1 and P1 ‖ · · · ‖ PN :

edge thread-specific bound total bound
`0 → `1 1 N
`1 → `2 N N2

`2 → `3 N N2

`3 → `1 N − 1 N(N − 1)
`3 → `4 1 N

We demonstrate in Section VI that for more complex
examples, more than two iterations of the rely-refinement are
necessary to bound all edges. We formalize our reasoning in
Sections III and IV, explain its automation in Section V, and
describe further case studies in Section VI.

III. RG SPECIFICATIONS FOR BOUND ANALYSIS

In this section, we formalize the technique illustrated in-
formally above. We start by stating our program model and
formally define the kind of bounds we consider:

A. Program Model
Definition 1 (Program). Let LVar and SVar be finite disjoint
sets of typed local and shared program variables, and let
Var = LVar ∪ SVar . Let Val be a set of values. Program
states Σ: Var → Val over Var map variables to values. We
write σ�Var ′ where Var ′ ⊆ Var for the projection of a state
σ ∈ Σ onto the variables in Var ′. Let GC = Guards ×
Commands denote the set of guarded commands over Var
and their effect be defined by J·K : GC → Σ → 2Σ ∪ {⊥}
where ⊥ is a special error state. A program P over Var is a
directed labeled graph P = (L, T, `0), where L is a finite set of
locations, `0 ∈ L is the initial location, and T ⊆ L×GC ×L
is a finite set of transitions. Let S be a predicate over Var
that is evaluated over program states. We overload J·K and
write JSK ⊆ Σ for the set of states satisfying S. We represent
executions of P as sequences of steps r ∈ Σ × T × Σ and
write σ t−→ σ′ for a step (σ, t, σ′). A run of P from S is a
sequence of steps ρ = σ0

`0,gc0,`1−−−−−→ σ1
`1,gc1,`2−−−−−→ . . . such that

σ0 ∈ JSK and for all i ≥ 0 we have σi+1 ∈ JgciK(σi).

Definition 2 (Interleaving of Programs). Let Pi =
(Li, Ti, `0,i) for i ∈ {1, 2} be two programs over Var i =
LVar i ∪ SVar i such that LVar1 ∩ LVar2 = ∅. Their inter-
leaving P1 ‖ P2 over Var1 ∪Var2 is defined as the program

P1 ‖ P2 = (L1 × L2, T, (`0,1, `0,2))

where T is given by ((`1, `2), gc, (`′1, `
′
2)) ∈ T iff

(`1, gc, `
′
1) ∈ T1 and `2 = `′2 or (`2, gc, `

′
2) ∈ T2 and `1 = `′1.

Given a program P over local and shared variables Var =
LVar ∪ SVar , we write ‖NP = P1 ‖ · · · ‖ PN where N ≥ 1
for the N -times interleaving of program P with itself, where
Pi over Var i is obtained from P by suitably renaming local
variables such that LVar1∩· · ·∩LVarN = ∅. Given a predicate
S over Var , we write

∧
N S for the conjunction S1∧· · ·∧SN

where Si over Var i is obtained by the same renaming.

Definition 3 (Expression). Let Var be a set of integer program
variables. We denote by Expr(Var) the set of arithmetic
expressions over Var ∪ Z ∪ {∞}. The semantics function
J·K : Expr(Var) → Σ → (Z ∪ {∞}) evaluates an expression
in a given program state. We assume the usual expression
semantics; in particular, a ◦ ∞ = ∞ and a ≤ ∞ for all
a ∈ Z ∪ {∞} and ◦ ∈ {+,×}.

Definition 4 (Bound). Let P = (L, T, `0) be a program over
variables Var , and let S over Var be a predicate describing
P ’s initial states. Let t ∈ T be a transition of P , and ρ =

σ0
t1−→ σ1

t2−→ · · · be a run of P from S. We use #(t, ρ) ∈
N0∪{∞} to denote the number of times transition t appears on
run ρ. An expression b ∈ Expr(VarZ) over integer program
variables VarZ ⊆ Var is a bound for t on ρ iff #(t, ρ) ≤
JbK(σ0), i.e., if t appears at most b times on ρ.

