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Abstract

Computer systems control the world – we have come to rely on the correctness of software and
integrated circuits in safety-critical domains such as aviation and automotive engineering, as well as
in communication, consumer electronics, and domestic appliances. Yet establishing the correctness
of these systems is an ever more tedious and challenging task, which more often than not involves
a significant manual effort.

Formal verification techniques such as model checking promise remedy in the form of fully au-
tomated tools that answer a range of questions about the system: does it behave as it is supposed
to, or does it contain bugs buried deeply in the code? If the result is not as expected, exactly when
and where did the system start to misbehave?

In practice, the scale of industrial software and hardware designs and the complexity of bugs
severely limits the applicability of automated tools. Software components comprise thousands of
lines of code; bugs (such as buffer overflows) may require hundreds of loop iterations to surface;
and failing executions of integrated circuits can span millions of cycles.

The constituent publications of this habilitation thesis present novel techniques—centered around
mathematical induction and Craig’s interpolation theorem—that push the scalability of automated
verification to real-world problems. We combine the most competitive hardware model checking
algorithms (which are based on inductive generalization and interpolation) with novel abstraction-
refinement techniques to verify industrial-size software. We show how to uncover deep software
bugs by collapsing millions of execution steps into a single step by solving recurrences. Using inter-
polation, we isolate faults in lengthy executions in post-silicon validation. Our novel adaptations
of induction and interpolation methods are key to the development of scalable tools for automated
verification, bug detection, and fault localization.
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1 | Introduction

Over the last few years, a staggering num-
ber of reports of bugs in software and hardware
have been published by mainstream news outlets
such as The Guardian or The New York Times.
Prominent examples (some of which are listed in
Figure 1.1) include a critical software bug caus-
ing a complete electrical shutdown of the Boeing
787 Dreamliner [Gib15]; the “Heartbleed” bug in
the OpenSSL cryptographic library which puts
users’ personal information at risk [Kel14]; and
the “Rowhammer” security vulnerability which
allows attackers to take over a computer system
by exploiting a hardware glitch in DRAM mem-
ory cells [Kir15].

These bugs and vulnerabilities remained unde-
tected during product development despite huge
efforts spent on verification and validation: more
than 50 percent of time and cost of typical pro-
gramming projects is dedicated to verification
[MSB11], and a recent study [Fos12] suggests
that the situation in hardware development is
similar. Verification is increasingly becoming the
bottle-neck in the development of electronic sys-
tems, since tasks such as testing and test-bench
development, simulation, and debugging involve
substantial manual effort.

Formal verification techniques such as model
checking promise remedy in the form of fully au-
tomated tools. Model checking [CGP99] is an
automated approach to exhaustively exploring
and analyzing the behavior of systems. Typically
applied to source code of software or hardware

designs, model checking tools check for a range
of bugs such as assertion violations, deadlocks,
or crashes. Our surveys on software and hard-
ware model checking ([DKW08] and [VWM15],
respectively) provide an overview of the state-of-
the-art in the field.

In practice, the scale of industrial software
and hardware designs and the complexity of
bugs severely limit the applicability of auto-
mated tools. For instance, the OpenSSL imple-
mentation comprises several hundred thousand
lines of code only few of which are responsible
for the Heartbleed bug; the shutdown of the 787
Dreamliner is caused by an arithmetic integer
overflow which only surfaces after 248 days of
continuous operation; the Rowhammer vulnera-
bility is a hardware deficiency introduced during
the manufacturing process and not reflected by a
high-level hardware model. While these scenar-
ios pose unique challenges to automated verifica-
tion tools, the underlying problem is ultimately
related to scalability and needs to be addressed
by techniques that allow us to automatically an-
alyze larger and more complex code and longer
executions.

The publications collected in this habilita-
tion thesis describe work undertaken at TU
Wien between 2012 and 2015. The aim of
this line of work is to increase the scalabil-
ity of automated verification using novel tech-
niques centered around mathematical induction
and Craig’s interpolation theorem.
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“
Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming er-
ror . . . ”

The New York Times, Feb. 13, 2014 [TT14]

“
The US air safety authority has is-
sued a warning and maintenance
order over a software bug that
causes a complete electric shut-
down of Boeing’s 787 . . . ”

The Guardian, May 1, 2015 [Gib15]

“
A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails. ”

CNN, Apr. 9, 2014 [Kel14]

“
An unprecedented systems failure
was responsible for the air traf-
fic control chaos that affected air-
ports across London and south-
east England on Friday . . . “In this
instance a transition between the
two states caused a failure in the
system which has not been seen
before,” . . . ”

The Guardian, Dec. 13, 2014 [Joh14]

“
DRAM is vulnerable to electrical
interference because the cells are
packed so closely together . . .

Repeatedly accessing a row of
memory cells can cause adjacent
ones to change their binary values
using a technique that’s been de-
scribed as rowhammering. ”

InfoWorld, July 30, 2015 [Kir15]

Figure 1.1: Software bugs and hardware faults in recent news

The habilitation thesis is structured as follows:
Part I, comprising the first three chapters of

this thesis, describes the relevant background
and establishes the overarching theme of the con-
stituent publications in Part II.

Chapter 2 provides an overview of modern ver-
ification and model checking techniques, in-
cluding symbolic model checking, abstrac-
tion and refinement, and acceleration.

Chapter 3 summarizes the contributions of the
papers that constitute Part II of the thesis
and relates their content. The techniques

covered by these papers fall into four cate-
gories:

1. State-of-the-art model checking algo-
rithms and foundations of algorithmic
Craig interpolation, which form the ba-
sis of the work presented in the subse-
quent chapters;

2. Abstraction and refinement techniques
for software model checking, which rely
on induction and interpolation to in-
crease the scalability of software model
checkers;



3. Acceleration and under-approximation
techniques (which are based on induc-
tion) for the rapid detection of software
bugs; and

4. Interpolation-based hardware fault lo-
calization techniques, enabling the ef-
ficient localization of faults in lengthy
executions of integrated circuits.

Part II comprises the constituent publications
of the habilitation thesis.

Chapter 4 provides a survey of state-of-the-
art hardware model checking techniques and
their underlying satisfiability checking algo-
rithms [VWM15]. The primary focus of the
survey is on verification techniques based on
Craig interpolation (cf. Chapter 5) and in-
duction (such as the IC3 model checking
paradigm, which we apply to software in
Chapter 6).

Chapter 5 describes novel algorithms to con-
struct Craig interpolants [SW16] from
propositional resolution proofs and first-
order logic proofs (generated by solvers sur-
veyed in Chapter 4), generalizing a range of
existing interpolation techniques.

Chapter 6 combines IC3—one of the the most
competitive hardware model checking al-
gorithms (discussed in Chapter 4)—with
interpolation-based abstraction techniques
to verify industrial-size software [BBW14].

Chapter 7 explains how acceleration tech-
niques based on mathematical induction can
be applied to rapidly detect bugs in software
in the presence of loops with many itera-
tions and datatypes such as bit-vectors and
arrays [KLW15b].

Chapter 8 discusses how the acceleration tech-
niques from Chapter 7 can be deployed
to quickly prove the absence of “deep”
bugs that require many loop iterations
[KLW15a].

Chapter 9 describes how Craig interpolation
can be deployed to enable an iterative
analysis of lengthy executions of integrated
circuits to locate hardware faults intro-
duced during the manufacturing process
[ZWM14].

The work presented in the peer-reviewed ar-
ticles in Chapters 4 to 9 has been carried out
in close collaboration with a range of excellent
students and researchers, to whom I owe a great
debt. As described below, my contributions to
these publications were significant.

• The survey in Chapter 4 is joint work with
my former post-doctoral advisor Sharad
Malik (at Princeton University), who pro-
vided the vision and outline for the pa-
per, and Yakir Vizel, to whom the part on
interpolation-based algorithms owes its ex-
istence.

