
1

Silicon Fault Diagnosis Using Sequence
Interpolation with Backbones
Charlie Shucheng Zhu∗, Georg Weissenbacher†, Sharad Malik∗

∗Princeton University, Princeton, NJ; †Vienna University of Technology, Vienna, Austria
shucheng@princeton.edu; georg.weissenbacher@tuwien.ac.at; sharad@princeton.edu

Abstract—Silicon fault diagnosis, the process of locating faults
in a chip prototype, becomes more challenging and time-
consuming with increasing design complexity. Consistency-based
fault diagnosis aims at identifying fault candidates for an erro-
neous execution trace by symbolically checking the consistency
between the golden gate-level model and the faulty behavior of
the prototype chip. The scalability of this technique is limited to
short executions due to the underlying decision procedure. This
problem has previously been addressed by restricting the analysis
to a window of fixed size and moving it along the execution trace.
In this setting, limited observability results in a loss of precision
and potentially missed fault candidates.

We present a novel interpolation-based framework which
formalizes the propagation of state information across sliding
windows as a satisfiability problem. Our approach provides both
spatial and temporal localization for general faults and is not
restricted to a specific fault model. Further, our approach can be
used to provide more accurate localization for a single permanent
fault model. We experimentally demonstrate the efficacy and scal-
ability of this approach by applying it to a variety of benchmarks
from multiple suites (OpenCores, ITC99 and HWMCC).

I. INTRODUCTION

Silicon fault diagnosis aims at detecting and localizing a
fault in a manufactured prototype chip, when the fault mani-
fests as some observable error during a test. This diagnosis is
based on a correct logic design referred to as the golden model.
Silicon fault diagnosis is the counterpart of design debug or
pre-silicon verification, whose goal is to find bugs in the logic
design by using high level specification and simulation [20]. It
also differs from manufacturing test, where the primary goal is
to detect manufacturing defects on all fabricated chips without
localizing the fault [15].

Silicon fault diagnosis can take advantage of executing long
tests at speed. However, the limited observability in the post-
silicon setting hinders accurate fault localization. Thus, it is
also one of the most challenging problems in post-silicon
debug [9]. With the aid of Design-for-Debug (DfD) techniques,
such as scan chains [23] and trace buffers [1], we can increase
observability in chips. Architecture-specific analyses such as
IFRA [16] can narrow down the fault’s location, but require
considerable insight about the chip design. Fault diagnosis
depending on fault models, e.g. [19], is limited to specific
types of faults and has difficulty localizing general faults.

We focus on localizing general faults in general silicon
circuits with limited observability. Our technique uses consis-
tency based diagnosis [17], which has been successfully ap-
plied for fault diagnosis [20] as well as design debugging [18],

[5]. This approach is based on a symbolic representation of a
circuit’s execution trace. The symbolic representation can be
analyzed by formal tools, such as a SAT solver, to detect the
inconsistency between the golden gate-level design and the
behavior of its post-silicon prototype. Our algorithm further
utilizes information gathered during execution to identify a set
of fault candidates, which are defined as the potential causes
for the faulty behavior of the silicon chip. This technique
enables our approach to handle silicon chips with either a
single fault or multiple faults. Further, our approach is not
restricted to a particular fault model (e.g. stuck-at fault model)
and is applicable to both permanent and transient faults.

One fault candidate is a particular gate/signal in a particular
cycle that is possibly responsible for the observable error in a
given execution trace. This gate/signal determines the spatial
location of the fault candidate, while the cycle, in which this
fault is excited, determines the temporal location. The goal of
fault diagnosis is to identify a small set of fault candidates.

Our framework comprises two phases. In the first phase
(inconsistency-detection phase or ID phase), our algorithm
detects the inconsistency between a golden gate-level design
and the observed behavior of the silicon prototype. In the
second phase (fault-localization phase or FL phase), we locate
the fault candidates responsible for the inconsistency.

The scalability of this approach is limited by the under-
lying decision procedure. This problem can be addressed by
partitioning the execution trace into sliding windows, which
are then analyzed individually [10]. The bounded window
size leads to information loss, which is remedied partially
by propagating limited information across windows [25]. Two
potential problems arise due to the incompleteness of the infor-
mation. First, the sliding window approach may not detect any
inconsistency in the ID phase when an error occurs. In this case
additional debug information is needed to locate the bug (and
can be obtained using techniques such as BACKSPACE [6],
[7]). Second, the set of fault candidates returned by the FL
phase may not contain the faulty gate that actually causes
the erroneous behavior. This leads to false negatives, which
is unacceptable since it misguides the debug process. In our
work, we exclusively address the second problem. In other
words, when an error is observed, we may not be able to
detect an inconsistency in the first phase. However, once an
inconsistency is detected, the fault candidates obtained by the
second phase will include the actual fault causing the error.