Given a program P = (L, T, `0) and predicate S over local
and shared variables Var = LVar ∪ SVar , our goal is to
compute a function Bound: T → Expr(SVarZ ∪ {N}), such
that for all transitions t ∈ T and all system sizes N ≥ 1,
Bound(t) is a bound for t of P1 on all runs of ‖NP = P1 ‖
· · · ‖ PN from

∧
N S = S1∧· · ·∧SN . That is, Bound gives us

the thread-specific bounds for transitions of P1. In Section IV,
we explain how to obtain total bounds on ‖NP from that.

B. Extending Rely-Guarantee Reasoning for Bound Analysis

To analyze the infinite family of programs ‖NP = P1 ‖
· · · ‖ PN , we abstract P1’s environment P2 ‖ · · · ‖ PN : We
define actions, which provide an abstract view of transitions
by abstracting away local variables and program locations.

Definition 5 (Action, Environment Assertion). Let ΣS be a
set of program states over shared variables SVar . An action
A ⊆ ΣS × ΣS over SVar is a binary relation over program
states. Let A = {A1, . . . , An} be a finite set of actions. An
environment assertion EA : A → Expr(SVar) over A is a
function that maps actions to bound expressions over SVar .
We omit A from EA wherever it is clear from the context.

We use sequences a of actions to describe interference: In-
tuitively, the bound EA(A) describes how often action A ∈ A
is permissible in such a sequence. This is captured by the |=
relation defined below. We also define operations and relations
on environment assertions to compose and compare them.

Definition 6 (Operations and Relations on Environment As-
sertions). Let A be a finite set of actions over shared variables
SVar , let A ∈ A be an action, and let a be a finite or infinite



word over actions A. Let EA and E ′A be environment assertions
over A. Let σ ⊆ ΣS be a program state over SVar . We
overload #(A, a) ∈ N0 ∪{∞} to denote the number of times
A appears on a and define

a |=σ EA iff #(A, a) ≤ JEA(A)K(σ) for all A ∈ A.

Let e ∈ Expr(SVar) be an expression over SVar . For all
actions A ∈ A we define

(e× EA)(A) = e× EA(A), and
(EA + E ′A)(A) = EA(A) + E ′A(A).

Further, let S be a predicate over SVar . We define

EA ⊆S E ′A iff JEA(A)K(σ) ≤ JE ′A(A)K(σ)

for all A ∈ A and all σ ∈ JSK.

C. Trace Semantics of RG Quintuples

We abstract environment threads of interleaved programs
with RG quintuples of either form

R,G ` {S} P {S′} or R, (G1,G2) ` {S} P1 ‖ P2 {S′}

where P and P1 ‖ P2 are programs, S and S′ are predicates
such that JSK ⊆ Σ are inital program states, and JS′K ⊆ Σ are
final program states, and rely R and guarantees G and G1,G2

are environment assertions over a finite set of actions A.

Remark (Notation of environment assertions). Note that the
relies and guarantees of a single RG quintuple are defined
over the same set of actions A; in Section V-A we show how
to compute a set A that over-approximates P (or P1 ‖ P2)
in a prelimiary analysis step. We choose to write relies
and guarantees as functions over A as it simplifies notation
throughout the paper. The reader may prefer to think of
environment assertions {A1 7→ b1, . . . } as sets of pairs of
an action and a bound {(A1, b1), . . . }, in contrast to just sets
of actions {A1, . . . } in Jones’ RG reasoning.

In particular, R abstracts P ’s or P1 ‖ P2’s environment.
The guarantees G and (G1,G2) allow us to express both
thread-specific and total bounds on interleaved programs: The
guarantee G of quintuple R,G ` {S} P1 ‖ P2 {S′} contains
total bounds for P1 ‖ P2, while the guarantees G1,G2 of
R, (G1,G2) ` {S}P1 ‖ P2 {S′} contain the respective thread-
specific bounds of threads P1 and P2.

We model executions of RG quintuples as traces, which
abstract runs of the concrete system. In particular, for each
run of the concrete system, there exists a corresponding trace
of the abstract system. This allows us to over-approximate
bounds by considering the traces induced by RG quintuples.