• The journal paper in Chapter 5 is an ex-
tended version of my single-authored work
[Wei12], which was enriched with additional
results and experiments on interpolation for
clausal refutations by my doctoral student
Matthias Schlaipfer.

• The paper on our adaptation of the IC3
model checking algorithm (Chapter 6) for
software resulted from a visit of Aaron
Bradley (the inventor of IC3) and is based
on the thesis of my then master’s student
Johannes Birgmeier (now a doctoral student
at Stanford).



• Chapters 7 and 8 are joint work with my
doctoral supervisor Daniel Kröning and his
student Matt Lewis, and a direct continua-
tion of a line of work I started during my
doctorate [KW06, KW10, Wei10]. The im-
plementation is based on my software veri-
fication tool Wolverine [KW11].

• Chapter 9 is joint work with Sharad Malik
and his doctoral student Charlie Shucheng
Zhu, whom I co-supervised at Princeton.
The implementation is based on a SAT-
based tool for computing backbones that I
developed [ZWSM11].



2 | Model Checking 101

s s′

T

Figure 2.1: Transition relation T

Model checking [CE81, QS82, CGP99] is an
automated verification technique that exhaus-
tively checks a system for bugs (or violations
of a given specification). Unlike testing, model
checking is not based on executing the system
under test, but rather on a systematic analysis
of a model of the system. In its most general
form, the model of a system is given in terms of
a transition relation T relating states s to their
successor states s′ (Figure 2.1). At this level of
abstraction, we are oblivious of the nature of the
modeled system: states could be either program
states mapping memory locations and program
counters to values (e.g., 〈pc 7→ 2, x 7→ 1〉), the
states of the latches of an integrated circuit, or a
more abstract system description such as a state
machine or a business model described in the
Unified Modeling Language (UML).

The goal of model checking is to determine
whether a given system satisfies a property in
question. In the simplest case, the property is
given as a set of safe states P that the system
must not leave (or, alternatively, a set of bad
states P that the system should never reach).
Consequently, model checking algorithms are
search algorithms that systematically explore

I

“starting states”

P

“bad states”

T

T T T

Figure 2.2: Counterexample to property P

(a) Single transitions and explicit states

S

pre-image

S′

post-image

T

(b) Binary relation T over sets of states

Figure 2.3: Explicit exploration vs. image com-
putation

states reachable from an initial set of states I. If
the search algorithm encounters states for which
T yields no successors or states that have been
previously visited, it backtracks and explores
undiscovered regions of the state space. A se-
quence of transitions violating the property is
a counterexample to safety (indicated in red in
Figure 2.2).

11



I R1 R2 Rk

T T T

P

Figure 2.4: A k-step exploration of reachable sets
of states

In practice, the number of reachable states
(the state space) is often prohibitively large, pos-
ing an insurmountable obstacle to näıve search
algorithms (a central problem in automated ver-
ification known as state space explosion). Ap-
proaches based on the explicit (one-by-one) enu-
meration of states—therefore named explicit-
state model checking—are particularly prone to
the combinatorial explosion of the number of
states. Rather than considering states and their
successors individually, one can consider sets of
states and their post-image under the transition
relation T :

S′ = T (S)
def
= {s′ |T (s, s′) ∧ s ∈ S} (2.1)

The post-image of S under T is illustrated in
Figure 2.3.1

In this setting, state space search amounts to
a sequence of computations of post-images of T
starting from the initial set of states I. Figure
2.4 illustrates the exploration of the state space
up to a depth of k execution steps: each set Ri
represents the states reachable by exactly i steps
or the transition relation T .

1Note that S and S′ are not necessarily disjoint, as the
domain and co-domain of T coincide.

2.1 Symbolic Encodings

The success of a set-based exploration hinges
on an efficient representation of sets of states
(as a simple container of single states offers no
significant advantage over explicit-state model
checking). Symbolic model checking [BCM+90,
McM93], an approach that marked a major
breakthrough in the scalability of hardware
model checking algorithms, uses Binary Deci-
sion Diagrams (BDDs) [Bry86] (a graph-based
data structure to represent propositional formu-
las) to encode sets of states. Similarly, first-
order predicates provide a compact symbolic rep-
resentation of sets of program states [Kin70] fre-
quently used in software model checking (e.g.,
[BCLR04, Jha04, McM06a]). A first-order pred-
icate P over the variables V of a program en-
codes all states in which P evaluates to true.
For instance,

(x > 0) represents {s | s(x) > 0} ,

i.e., the set of program states s in which x is
larger than zero and all other variables have ar-
bitrary values. Thus, a single predicate can even
encode an infinite set of program states.

Transition relations T are encoded as relations
over the variables V and a set of primed variables
V ′

def
= {v′ | v ∈ V } representing successor states.

For instance, for a simple program with a single
variable V

def
= {x}, the statement x++ is encoded

as follows:

(x′ = x+ 1)︸ ︷︷ ︸
x++

represents {〈s, s′〉 | s′(x) = s(x)+1}

In case V is not a singleton, the constraint∧
y∈(V \x)(y

′ = y) over all remaining variables



1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);

Figure 2.5: A simple program fragment

is added to ensure that the values of the vari-
ables unaffected by the statement x++ remain
unchanged.

To represent control-flow, a dedicated variable
pc ∈ V is introduced to represent the program
counter. Figure 2.6 shows the symbolic encoding
of the simple program fragment in Figure 2.5,
which can be readily obtained from the source
code. Each implication in Figure 2.6 encodes
a transition from a program location to one of
its successors in the control flow graph. For
conditional statements, the premises (x > 0 or
x ≤ 0 in Figure 2.6a) determine which branch
is taken. Assignment statements are executed
unconditionally and update the state of the pro-
gram variables (see Figure 2.6b). Initial states
and safety properties are encoded as simple pred-
icates over V (as in Figure 2.6c).

Digital circuits, such as the simple sequential
circuit in Figure 2.7 (a Mealy machine, in which
the output signal z is determined by the cur-
rent state Q and the current input signal y) are
encoded in a similar manner. The propositional
variables V represent latches as well as input and
output signals of the circuit:(

Q′ ⇔ (x ∧Q)
)
∧ (z ⇔ (y ∨Q))

Note that the primed counterparts x′, y′, and
z′ of the input and output signals are uncon-
strained, since the inputs of the next cycle are
determined externally rather than by the circuit.

(pc = 1) ∧ (x > 0)⇒ (pc′ = 2) ∧ (x′ = x)

(pc = 1) ∧ ¬(x > 0)⇒ (pc′ = 4) ∧ (x′ = x)

(a) Conditional statement

(pc = 2)⇒ (pc′ = 5) ∧ (x′ = x− 1)

(pc = 4)⇒ (pc′ = 5) ∧ (x′ = x+ 1)

(b) Assignment statements

P (V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

(c) Initial states and property

Figure 2.6: Symbolic encoding of Figure 2.5

DQ

R

zy

x

Figure 2.7: A simple sequential circuit

The same mechanism is applied in software to
model inputs.

A transition T (V, V ′) represents the execution
of a single program statement or a single cycle
of the circuit, respectively. An execution of k
instructions or cycles can be encoded by means
of k copies of the transition relation T over k+1
versions of the variables V :

I(V0) ∧

(
k∧
i=1

T (Vi−1, Vi)

)
∧ ¬P (Vk) (2.2)

The resulting Formula (2.2) represents all ex-
ecutions of length k which violate the property
P after k steps (as illustrated in Figure 2.4).
Contemporary decision procedures for proposi-
tional or first-order logic (discussed in our survey
[VWM15] in Chapter 4 or [KS08, BHvMW09],



for instance) can determine whether Formula
(2.2) is satisfiable, and thus whether there exists
an execution violating the property after k steps.
This approach, known as Bounded model check-
ing (BMC) [BCCZ99], was first implemented for
hardware based on efficient satisfiability checkers
for propositional logic (cf. [VWM15]/Chapter 4).
Implementations for software are described in
[CKL04] and our survey [DKW08].

BMC (in the form presented in Formula (2.2))
is inherently limited to detecting property vi-
olations and incapable of ultimately proving a
model safe. The reason for this incompleteness of
BMC is that the approach lacks a mechanism to
determine whether all reachable states have been
explored. While there are means to determine
whether a model has been explored in sufficient
depth [CKOS04] or whether subsequent unwind-
ing steps of T are still feasible (see [CKL04] and
our publication [KLW15a] in Chapter 8), these
techniques are typically either inefficient (in the
sense that they vastly overestimate the bound)
or incomplete. Complete model checking algo-
rithms, capable of establishing the safety of a
model are predominantly based on computing all
reachable states of a model (or an approximation
thereof).

2.2 Invariants and Acceleration

The set Rk of states reachable from the initial
states I in k steps of T is defined inductively as
follows:

R0
def
= I

Ri+1
def
= T (Ri)

(2.3)

A solution to Equation (2.3) can be deter-
mined by iteratively computing the image of Ri
under T (as defined in Equation (2.1)). In the

context of a symbolic encoding of T as intro-
duced in Section 2.1, image computation corre-
sponds to existential quantification:

S′(V ′)
def
= ∃V . S(V ) ∧ T (V, V ′) (2.4)

Using Equation (2.4), the set R≤k of states

reachable from R≤0
def
= I(V0) in k or less steps of

T can be obtained by an iterative and cumulative
image computation:

R≤(i+1)(Vi+1)
def
= R≤i(Vi)[Vi+1/Vi]
∨

∃Vi . R≤i(Vi) ∧ T (Vi, Vi+1)

 , (2.5)

where R≤i(Vi)[Vi+1/Vi] denotes the formula
obtained by replacing all free occurrences of
the variables Vi in R≤i(Vi) with their respective
counterparts in Vi+1.

The search can stop if either R≤i(Vi) does not
imply P (Vi) for some i ≥ 0 (i.e., a bad state is
reachable), or

∀Vi+1 . R≤(i+1)(Vi+1)⇒ R≤i(Vi)[Vi+1/Vi] (2.6)

holds, meaning that no new states can be
reached from R≤i(Vi) via T . In other words, if
Equation (2.6) holds, then R≤i (representing the
exact set of states reachable from I) is the least
fixpoint of T .

Determining the least fixpoint can be com-
putationally expensive: Equation (2.6) contains
alternating quantifiers, since R≤(i+1) is existen-
tially quantified in Equation (2.5), posing a dif-
ficult problem for contemporary decision proce-
dures. To determine whether a system is safe,
however, an over-approximation Inv of the least
fixpoint suffices, as long as it represents a set of
safe states that includes the initial set of states I
and from which one “cannot escape” via T (see



Inv

R≤∞I

T

7

P

Figure 2.8: Inductive invariant

Figure 2.8). For every state in Inv, its successor
(determined by T ) must also lie in Inv. Con-
sequently, if Inv contains I, then Inv must also
encompass the set of all states R≤∞ reachable
from I (i.e., the least fixpoint).

These conditions can be formalized as follows:

I(V ) ⇒ Inv(V )
∃V . Inv(V ) ∧ T (V, V ′) ⇒ Inv(V ′)

Inv(V ) ⇒ P (V )
(2.7)

where Inv(V ′) is short for Inv(V )[V ′/V ]. Inv is
an inductive invariant (and a post-fixpoint of T ,
which guarantees that R≤i(V ) ⇒ Inv(V ) for all
i ≥ 0) that is sufficiently accurate to guarantee
that property P is not violated.

Consequently, many contemporary model
checking algorithms are based on the search
for an inductive invariant and deploy a num-
ber of heuristics to obtain appropriate approx-
imations of the reachable states. State-of-the-
art techniques (predominantly based on interpo-
lation and induction) are discussed in Section
3.1 as well as Chapters 4 and 6 ([VWM15] and
[BBW14], respectively).

An alternative approach to computing reach-
able states is by means of acceleration, a tech-
nique used to derive a new transition relation T ∗

which subsumes arbitrarily many steps of T (the
reflexive and transitive closure of T ). Intuitively,
acceleration allows us to take a short-cut by col-

lapsing arbitrarily many steps of T into one step,
T ∗. Formally (based on the notation in Equation
2.1),

T ∗(S)
def
=

⋃
i∈N T

i(S), where

T i+1(S)
def
= T (T i(S)) and

T 0(S)
def
= S

(2.8)

The goal of acceleration [BW94, Boi99, FL02]
is to compute T ∗ symbolically, e.g., by deriving
it from a transition relation T given in linear
arithmetic. An accelerated version of the above
mentioned transition T

def
= (x′ = x + 1), for in-

stance, would be T ∗
def
= (∃k . x′ = x+k), where k

is a fresh variable encoding the number of steps
of T . Note that T ∗ simulates arbitrarily many
steps of T , reducing the question of whether P
can be violated by T to whether P can be vio-
lated in a single step of T ∗:

I(V0) ∧ T ∗(V0, V1) ∧ ¬P (V1)

In general, however, whether T ∗ can not al-
ways be expressed as a logical relation, even if T
is defined as a relation in a decidable fragment
of arithmetic (such as Presburger arithmetic).
Accordingly, acceleration is typically applied to
transition relations formulated in simple logical
fragments (e.g., octagonal relations of the form
±x± y ≤ c).

Moreover, software programs and circuit de-
signs usually use bit-vectors (of bounded width)
to represent the integers, introducing non-linear
effects such as arithmetic overflows. In such a
setting, the above mentioned acceleration tech-
niques based on linear arithmetic are unsound,
as the accelerated transitions do not accurately
reflect the behavior of the program. The papers
[KLW15b] and [KLW15a] in Chapters 7 and 8
present a novel approach that enables accelera-
tion in the presence of realistic datatypes such
as bit-vectors and arrays.



2.3 Abstraction

Abstraction [CGL92, Kur94] is arguably the
most powerful and influential paradigm in model
checking. It relies on the fact that typically not
all details of a model need to be taken into ac-
count to prove its safety. Abstraction heavily
relies on heuristics to identify irrelevant details
of the system that are not required to verify
that the property P in question holds. Proof-
based abstraction [MA03], for instance, starts
with an unsatisfiable instance of Formula (2.2)
which shows that P cannot be violated in k
steps, and uses the ability of contemporary sat-
isfiability solvers to determine an unsatisfiable
core of Formula (2.2) that contains the details
(variables, latches, . . . ) required to obtain this
conditional safety result. In predicate abstrac-
tion [GS97], a set of first-order predicates (en-
coding relevant details) induces a partitioning of
the states of the model. For instance, two pred-
icates (x ≤ y) and (y 6= 0) result in four equiva-
lence classes,

(x ≤ y) ∧ (y 6= 0), (x > y) ∧ (y 6= 0),

(x ≤ y) ∧ (y = 0), and (x > y) ∧ (y = 0) ,

each of which represents the set of states in which
the respective Boolean combination of predicates
evaluates to true. The states 〈x 7→ 0, y 7→ 1〉 and
〈x 7→ 1, y 7→ 2〉 are in (x ≤ y) ∧ (y 6= 0), for in-
stance, while 〈x 7→ 1, y 7→ 0〉 and 〈x 7→ 2, y 7→ 0〉
are in (x > y) ∧ (y = 0). Each equivalence class
corresponds to an abstract state ŝ subsuming a
set of concrete states (denoted by γ(ŝ), where γ
is a so-called concretization function). Each con-
crete state s has a corresponding abstract state
ŝ = α(s), where α is the abstraction function
induced by the equivalence classes.