Definition 7 (Trace). Let P = (L, T, `0) be a program of
form P1 or P1 ‖ P2 and S be a predicate over local and shared
variables Var = LVar ∪SVar . Let A be a finite set of actions
over SVar . We represent executions of P interleaved with
environment actions in A as sequences of trace transitions
δ ∈ (L × Σ) × (L × Σ ∪ {⊥}) × {1, 2, e} × A, where the
first two components define the change in program location

R+ G2,G1 ` {S1} P1 {S′1}
R+ G1,G2 ` {S2} P2 {S′2}

PARR, (G1,G2) ` {S1 ∧ S2} P1 ‖ P2 {S′1 ∧ S′2}

R, (G1,G2) ` {S} P1 ‖ P2 {S′}
PAR-MERGER,G1 + G2 ` {S} P1 ‖ P2 {S′}

R1, ~G1 ` {S1} P {S′1}
S2 ⇒ S1 R2 ⊆S2

R1
~G1 ⊆S2

~G2 S′1 ⇒ S′2 CONSEQ
R2, ~G2 ` {S2} P {S′2}

Fig. 2: Rely/guarantee proof rules for bound analysis. We write
~G for either G or (G1,G2). In the latter case, ⊆ is applied
componentwise.

and state, the third component defines whether the transition
was taken by program P1 (1), P2 (2), or the environment (e),
and the last component defines which action summarizes the
state change. For a trace transition δ = ((`, σ), (`′, σ′), α,A),
we write (`, σ)

α:A−−→ (`′, σ′). A trace τ = (`0, σ0)
α1:A1−−−−→

(`1, σ1)
α2:A2−−−−→ . . . is a sequence of trace transitions. Let |τ | ∈

N0 ∪ {∞} denote the number of transitions of τ . We define
the set traces(S, P ) as the set of traces such that σ0 ∈ JSK
and for 0 < i ≤ |τ | we have either
• αi = 1, (`i−1, gc, `i) ∈ T1 for some gc, σi ∈ JgcK(σi−1),

and (σi−1�SVar , σi�SVar ) ∈ Ai, or
• αi = 2, (`i−1, gc, `i) ∈ T2 for some gc, σi ∈ JgcK(σi−1),

and (σi−1�SVar , σi�SVar ) ∈ Ai, or
• αi = e, `i−1 = `i, (σi−1�SVar , σi�SVar ) ∈ Ai, and
σi−1�LVar = σi�LVar .

The projection τ�C of a trace τ ∈ traces(S, P ) to compo-
nents C ⊆ {1, 2, e} is the sequence of actions defined as image
of τ under the homomorphism that maps ((`, σ), (`′, σ′), α,A)
to A if α ∈ C, and otherwise to the empty word.

We now define the meaning of RG quintuples over traces:

Definition 8 (Validity). We define R,G |= {S}P {S′} iff for
all traces τ ∈ traces(S, P ) such that τ starts in state σ0 ∈ JSK
and τ�{e} |=σ0 R (τ ’s environment transitions satisfy the rely):
• if τ is finite and ends in ((`, σ), (`′, σ′), α,A) for some
`, `′, σ, α,A then σ′ 6= ⊥ (the program is safe) and σ′ ∈
JS′K (the program is correct), and

• τ�{1} |=σ0 G (τ ’s P -transitions satisfy the guarantee G).
Similarly, R, (G1,G2) |= {S} P1 ‖ P2 {S′} iff for all τ ∈
traces(S, P1 ‖ P2) s.t. τ starts in σ0 ∈ JSK and τ�{e} |=σ0

R:
• if τ is finite and ends in ((`, σ), (`′, σ′), α,A) for some
`, `′, σ, α,A then σ′ 6= ⊥ and σ′ ∈ JS′K, and

• τ�{1} |=σ0
G1 and τ�{2} |=σ0

G2.

IV. RG REASONING FOR BOUND ANALYSIS

Similar to classic RG reasoning [17], [21], we propose
inference rules to facilitate reasoning about our extended RG
quintuples. Our inference rules are shown in Fig. 2:



• PAR interleaves two threads P1 and P2 and expresses
their thread-specific guarantees in (G1,G2).