Figure 2.9b illustrates 3 abstract states that

(a) Concrete transitions

(b) Abstract states

(c) Abstract transitions

Figure 2.9: Existential abstraction

subsume the 7 concrete states in Figure 2.9a.
Figure 2.9c shows the corresponding abstract
transitions. The abstract transition relation T̂
enables a transition between two abstract states
ŝ and ŝ′ whenever there exist concrete states
s ∈ γ(ŝ) and s′ ∈ γ(ŝ′) such that 〈s, s′〉 ∈ T .
The relation between abstract and concrete tran-
sitions is illustrated by the following diagram:

ŝ
T̂−−−−→ ŝ′

α

x yγ
s

T−−−−→ s′

(2.9)

This approach, known as existential abstrac-
tion [CGL92], preserves all executions of the
original model, but potentially adds more: in
Figure 2.9c, for instance, the rightmost state
is reachable from the leftmost state, which is
not the case in Figure 2.9a. Abstraction poten-
tially introduces spurious executions not present
in the original model, and consequently, coun-
terexamples may be spurious, too. Whether an



(a) Concretizing abstract executions

(b) Refined abstraction

Figure 2.10: Counterexample-guided refinement

abstract counterexample (represented by a se-
quence of abstract states ŝ1, . . . , ŝk) is spurious
can be determined by checking whether there
exists a corresponding concrete counterexample
s1, . . . , sk such that si ∈ γ(ŝi) for 1 ≤ i ≤ k
with s1 ∈ I and sk ∈ P , and 〈si, si+1〉 ∈ T for
1 ≤ i < k. Figure 2.10a illustrates this feasibility
check for the abstraction in Figure 2.9.

Spurious counterexamples are undesirable
since they result in false warnings. To elimi-
nate a spurious counterexample, the precision of
the abstraction needs to be improved (a process
called refinement). The objective of refinement
is to remove the spurious transition that con-
nects two states in the spurious counterexample
that are not connected by the original transi-
tion relation. The spurious counterexample can
be used as trigger and guidance for refinement.
In the example in Figure 2.10a, the concretiza-
tion of the spurious counterexample provides suf-
ficient information to determine which abstract
state has to be refined (i.e., partitioned further).
Figure 2.10b shows a refined model in which one
of the states from the initial abstraction has been
replaced with two (more precise) abstract states.

refine refine

Figure 2.11: Repeated refinement steps

Check Abstraction

À

Check Feasibility

Â

Refine

Ã

failure trace

infeasible

abstract

safe (Á)

counterexample

Figure 2.12: Counterexample-Guided Abstrac-
tion Refinement (CEGAR)

Counterexample-guided refinement (as illus-
trated in Figure 2.10) is based on an analysis
of a spurious counterexample in the context of
the original model. A commonly used heuris-
tic to derive predicates required for refining a
model is interpolation (introduced in [HJMM04]
and described in Chapter 4/[VWM15] and our
survey [DKW08]). Our publication [BBW14]
in Chapter 6 describes a novel refinement tech-
nique which is based on single spurious transi-
tions rather than entire counterexamples.

Repeated refinement steps lead to increasingly
precise abstractions, as indicated in Figure 2.11.
The resulting iterative abstraction-refinement
scheme, known as Counterexample-Guided
Abstraction Refinement (CEGAR) [CGJ+00,
CGJ+03], is illustrated in Figure 2.12:



1. CEGAR starts with a coarse initial abstrac-
tion, and the corresponding abstract model
is analyzed by a model checker (À).

2. If the abstract model is safe, the original
model must be safe, since abstraction only
adds behaviors and therefore never removes
concrete counterexamples (Á).

3. If an abstract counterexample is found, its
feasibility is checked (Â). Counterexamples
that have a feasible counterpart in the origi-
nal model are reported; spurious counterex-
amples trigger a refinement step (Ã).

4. The process starts over with a refined
model.

The CEGAR loop is not guaranteed to termi-
nate, since the process is contingent on refine-
ment heuristics. In predicate abstraction, for in-
stance, a heuristic that fails to identify the rele-
vant details of a model may yield a diverging se-
quence of predicates [KW06]. Yet, CEGAR has
been successfully deployed in numerous verifica-
tion tools (e.g., [BCLR04, HJMS02, McM06b])
and increases the scalability of model checking
significantly.

The following chapter outlines the contribu-
tions of the papers presented in Part II of this ha-
bilitation. The techniques developed build heav-
ily on the foundations discussed in the current
section, and aim at improving the scalability of
automated verification even further.



3 | Outline of Contributions

The following sections outline the main con-
tributions of the papers presented in Chapters
4 to 9. These chapters describe state-of-the art
model checking algorithms and their theoretical
foundations (Section 3.1) as well as applications
ranging from software verification to automated
fault localization. The overarching theme is the
use of Craig interpolation and induction to in-
crease the scalability of automated verification.

3.1 Foundations

Over the last decade, automated decision pro-
cedures such as satisfiability (SAT) solvers
[BHvMW09] and satisfiability-modulo-theory
(SMT) solvers [KS08] have emerged as the cor-
nerstone of modern verification tools. Deci-
sion procedures are algorithms that determine
whether a given formula has a variable assign-
ment that makes it true, a crucial step of all sym-
bolic techniques presented in [VWM15] in Chap-
ter 2. For example, any assignment satisfying a
BMC instance—i.e., an assignment in which For-
mula (2.2) evaluates to true—corresponds to a
counterexample of length k. Consequently, the
scalability of BMC hinges on the efficiency of
contemporary SAT and SMT solvers.

3.1.1 Interpolation-based Verification

The extensive role played by SAT solvers in
hardware model checking is explained in our sur-

vey [VWM15] in Chapter 4. We give a compre-
hensive overview of modern satisfiability check-
ing techniques, covering heuristics that are vital
to scalability, as well as the generation of proofs
and unsatisfiable cores, and Craig interpolation
algorithms. While the latter techniques can be
categorized as extensions of SAT solvers (de-
scribed in further detail in our tutorial [MW12]),
they form the basis of the model checking algo-
rithms described in the second half of Chapter 4
(Section III of [VWM15]).

Contemporary model checking algorithms,
covered in Section III of Chapter 4, rely heav-
ily on approximation techniques that are based
on (extensions of) decision procedures. At the
core of many of these model checking algorithms
lies Craig’s interpolation theorem, which enables
the computation of approximate post-images of
transition relations.

Theorem 1 (Craig’s Interpolation Theorem).
Given two first-order formulas A(V, V ′) and
B(V ′, V ′′) over the free variables V ∪ V ′ ∪ V ′′,
the following holds:

If (A(V, V ′) ∧B(V ′, V ′′)) is unsatisfiable

then

∃C(V ′)

such that

A(V, V ′)⇒ C(V ′)

B(V ′, V ′′)⇒ ¬C(V ′)
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CA B

Figure 3.1: Formula C “generalizes” A

More verbosely, if the conjunction of A and B
is unsatisfiable, then there exists an intermediate
first-order formula C which is implied by A and
inconsistent with B. Moreover, C refers only to
the variables shared by A and B, meaning that it
is in some sense “simpler” than A. The formula
C can be understood as an over-approximation
of A which comprises all satisfying assignments
of A but none of B, as illustrated in Figure 3.1.

Theorem 1 can be readily applied to compute
an approximate post-image of a transition rela-
tion T (cf. Equation 2.1). Assuming that prop-
erty P is not violated in the first step of the
transition relation T , the BMC instance

I(V ) ∧ T (V, V ′) ∧ ¬P (V ′) (3.1)

is unsatisfiable. A Craig interpolant Itp(V ′) for
the partitions I(V ) ∧ T (V, V ′) and ¬P (V ′) rep-
resents a safe over-approximation of the states R
reachable from I in one step, as sketched in Fig-
ure 3.2. The formula Itp refers only to variables
V ′, which represent the second time frame of the
execution. Itp can be “shifted back in time” by
variable renaming (Itp(V )

def
= Itp(V ′)[V/V ′]).

Note that I(V ) is an inductive invariant (as
specified in Equation 2.7) if Itp(V ) ⇒ I(V ). If
this is not the case, we continue by using interpo-
lation to compute an approximate post-image of
(I(V )∨Itp(V )) under T – where (I(V )∨Itp(V ))
represents a safe approximation of all states
reachable in at most one step. Again, the sys-
tem is safe if the resulting interpolant implies
(I(V ) ∨ Itp(V )).

I R

T

R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V,V ′) ¬P (V ′)

Figure 3.2: Interpolation-based image approxi-
mation

I R1 R2 RkR1 R2 Rk

T T T

¬Pk

Figure 3.3: Interpolation sequences

As with the abstraction techniques presented
in Section 2.3, over-approximation can result
in spurious counterexamples. The precision
of interpolation-based image approximation can
be increased by generalizing the technique to
k steps of T : a sequence of interpolants
Itp1, . . . , Itpk over-approximating the reachable
states R1, . . . , Rk (as in Figure 3.3) can be ob-
tained iteratively by splitting Formula (2.2)). In-
tuitively, the resulting interpolants are more pre-
cise, since a BMC instance of length k provides
more information about the system than the sin-
gle transition T in Figure 3.2. The system is safe
if
∨k
i=1 Itpi(V ) forms an inductive invariant, and

spurious counterexamples can be eliminated by
increasing k.

Further variations and optimizations of
interpolation-based model checking algorithms
(as well as the induction-based IC3 model check-
ing algorithm [Bra11], which we extend to soft-



ware in [BBW14] in Chapter 6) are discussed in
Chapter 4. All these algorithms rely on the ca-
pability of solvers to effectively compute concise
interpolants, a matter addressed in our journal
paper [SW16] in Chapter 5 and the next subsec-
tion.

3.1.2 Interpolation Algorithms

Most interpolating decision procedures derive
interpolants from refutation proofs generated
while solving the instance. Contemporary SAT
solvers are capable of generating resolution
proofs for unsatisfiable instances. Figure 3.4a,
for instance, shows a resolution proof for the un-
satisfiability of

A︷ ︸︸ ︷
(¬x1 ∨ ¬x2) ∧ (¬x0) ∧ (x0 ∨ x2)

∧ (¬x2) ∧ (x1 ∨ x2)︸ ︷︷ ︸
B

. (3.2)

(Negations ¬x in Figure 3.4a are abbreviated
as x and the disjunctions in clauses are omitted
for brevity.)

Interpolants can be understood as circuits fol-
lowing the structure of the resolution proof: an
interpolant Itp(V ′) emits true for all inputs V ′

that make A(V, V ′) true, and to false for all in-
puts V ′ that make B(V ′, V ′′) true. Pudlák de-
scribes interpolants as a cascade of multiplexers
(a gate selecting one of two signals depending
on an input switch) whose input switches are
the variables V ′ [Pud97], and provides a pro-
cedure to obtain interpolants by replacing res-
olution steps with logic gates, accordingly (as
sketched in Figure 3.4b). We defer the details of
the construction to [SW16] (Chapter 5).

Chapter 5 presents a range of novel interpola-
tion techniques which generalize existing inter-
polation algorithms in the following sense:

A
x0

A
x0 x2

x2
A

x1 x2

x1

B
x1 x2

B
x2

x1

�
(a) A resolution proof

A
x0

A
x0 x2

x2
A
x2

�

B
x2

B
x2

�

�
x1 1 0

(b) Interpolants as circuits

Figure 3.4: Interpolants from proofs

1. Our novel interpolation system is able to
produce a wider range of interpolants and
provides a means to fine-tune their logical
strength and structure.

2. We are able to deal with a wider range
of proof systems, including hyper-resolution
proofs and clausal proofs that are generated
by contemporary SAT solvers.

3. We generalize the results for propositional
resolution systems to first-order proofs that
satisfy certain locality properties (regarding
the variables and symbols occurring in the
proof).

Interpolating decision procedures form the ba-
sis of the verification techniques and applications
presented in the subsequent chapters, including
the generalization of the IC3 model checking al-
gorithm to software, which we discuss in the fol-
lowing section.



3.2 Software Model Checking

To enable the verification of industrial-size code
bases such as the OpenSSL library (known for its
“Heartbleed” bug as discussed in Chapter 1) the
scalability of contemporary model checking algo-
rithms needs to be increased significantly. Our
paper [BBW14] in Chapter 6 presents progress
towards this goal by combining one of the most
successful hardware model checking algorithms
with predicate abstraction.

3.2.1 Model Checking with IC3

IC3 [Bra11] (short for “Incremental Construc-
tion of Inductive Clauses for Indubitable Cor-
rectness”) is one of the leading hardware model
checking algorithms (see Chapter 4). Similarly
to interpolation-based verification techniques,
IC3 is based on an over-approximation of reach-
able states. The algorithm maintains a sequence
F0, . . . , Fk of over-approximations of the sets
R≤i, i.e., the states reachable in up to i steps,
for 0 ≤ i ≤ k.

Unlike the model checking algorithms de-
scribed in Section 3.1.1, which are at the mercy
of the underlying interpolating decision proce-
dure when it comes to the accuracy of refine-
ment, IC3 takes full control over the refinement
of approximations. The algorithm steers refine-
ment towards finding an invariant: intuitively,
the refined approximation is “closer” to being
an invariant. Recall from Section 2.2 that

(a) an invariant must not contain any state
which has a “bad” successor in P (see Fig-
ure 2.8), and

(b) all states contained in an inductive invariant
Inv must have their successors in Inv.

In IC3, refinement is driven by counterexam-
ples to induction (CTI), states which are con-
tained in the current over-approximation and
from which P is reachable (i.e., which violate
condition (a) above). For the system to be safe,
each such CTI must be unreachable from the ini-
tial set of states I.

Assume that Fk (the approximation of R≤k,
the set of states reachable in up to k steps) con-
tains a CTI s, which is a predecessor of a state
in P (as in Figure 3.5a). IC3 guarantees that
s is not contained in Fk−1, since P would have
otherwise been reached in a previous step.

Using a symbolic encoding s(V ) of s, IC3
checks whether the CTI s is unreachable from
Fk−1 (the states reachable in up to k− 1 steps):

¬s(V ) ∧ Fk−1(V ) ∧ T (V, V ′)
?⇒ ¬s(V ′) , (3.3)

If Query (3.3) succeeds (i.e., the formula
holds), then s (including similar states deter-
mined by generalization heuristics [HBS13]) is
removed from Fk (Figure 3.5b). Moreover, the
formula ¬s(V ) (and its generalization) is induc-
tive relative to Fk−1: the image of Fk−1 \ {s}
under T is again a set of states which does not
contain s. Consequently, eliminating s from Fk
makes the current approximation “more induc-
tive”, increasing the chance to satisfy condition
(b) above and to find an inductive invariant.

If Query (3.3) fails, there exists a CTI t in
Fk−1 (a predecessor of s), and IC3 proceeds to
refine Fk−1 until either no more predecessors are
found or the initial states are reached. In the
latter case, IC3 has found a (non-spurious) coun-
terexample.