• PAR-MERGE combines thread-specific guarantees
(G1,G2) into a total guarantee G1 + G2.

• CONSEQ is similar to the consequence rule of Hoare logic
or RG reasoning: it allows to strengthen precondition and
rely, and to weaken postcondition and guarantee(s).

We instantiate these rules to derive the main underlying
principle of our bound analysis in the proof of Theorem 2.

Theorem 1 (Soundness). The rules in Fig. 2 are sound.
Proof sketch: By Definition 7 (trace semantics of RG

quintuples) and induction on the trace length.

In the following, we assume existence of a procedure
SYNTHG(S, P,R) that takes a predicate S, a non-interleaved
program P , and a rely R and computes a guarantee G, such
that R,G |= {S}P {true} holds. We present such a procedure
in Section V.

Our main idea is to use SYNTHG to compute correct-by-
construction guarantees for RG quintuple fragments of form
R, ? ` {Inv} P1 {true}. From this, Theorem 2 stated below
allows us to infer guarantees for P1’s environment P2 ‖ · · · ‖
PN and thus for ‖NP = P1 ‖ · · · ‖ PN .

Theorem 2 (Generalization of Single-Thread Guarantees). Let
P be a program over local and shared variables Var =
LVar ∪ SVar and let ‖NP = P1 ‖ · · · ‖ PN be its N -
times interleaving. Let S be a predicate over SVar . Let A
over SVar be the set of actions summarizing the globally
visible effect of ‖NP started from S, and let R and G be
environment assertions over A. Let 0 = (0, . . . , 0) denote the
empty environment.
If

(N − 1)× G ⊆S R and R,G |= {S} P1 {true}

then

0, (G, (N − 1)× G) |= {S} P1 ‖ (P2 ‖ · · · ‖ PN ) {true}.

I.e., if (N − 1) × G is smaller than R, and if R,G |=
{S} P1 {true} holds, then in an empty environment, P1’s
environment P2 ‖ · · · ‖ PN executes actions A no more than
(N − 1)× G times.

Proof sketch: By induction on the number of threads
and repeated application of rules CONSEQ, PAR-MERGE, and
PAR.

Running example. Let us return to the task of computing
bounds for N threads ‖NP = P1 ‖ · · · ‖ PN concurrently
executing Treiber’s push method. Our method starts from the
RG quintuple fragment

R, ? ` {Inv} P1 {true} (1)

for which it computes a correct-by-construction guarantee: It
summarizes P1’s environment P2 ‖ · · · ‖ PN in the rely R. At
this point, it cannot safely assume any bounds on P2 ‖ · · · ‖
PN , and thus on R. Therefore, it lets R = (∞,∞,∞,∞,∞).

Next, our method runs RG bound analysis. As we have argued
in Section II-D, this yields SYNTHG(Inv , P1,R) = (1,∞,∞,
∞, 1), i.e., we have

(∞,∞,∞,∞,∞), (1,∞,∞,∞, 1) |= {Inv} P1 {true}. (2)

Remark (Role of Theorem 2). At this point, our method
cannot establish tighter bounds for P1 unless it obtains tighter
bounds for its environment P2 ‖ · · · ‖ PN and thus R. In
Section II-D, we informally argued that if G = (1,∞,∞,∞,
1) is a guarantee for P1, then (N − 1) × G = (N − 1,∞,
∞,∞, N − 1) must be a guarantee for the N − 1 threads in
P1’s environment P2 ‖ · · · ‖ PN . Theorem 2 formalizes this
principle: It allows us to switch the roles of reference thread
and environment, i.e., to infer bounds on P2 ‖ · · · ‖ PN in an
environment of P1 from already computed bounds on P1 in
an environment of P2 ‖ · · · ‖ PN .