One remarkable characteristic of IC3 is
that it avoids the costly unwinding required
by interpolation-based model checkers (Section
3.1.1) or BMC (Formula (2.2)).
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Figure 3.5: Induction-based refinement in IC3

3.2.2 IC3 for Software

While the basic algorithm from Section 3.2.1 is
readily applicable to transition relations T that
encode software, the large number of program
states severely hampers scalability, since it re-
quires IC3 to deal with a large number of CTIs.
Our publication [BBW14] in Chapter 6 addresses
this limitation by applying predicate abstraction
(cf. Section 2.3) to CTIs. Figure 3.6a shows an
abstraction ŝ (in red) of a CTI s. As previously,
IC3 attempts to eliminate ŝ using a query similar
to (3.3):

¬ŝ(V ) ∧ Fk−1(V ) ∧ T (V, V ′)
?⇒ ¬ŝ(V ′) (3.4)

If the query succeeds, IC3 can eliminate the
abstract CTI, which encompasses significantly
more states than only s. Consequently, eliminat-
ing the abstract CTI constitutes a larger progress

Fk

R<k Rk

T

¬Pk

ŝ

(a) Abstract CTI

Fk

R<k Rk

T

¬Pk

(b) Spurious CTI introduced by abstraction

Figure 3.6: IC3 and predicate abstraction

towards finding an inductive invariant than elim-
inating a concrete CTI.

Otherwise, the query yields a predecessor t of
ŝ. Therefore, ŝ cannot be eliminated since it
might be reachable from I (and therefore part
of a counterexample). Unfortunately, the CTI
t could be an artifact of applying predicate ab-
straction (illustrated in Figure 3.6b), i.e., t is not
a predecessor of the original CTI s. If this is the
case, predicate abstraction effectively thwarted
refinement of the approximation Fk.

Proceeding with CTI t might eventually lead
to a spurious counterexample which can be used
as a trigger to refine the abstract CTI ŝ. Un-
fortunately, this requires IC3 to generate a full-
length counterexample, delaying the refinement
of Fk significantly. Our paper [BBW14] in Chap-
ter 6 avoids this problem by introducing a novel
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Figure 3.7: Refined CTI and approximation

refinement mechanism that allows us to refine
ŝ instantly. Moreover, the refinement mecha-
nism relies on interpolation and extracts refine-
ment predicates from a single transition T (from
Query (3.3), in fact) rather than a full-length
counterexample. The result of refining ŝ and Fk
this way is illustrated in Figure 3.7.

The novel abstraction-refinement scheme pre-
sented in [BBW14] (Chapter 6) improves over
existing counterexample-based refinement tech-
niques in the following ways:

1. Refinement of abstract CTIs is immediate
and does not require IC3 to generate a full-
length counterexample.

2. At the same time, refinement can be delayed
up to the point that a counterexample is
found, allowing the algorithm to trigger re-
finement at any point in time. An exper-
imental evaluation of different strategies is
provided.

3. Refinement predicates are extracted by
means of interpolation from a formula en-
coding a single step of the transition rela-
tion, thus avoiding a costly unwinding of T .

Our experimental evaluation shows that our
implementation solves more of the benchmark
instances presented in [BBW14] in Chapter 6

than CPAChecker [BHT07], the verification
tool that won the 2015 Software Verification
Competition (SV-COMP) [Bey15]. A reim-
plementation of our approach targeting multi-
threaded software [GLW16] was also submitted
to SV-COMP 2016. In the concurrency category,
our IC3-based verifier was only outperformed by
incomplete BMC-based verification tools (which
are unable to conclusively prove safety), and per-
formed significantly better than other complete
interpolation-based model checkers such as Im-
para [WKO13].

3.3 Checking for Bugs Faster

Bugs whose detection hinges on extremely long
executions of the system under test—such as
the arithmetic overflow in the 787 Dreamliner,
which surfaced only after 248 days of continu-
ous operation—are particularly challenging for
verification tools. Property violations which re-
quire many iterations of loops require particu-
larly deep probing of the state space.

While the acceleration techniques presented in
Section 2.2 can theoretically remedy this prob-
lem, their practical value is limited, as linear
arithmetic does not accurately model real soft-
ware. Linear arithmetic does not take overflows
into account: the formula (i + 1 < i) is unsat-
isfiable if i takes values in N, but satisfiable if i
is an unsigned 32-bit variable with 0 ≤ i < 232

(since i + 1 = 0 if i = 232 − 1). Consequently,
acceleration based on the assumption that i is
unbounded is unsound. An inaccurate model of
bit-vector arithmetic may result in missed coun-
terexamples as well as false positives (i.e., unjus-
tified warnings). Ultimately, a verification ap-
proach using the natural numbers N to model
bit-vectors cannot be trusted.



void* memset ( void *buf, int c,

size t len )

{
for(size t i=0; i<len; i++)

((char*)buf)[i]=c;

return buf;

}

Figure 3.8: Code fragment updating an array

0 0 0 0 0 0 0 0

0 len-1

Figure 3.9: Effect of executing memset

The situation is even worse if the program un-
der test makes use of arrays, such as the program
fragment in Figure 3.8. The effect of executing
the instruction memset(buf, 0, len) is shown
in Figure 3.9: the first len elements of the ar-
ray buf are zeroed out. As this effect cannot
be modeled in linear arithmetic, the transitive
closure of a transition T modeling memset(buf,

0, len) cannot be computed using the tech-
nique of Section 2.2. This shortcoming is par-
ticularly problematic as the verification of pro-
grams with buffer overflows—a bug that is en-
countered frequently—would particularly bene-
fit from acceleration.

3.3.1 Bit-Vectors and Arrays

Our journal paper [KLW15b] in Chapter 7 in-
troduces a novel acceleration technique that en-
ables us to deal with programs with bit-vectors
as well as arrays (under certain limitations). The
instruction i++ highlighted in Figure 3.8 is mod-
eled as i′ = i + 1 (as in Figure 2.6b). If the
resulting transition occurs in the body of a loop,

it can be reformulated as a recurrence equation
in = in−1 + 1 with i0 = i (an inductive defini-
tion of in), whose closed form in = i0+n can be
obtained using a constraint solver. This closed
form corresponds to an accelerated version of the
original transition – if we assume that i is un-
bounded.

To obtain an accelerated transition that does
not ignore the effects of arithmetic overflows,
we need to restrict n to the range in which
linear arithmetic accurately models bit-vector
arithmetic. In other words, the acceleration is
“stopped” just before an arithmetic overflow oc-
curs:

∃n ≤ (INT MAX− i) . i′ = i + n (3.5)

The resulting transition T 〈n〉 represents an un-
der -approximation of the transitive closure T ∗,
and can in general not be used to determine
all reachable states in one step. Consequently,
model checking tools still need to consider multi-
ple iterations of T 〈n〉 when verifying the system.
The number of required iterations to find a fix-
point or a bug, however, is still reduced signif-
icantly in comparison to the original transition
relation T .

We accelerate the array assignment in Figure
3.8 using McCarthy’s theory of arrays [McC93]
to formalize the effect of executing buf[i]=c n
times:(

∀j ≤ n . buf′[i + j] = c ∧
∀j > n . buf′[i + j] = buf[i + j]

)
(3.6)

The primed counterpart buf′ of buf is con-
strained to be c within the range determined by
Equation (3.5), which is achieved by deploying
a universal quantifier in Formula (3.6). Unfor-
tunately, quantified transition relations compli-
cate model checking significantly. While SMT-
based BMC can still be used to find deep



bugs, interpolation-based program verification is
severely limited by the lack of interpolating deci-
sion procedures for quantified formulas. To limit
this undesirable side-effect, Chapter 7 provides
heuristics that help reduce the number of quan-
tifiers in accelerated transition relations.