Running example (continued). Our method applies Theo-
rem 2 to (2) and obtains

R, (G1,G2) |= {Inv} P1 ‖ (P2 ‖ · · · ‖ PN ) {true} where
R = (0, 0, 0, 0, 0)

G1 = (1,∞,∞,∞, 1)

G2 = (N − 1,∞,∞,∞, N − 1)

From the above, we have that (N − 1,∞,∞,∞, N − 1) is
a bound for P1’s environment P2 ‖ · · · ‖ PN when run in
parallel with P1. Going back to the RG quintuple fragment (1),
our technique refines the rely R, which models P2 ‖ · · · ‖ PN ,
by letting R = (N − 1,∞,∞,∞, N − 1). Again, it runs
SYNTHG, which returns (1, N,N,N − 1, 1). Thus,

R,G |= {Inv} P1 {true} where
R = (N − 1,∞,∞,∞, N − 1)

G = (1, N,N,N − 1, 1)

Another refinement of R from G by Theorem 2 and another
run of SYNTHG gives

R,G |= {Inv} P {true} where

R = (N − 1, N(N − 1), N(N − 1), (N − 1)2, N − 1)

G = (1, N,N,N − 1, 1)

This time, the guarantee has not improved any further, i.e.,
our method has reached a fixed point and stops the iteration.
Applying Theorem 2 gives

R, (G1,G2) |= {Inv} P1 ‖ (P2 ‖ · · · ‖ PN ) {true} where
R = (0, 0, 0, 0, 0)

G1 = (1, N,N,N − 1, 1)

G2 = (N − 1, N(N − 1), N(N − 1), (N − 1)2, N − 1)

To compute thread-specific bounds for the transitions of P1,
our method may stop here; the bounds can be read off G1. For
example, the second component of G1 indicates that transition
`1 → `2 is executed at most N times. To compute total bounds



program P invariant analysis (§V-A)

invariant Inv actions Ainitial rely
R = (∞, . . . ,∞)

R, ? ` {Inv} P {true}
over actions A

instrument Inv ,R to enforce bounds (§V-B)

program P (R) ‖ P

bound analyzer (§V-C)

correct by construction G

obtain refined R′ from G (§V-D)

R′ ( R?

return G

let R = R′

no

yes

Fig. 3: Overview of our analysis.

for the transitions of the whole interleaved system P1 ‖ · · · ‖
PN , our technique applies rule PAR-MERGE, which gives

R,G |= {Inv} P1 ‖ · · · ‖ PN {true} where
R = (0, 0, 0, 0, 0)

G = (N,N2, N2, (N − 1)N,N)

Again, bounds can be read off G, for example the fourth
component indicates that the back edge `3 → `1 is executed
at most (N − 1)×N times by all N threads in total.

V. AUTOMATION

In this section, we describe the rely-guarantee bound al-
gorithm previously presented on an example; Fig. 3 gives an
overview. The algorithm builds on two main insights:
• We reduce RG bound analysis to sequential bound anal-

ysis. This allows us to implement procedure SYNTHG.
• We utilize Theorem 2 to iteratively refine bounds on

environment assertions until a fixed point is reached.

A. Invariant Analysis

Given a program P = (L, T, `0), our algorithm starts with
an invariant analysis to discover a data structure invariant
Inv , a set of actions A, and a map EffectOf : A → 2T that
indicates which transitions a given action abstracts. In our
running example, each action corresponds to one transition, but
in general coarser actions may be chosen. Many methods for
obtaining these have been described in the literature (e.g., [22],
[23], [24], [25], [19]). We use the tool TMREXP [19] as an
off-the-shelf solver, which allows us to obtain A as a stateless
program as shown in Fig. 1c.

This allows us to state the RG quintuple fragment

R, ? ` {Inv} P1 {true} (3)

overA whereR = (∞, . . . ,∞) and the guarantee is unknown.
R soundly over-approximates P1’s environment P2 ‖ · · · ‖

PN . We obtain a correct-by-construction guarantee from the
thread-modular bound analysis described below.

B. Instrumentation

Given the RG quintuple fragment (3), our method first
constructs the program P (R): Let A = {A1, . . . , Am}. It
starts from the stateless program

while (true) do A1 [] · · · []Am done

and instruments it with counter variables ξA to enforce the
bounds in R:

Let P (R) = ({`}, T, `) be the program over variables
{ξA1

, . . . , ξAm
} with initial states Jg0K where

T = {(`, gcA, `) | A ∈ A}

gcA =

{
ξA > 0 B {A; ξA := ξA − 1} if R(A) 6=∞
true B {A} otherwise

g0 =
∧
A∈A

{
ξA = R(A) if R(A) 6=∞
true otherwise

Proposition 1. There exists an isomorphism between runs of
P1 ‖ P (R) from Inv ∧ g0, and traces {τ ∈ traces(Inv , P1) |
τ starts in σ and τ�{e} |=σ R}, such that isomorphic runs
and traces have the same length n, and for all positions 0 ≤
i ≤ n their location and state components are equal up to the
instrumentation location and variables ` and ξA of P (R).

C. Bound Analysis

Our algorithm translates the interleaved heap-manipulating
program P̂ = P1 ‖ P (R) and predicate Inv ∧ g0 into an
equivalent (bisimilar) integer program and predicate using the
technique of [13] (alternatively one could directly compute
bounds on the heap-manipulating program P̂ using techniques
such as described in [26], [27], [28]). From now on, let P̂ and
Inv ∧ g0 refer to these translations.

Note that P̂ is a sequential integer program that can be fed
to an off-the-shelf sequential bound analyzer. Let T̂ denote
the transitions of P̂ . Our method runs the sequential bound
analyzer on P̂ , which computes a function SeqBound: T̂ →
Expr(VarZ ∪ {N}), such that for all t ∈ T̂ and all N ≥ 1,
SeqBound(t) is a bound for t on all runs of P̂ from Inv ∧g0.

Then, our technique maps bounds obtained on transitions
of P̂ back to the corresponding transitions of P1 in P̂ = P1 ‖
P (R), which allows it to compute the desired guarantee for
P1: Letting

G(A) =
∑

t∈EffectOf(A)

SeqBound(t)

for all A ∈ A gives a correct-by-construction guarantee G for
R, ? ` {Inv}P1{true}, i.e., we have R,G |= {Inv}P1{true}.



D. Bound Refinement

Our algorithm then uses Theorem 2 to refine the rely of P1

and checks if the computation has reached a fixed point yet.
Let R′(A) = (N − 1)× G(A) for all A ∈ A.

1) If R′ ( R, by Theorem 2 R′ is a valid bound for
P2 ‖ · · · ‖ PN . Our algorithm iterates the computation
of bounds for R′, ? ` {Inv} P1 {true} starting from
Section V-B.

2) If R′ = R, the algorithm has reached a fixed point and
reports the results of the analysis:

a) For thread-specific bounds of P1, return G.
b) For total bounds of P1 ‖ · · · ‖ PN , apply Theo-

rem 2 to get a guarantee for P2 ‖ · · · ‖ PN , and
use rule PAR-MERGE to sum up the guarantees of
P1 and P2 ‖ · · · ‖ PN .

3) R′ 6⊆ R can be avoided by implementing a sequential
bound analyzer that is deterministic and monotonic in
the sense that it always finds the same or smaller bounds
on programs with further restricted transition relations.

VI. CASE STUDIES

We have implemented the algorithm of Section V in our
tool COACHMAN [29] and tested it on three well-known lock-
free data structures from the literature: Treiber’s stack [18], the
Michael-Scott queue [9], and the DGLM queue [30]. For the
sequential bound analyzer, we have implemented an algorithm
similar to the one described in [7]; its implementation is
available online [29].

For each data structure, our tool constructs a general client
program P = op1() [] · · · [] opM(), and analyzes its N -times
interleaving ‖NP = P1 ‖ · · · ‖ PN for thread-specific bounds
of a single thread Pi and total bounds of P1 ‖ · · · ‖ PN as
described in Section II. For brevity, we only report complexity
bounds here. All performance results were obtained on a single
core of a 2.0GHz Intel Core i7 processor.

1) Treiber’s stack [18]: We thoroughly discussed Treiber’s
stack in our running example (Section II). Our tool takes 2 it-
erations to obtain the stack’s thread-specific linear asymptotic
complexity O(N) of a single thread Pi, and the total quadratic
complexity O(N2) of P1 ‖ · · · ‖ PN in 3 minutes2.