3.3.2 Ruling Out Bugs Faster

In our paper [KLW15a] in Chapter 8 we present
an approach that avoids the challenge of com-
puting fixpoints in the presence of quantifiers by
falling back on BMC (cf. Equation (2.2) in Sec-
tion 2.1). The presence of bugs can be deter-
mined efficiently using a BMC instance that in-
corporates the under-approximation T 〈n〉 of T ∗:

I(V0) ∧

(
k∧
i=1

T 〈n〉(Vi−1, Vi)

)
∧ ¬P (Vk) (3.7)

Despite the fact that this approach allows us
to explore a vastly larger portion of the state
space than traditional BMC, it inherits the limi-
tation that the existence of bugs cannot be ruled
out definitely.

In certain cases, however, the correctness of
a system can still be established by means of
BMC, namely if it can be shown that increasing
k in Equations (2.2) or (3.7) does not result in
additional execution traces [CKOS04, CKL04].
Intuitively, this applies if all loops in T have been
explored exhaustively and the longest execution
of the system has at most k steps. While this
bound is rarely reached in traditional BMC, de-
ploying the under-approximation T 〈n〉 of T ∗ in
Equation (3.7) allows us to reach this threshold
much quicker. Our paper [KLW15a] in Chap-
ter 8 explains how to instantiate the threshold-
detection techniques introduced in [CKOS04,
CKL04] in the presence of accelerated transition
relations.

The contributions of Chapters 7 and 8
([KLW15b] and [KLW15a], respectively) can be
summarized as follows:

1. We introduce the notion of loop under-
approximation, which allows us to perform
limited acceleration of transition relations
in the presence of bit-vectors and arrays.

2. We demonstrate that under-approximation
enables an exponential speed-up in the de-
tection of a wide range of buffer overflow
bugs collected in [KHCL07].

3. Our novel threshold-based verification tech-
niques allow for the BMC-based verification
of accelerated transition relations, enabling
us to verify programs with arrays that are
out of reach even for interpolation-based
software model checkers.

3.4 Silicon Fault Localization

Owing to the high cost of recalling and replac-
ing faulty circuits, verification and validation has
a particularly high significance in hardware de-
sign [CGP99]. Chip manufacturers were the first
to adopt model checking in their development
process (as stressed in Chapter 4). The model
checking algorithms listed in Chapter 4 can be
readily applied to hardware designs (provided in
hardware description languages such as VHDL
or Verilog as in Figure 3.10) or logic net-lists
as in Figure 2.7), ensuring the correctness of the
design at early “pre-silicon” development stages.

Functional correctness of the high-level hard-
ware design, however, does not guarantee the
absence of bugs in the chip prototype or the
final integrated circuit. Electrical faults intro-
duced during the manufacturing process are not
reflected by the high-level model and need to be



1: always@(posedge clk)

2: if (ue[1]) begin
3: IP = IP + len;

4: if (btaken)

5: IP = IP + dist;

6: end

Figure 3.10: Verilog code
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Figure 3.11: Hardware development

caught in the “post-silicon” state of hardware
development (Figure 3.11). The “Rowhammer”
security vulnerability described in Chapter 1 is
a prominent example of a bug introduced dur-
ing the manufacturing process. The vulnerabil-
ity is a result of the increasing density of inte-
grated circuits; the physical proximity of individ-
ual DRAM cells results in an undesired correla-
tion between signals (so-called bridging faults).
Consequently, signals in one row of the DRAM
circuit influence cells in adjacent rows, allowing
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T T T

f
7

Figure 3.12: Discrepancy between model and re-
ality

the attacker to draw conclusions about regions
of the memory that should remain inaccessible.

The cost of post-silicon validation is high: 35
percent of the development cycle of a new chip
being are spent on debugging hardware proto-
types [ABD+06]. The fact that test scenarios
can be executed at full speed (unlike in model
checking or simulation of the high-level model)
allows for extensive testing of the prototype and
can result in extremely lengthy erroneous execu-
tion traces. Locating faults in such a trace is par-
ticularly challenging due to limited observability
of signals in hardware. Only a small percentage
of the state space traversed by an erroneous ex-
ecution can be recorded using trace buffers and
scan chains.

3.4.1 Interpolation-based Diagnosis

Our paper [ZWM14] in Chapter 9 resorts to
consistency-based diagnosis [Rei87] to locate the
temporal and spatial location of electrical faults
in an execution. Given a crash state f ob-
tained by running the faulty integrated circuit,
the approach identifies gates in the high-level de-
sign whose malfunction may have caused the ob-
served erroneous behavior. The logic net-list is
presumed to be a correct (“golden”) model and
therefore f is not reachable via the transition re-
lation T (see Figure 3.12). Consequently, an un-
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Figure 3.13: Cycle-based fault localization

winding of T constrained with the initial state
of the failing test scenario and the final failure
state f is necessarily unsatisfiable:

I(V0) ∧

(
k∧
i=1

T (Vi−1, Vi)

)
∧ f(Vk) (3.8)

Figure 3.13 shows part of such a multi-cycle
unfolding of the net-list in Figure 2.7. Simi-
lar to proof-based abstraction (Section 2.3), a
(minimal) unsatisfiable core obtained from For-
mula (3.8) encompasses the encoding of all gates
and signals relevant to the failure (e.g., the high-
lighted gates in Figure 3.13).

The challenge is that k (the number of cycles
executed before a failing state is reached) can
be extremely large in the context of post-silicon
fault localization. Consequently, the computa-
tional effort to compute a core of Formula (3.8)
can be prohibitively large.

Chapter 9 ([ZWM14]) addresses this challenge
by using an interpolant sequence Itp1, . . . , Itpk
(as in Figure 3.3) to split Formula (3.8) such
that for every i with 1 < i ≤ k we have

Itpi−1(Vi−1) ∧ T (Vi−1, Vi)⇒ Itpi(Vi) . (3.9)

Intuitively, each Itpi represents safe states of
the circuit. Since f 6∈ Itpk by construction, the
faulty execution of the integrated circuit must

have diverged from Itpi at some cycle i−1. Con-
sequently, candidates for faulty gates in cycle
i−1 can be derived from an unsatisfiable core of

Itpi−1(Vi−1) ∧ T (Vi−1, Vi) ∧ ¬ Itpi(Vi) , (3.10)

allowing us to focus our localization efforts on
one cycle of the execution at a time (e.g., cycle
105 in Figure 3.13). As a result, our approach is
able to determine candidates for faulty gates as
well as for the cycle in which the fault occurred.

3.4.2 Interpolants without Proofs

Unlike in Section 3.1.2, it is not feasible to ex-
tract the interpolants from a refutation proof of
Formula (3.8), since the solver cannot construct
such a proof without considering Formula (3.8)
in its entirety. To avoid this problem, we deploy
a different approach to compute interpolants in
[ZWM14] in Chapter 9. Starting from the final
failure state f of the circuit, we use the transition
relation T to propagate information backwards.
First, we take Itpk(Vk) to be ¬f(Vk). Then, we
use Itpi (and the partial state information ob-
tained from trace buffers, which is omitted in the
following formula) to find an interpolant Itpi−1
satisfying the following condition:

¬ Itpi(Vi)∧T (Vi−1, Vi)⇒ ¬ Itpi−1(Vi−1) (3.11)

Itpi−1 is constructed using the backbone of the
formula Itpi(Vi) ∧ T (Vi−1, Vi) [ZWM11], a con-
sequence of logical Itpi(Vi) ∧ T (Vi−1, Vi) which
can be efficiently computed using a SAT solver
[ZWSM11]. The propagation stops as soon as
an inconsistency with T and the partially ob-
served state is encountered, or if the initial cycle
is reached.

While the information obtained via backbones
is not necessarily sufficient to construct an in-
terpolant sequence, a strategic selection of the



signals of the circuit tracked by trace buffers
significantly increases the chances to succeed
[ZWM12].