2) Michael-Scott queue [9]: This lock-free queue has, e.g.,
been implemented in the ConcurrentLinkedQueue class of
the Java standard library. In contrast to Treiber’s stack, the
transitions of the Michael-Scott queue cannot be bounded with
just a single refinement operation: It synchronizes via two
CAS operations, the first one breaking/looping as in Treiber’s
stack, the second one located on a back edge of the main
loop. Thus our algorithm cannot immediately bound the action
corresponding to the second CAS. Rather, it first bounds
the first CAS’ action, refines and bounds the second CAS’
action, and after a final refinement bounds all other edges. Our
tool takes 3 iterations to obtain the queue’s thread-specific

2A further optimization of the bound algorithm only applicable to this case
study allows us to speed up the runtime to 47 seconds.

linear asymptotic complexity O(N), and the total quadratic
complexity O(N2) in 148 minutes.

3) DGLM queue [30]: The DGLM queue is a recent,
optimized version of the Michael-Scott queue. Similar to the
Michael-Scott queue, our tool takes 3 iterations to obtain the
queue’s thread-specific linear asymptotic complexity O(N),
and the total quadratic complexity O(N2) in 77 minutes.

Remark (Discussion of algorithm runtime). The increased
runtime on the queue case studies compared to Treiber’s stack
is due to to their larger program LTS and doubled number
of environment actions. In particular, the counter automaton
produced by [13] for Treiber’s stack has 531 vertices and 2,072
edges, while for the MS queue we obtain 6,165 vertices and
37,402 edges.

The runtime speedup on the DGLM queue compared to the
MS queue is explained by its optimized deq method: Its LTS
has 2 instead of 4 back edges, which drastically reduces the
time spent in bound analysis.

VII. RELATED WORK

Albert et.al. [31] describe a RG bound analysis for actor-
based concurrency. They use heuristics to guess an unsound
guarantee and justify it by proving that all environment actions
not captured by the guarantee occur only finitely often. We
note that the approach of [31] leaves environment actions not
captured by the guarantee completely unconstrained, i.e., they
may change the program state arbitrarily, leading to coarser
than necessary bounds. In contrast, our approach includes
all environment actions, recognizes that actions occurring
boundedly often already carry ranking information, and leaves
their handling to the sequential bound analyzer.

More closely related to our work, Gotsman et al. [14]
present a general framework for expressing liveness prop-
erties in RG specifications and apply it to prove termina-
tion/unbounded lock-freedom. They give rely and guarantee
as words over actions, and instantiate it for properties stating
that a set of actions does not occur infinitely often. They auto-
matically discharge such properties in an iterative proof search
over the powerset of actions. Our approach differs in various
aspects: First, while our RG quintuples may be formulated as
words over actions, the instantiation in [14] is suitable only
for termination, but too weak for bound analysis. Second, the
focus on liveness properties leads to more complicated proof
rules in [14], which have to account for the fact that naive
circular reasoning about liveness properties is unsound [32],
[33], [14]. In contrast, all sequences of actions expressable
by our environment assertions are safety-closed, allowing us
to use the full power of RG-style circular arguments in the
premises of our reasoning rules. Finally, we obtain bounds
for all actions at once in a refinement step by reduction to
sequential bound analysis, rather than iteratively querying a
termination prover whether a particular action occurs only
finitely often.



VIII. CONCLUSION

We have presented the first extension of rely-guarantee
reasoning to bound analysis, and automated bound analysis
of concurrent programs by a reduction to sequential bound
analysis. In addition, we have for the first time automatically
inferred bounds for three widely-studied lock-free data struc-
tures.

IX. FUTURE WORK

While lock-freedom guarantees absence of live-locks, it
does not guarantee starvation-freedom: If a thread’s environ-
ment interferes infinitely often, the thread may loop forever.
Wait-freedom is a stronger progress property that guarantees
that each individual thread makes progress. Its implementa-
tion exposes global variables per thread; handling this is an
interesting problem for the future.

While our framework extends Jones’ RG reasoning, we
have only given inference rules for parallel composition and
a consequence rule and have left the concrete programming
language and corresponding rules abstract. Our only require-
ment regarding safety is that the environment actions obtained
in Section V-A over-approximate any thread’s effect on the
global state. Giving a full set of rules and exploring a tighter
integretion between safety and (bounded) liveness properties
is left for future work.
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