In summary, the contributions in Chapter 9
(our paper [ZWM14], respectively) include:

1. A novel framework for interpolation-based
fault diagnosis, which achieves scalability by
focusing the localization effort on single cy-
cles.

2. A novel approach to extract interpolant
sequences from failed executions by using
backbones to derive logical consequences of
formulas.

3. An evaluation of our localization technique
on a range of circuits including the micro-
controller designs 86HC05 and 8051.

3.5 Concluding Comments

Interpolation and induction—the central theme
of this habilitation thesis—are essential tech-
niques in automated verification that have wide-
ranging applications. This thesis summarizes my
effort to advance the field of interpolation- and
induction-based verification techniques on a the-
oretical as well as practical level. The following
(independent) chapters are peer-reviewed publi-
cations documenting this effort.
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4 | Boolean Satisfiability Solvers and Their Applications in
Model Checking

Yakir Vizel, Sharad Malik, and Georg Weissenbacher
Proceedings of the IEEE, Volume 3, Issue 11, 2015
http://dx.doi.org/10.1109/JPROC.2015.2455034

Abstract

Boolean Satisfiability (SAT)—the problem of determining whether there exists an as-
signment satisfying a given Boolean formula—is a fundamental intractable problem in
computer science. SAT has many applications in Electronic Design Automation (EDA),
notably in synthesis and verification. Consequently, SAT has received much attention
from the EDA community, who developed algorithms that have had a significant im-
pact on the performance of SAT solvers. EDA researchers introduced techniques such as
conflict-driven clause learning, novel branching heuristics, and efficient unit propagation.
These techniques form the basis of all modern SAT solvers. Using these ideas, contem-
porary SAT solvers can often handle practical instances with millions of variables and
constraints.
The continuing advances of SAT solvers are the driving force of modern model checking
tools, which are used to check the correctness of hardware designs. Contemporary auto-
mated verification techniques such as Bounded Model Checking, proof-based abstraction,
interpolation-based model checking, and IC3 have in common that they are all based on
SAT solvers and their extensions.
In this paper, we trace the most important contributions made to modern SAT solvers
by the EDA community, and discuss applications of SAT in hardware model checking.
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5 | Labelled Interpolation Systems for Hyper-Resolution,
Clausal and Local Proofs

Matthias Schlaipfer and Georg Weissenbacher
Journal of Automated Reasoning, Volume 57, Issue 1, 2016

http://dx.doi.org/10.1007/s10817-016-9364-6

(extended version of [Wei12])

Abstract

Craig’s interpolation theorem has numerous applications in model checking, automated
reasoning, and synthesis. There is a variety of interpolation systems which derive in-
terpolants from refutation proofs; these systems are ad-hoc and rigid in the sense that
they provide exactly one interpolant for a given proof. In previous work, we introduced
a parametrised interpolation system which subsumes existing interpolation methods for
propositional resolution proofs and enables the systematic variation of the logical strength
and the elimination of non-essential variables in interpolants. In this paper, we gener-
alise this system to propositional hyper-resolution proofs as well as clausal proofs. The
latter are generated by contemporary SAT solvers. Finally, we show that, when applied
to local (or split) proofs, our extension generalises two existing interpolation systems for
first-order logic and relates them in logical strength.
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6 | Counterexample to Induction-Guided Abstraction-
Refinement (CTIGAR)

Johannes Birgmeier, Aaron Bradley, and Georg Weissenbacher
Conference on Computer Aided Verification (CAV), 2014
http://dx.doi.org/10.1007/978-3-319-08867-9_55

Abstract

Typical CEGAR-based verification methods refine the abstract domain based on full
counterexample traces. The finite state model checking algorithm IC3 introduced the
concept of discovering, generalizing from, and thereby eliminating individual state coun-
terexamples to induction (CTIs). This focus on individual states suggests a simpler
abstraction-refinement scheme in which refinements are performed relative to single steps
of the transition relation, thus reducing the expense of refinement and eliminating the
need for full traces. Interestingly, this change in refinement focus leads to a natural
spectrum of refinement options, including when to refine and which type of concrete
single-step query to refine relative to. Experiments validate that CTI-focused abstrac-
tion refinement, or CTIGAR, is competitive with existing CEGAR-based tools.
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7 | Under-approximating Loops in C Programs for Fast Coun-
terexample Detection

Daniel Kroening, Matt Lewis, and Georg Weissenbacher
Formal Methods in Systems Design, Volume 47, Issue 1, 2015

http://dx.doi.org/10.1007/s10703-015-0228-1

(extended version of [KLW13])

Abstract

Many software model checkers only detect counterexamples with deep loops after explor-
ing numerous spurious and increasingly longer counterexamples. We propose a technique
that aims at eliminating this weakness by constructing auxiliary paths that represent
the effect of a range of loop iterations. Unlike acceleration, which captures the exact
effect of arbitrarily many loop iterations, these auxiliary paths may under-approximate
the behaviour of the loops. In return, the approximation is sound with respect to the
bit-vector semantics of programs.
Our approach supports arbitrary conditions and assignments to arrays in the loop body,
but may as a result introduce quantified conditionals. To reduce the resulting performance
penalty, we present two quantifier elimination techniques specially geared towards our
application.
Loop under-approximation can be combined with a broad range of verification techniques.
We paired our techniques with lazy abstraction and bounded model checking, and eval-
uated the resulting tool on a number of buffer overflow benchmarks, demonstrating its
ability to efficiently detect deep counterexamples in C programs that manipulate
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8 | Proving Safety with Trace Automata and Bounded Model
Checking

Daniel Kroening, Matt Lewis, and Georg Weissenbacher
Symposium on Formal Methods (FM), 2015

http://dx.doi.org/10.1007/978-3-319-19249-9_21

Abstract

Loop under-approximation enriches C programs with additional branches that represent
the effect of a (limited) range of loop iterations. While this technique can speed up bug
detection significantly, it introduces redundant execution traces which may complicate
the verification of the program. This holds particularly true for tools based on Bounded
Model Checking, which incorporate simplistic heuristics to determine whether all feasible
iterations of a loop have been considered.
We present a technique that uses trace automata to eliminate redundant executions after
performing loop acceleration. The method reduces the diameter of the program under
analysis, which is in certain cases sufficient to allow a safety proof using Bounded Model
Checking. Our transformation is precise—it does not introduce false positives, nor does it
mask any errors. We have implemented the analysis as a source-to-source transformation,
and present experimental results showing the applicability of the technique.
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9 | Silicon Fault Diagnosis Using Sequence Interpolation with
Backbones

Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik
International Conference on Computer Aided Design (ICCAD), 2014

http://dx.doi.org/10.1109/ICCAD.2014.7001373

Abstract

Silicon fault diagnosis, the process of locating faults in a chip prototype, becomes more
challenging and time-consuming with increasing design complexity. Consistency-based
fault diagnosis aims at identifying fault candidates for an erroneous execution trace by
symbolically checking the consistency between the golden gate-level model and the faulty
behavior of the prototype chip.
The scalability of this technique is limited to short executions due to the underlying de-
cision procedure. This problem has previously been addressed by restricting the analysis
to a window of fixed size and moving it along the execution trace. In this setting, limited
observability results in a loss of precision and potentially missed fault candidates.
We present a novel interpolation-based framework which formalizes the propagation of
state information across sliding windows as a satisfiability problem. Our approach pro-
vides both spatial and temporal localization for general faults and is not restricted to a
specific fault model. Further, our approach can be used to provide more accurate local-
ization for a single permanent fault model. We experimentally demonstrate the efficacy
and scalability of this approach by applying it to a variety of benchmarks from multiple
suites (OpenCores, ITC99 and HWMCC).
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