In summary, our work makes the following contributions:
• We present an off-line approach that uses Craig interpo-



2

lation (See Section II-C) to successfully identify a small
set of fault candidates in post-silicon sequential circuits
with low observability.

• We prove that if an inconsistency is successfully detected
in the first phase, the set of fault candidates returned by
the second phase is guaranteed to contain the actual fault
(if it is a single fault) or at least one of the actual faults
(if there are multiple faults).

• Our methodology is not restricted to a particular fault
model. An assumption for the fault’s type is not neces-
sary in our algorithm. The faulty chip can have unknown
fault types, which can be either a permanent fault or a
transient fault, as well as a single fault or multiple faults.

• For any type of fault, our approach can identify both
spatial and temporal locations for the faults simultane-
ously. This is achieved by using sequence interpolation
to construct a trace showing how a fault propagates and
results in erroneous behavior.

• For a single permanent fault assumption, our framework
can further reduce the set of fault candidates.

• Our algorithm significantly reduces the number of fault
candidates. Experiments show that the spatial locations
of general faults can be reduced by an average of 93.9%
of the original circuit size. For single permanent faults,
the reduction rate is increased to more than 99.4%.

• Our window-sliding approach is an iterative procedure,
which is scalable to large circuits by making the size
of the sliding window adjustable in our framework. The
scalability of our approach is demonstrated by a variety
of experiments. The largest sequential circuit tested has
nearly one hundred thousand gates.

Below, we highlight our contributions relative to previous
work in the field of fault diagnosis and fault localization:
• Interpolation is successfully used in model check-

ing [14], and recently to propagate error information
across sliding windows in the context of design debug-
ging [10], where full observability is guaranteed. Our
work, in contrast, targets silicon fault diagnosis with
limited observability.

• In [20] and [21], Boolean satisfiability and unsatisfiable
cores are applied to perform debugging. However, they
do not partition the formula representing the execution,
leading to scalability problems when the techniques are
applied to fault diagnosis with long error traces.

• The approach presented in [25] identifies inconsistencies
between a golden netlist design and the silicon behavior.
It uses a MAX-SAT solver to identify a subset of the
RTL design as the fault candidates. Although this subset
is one possible explanation for the inconsistency, there
is no guarantee that this subset includes the actual fault.
In contrast, our approach guarantees to locate the actual
fault (if it is a single fault) or at least one of the actual
faults (if there are multiple faults).

• The BACKSPACE approach [7], [6] extracts error traces
from repeated executions, but does not address fault
localisation at the gate level. The approach in [19] based
on BACKSPACE localizes faults with high accuracy, but
depends on a given fault model. Without a fault model,

e.g. stuck-at fault model in [19], the pre-image of a state
cannot be computed. In contrast, our approach does not
require a fault model. Also, our approach provides better
scalability and is able to locate faults in 100 times larger
sequential circuits.

• IFRA [16] is a processor specific technique focusing
on electrical bugs, requiring detailed knowledge of the
circuit under debug. Our approach, on the other hand,
works for arbitrary circuits.

II. PRELIMINARIES

A. Notation and Basic Definitions
A combinational Boolean circuit C is a directed acyclic

graph over the nodes N , with n input nodes {i1, . . . , in} ⊆ N
of in-degree zero, m output nodes {o1, . . . , om} ⊆ N of out-
degree zero, and a set of gates {g1, . . . , gj} ⊆ N , each of
which corresponds to one of the Boolean functions + (OR),
· (AND), and negation. C represents a Boolean function of
type Bn → Bm mapping n input signals to m output signals.
Our technique can handle arbitrary gate types. Simple gates
are used here for ease of exposition.

In a sequential circuit, the outputs depend on both the input
signals and the state represented by the latches {r1, . . . , rl} ⊆
N of in-degree one, whose outgoing edges and incoming edges
are connected via a combinational circuit C. The function C :
Bn+l → Bm+l maps the input signals and the state of the
execution cycle t to outputs and a successor state of cycle t.

By replicating the combinational part C of a sequential
circuit k times (where each instance Ct represents a cycle
t) and connecting the outgoing edges of the latches in Ct

with the respective incoming edges of the latches in Ct+1

(for 1 ≤ t < k), we obtain an iterative logic array (ILA)
of length k [2]. In the resulting combinational circuit, we use
a superscript to indicate the cycle of a node, and define a
surjective function ν which maps each iti, o

t
i, r

t
i and gti to the

corresponding ii, oi, ri, gi ∈ N in the original circuit C.
An (unquantified) Boolean formula is built from variables,

operators (+, ·, ⇒, =, negation), and parentheses. A literal
is either a variable x or its negation x. A clause is an
OR of literals, and a product term is an AND of literals.
A formula F is satisfiable if there exists an assignment of
Boolean values to its variables such that F evaluates to 1,
and unsatisfiable otherwise. Let F be a product of clauses.
Any unsatisfiable subset of F ’s clauses forms an unsatisfiable
core (or UNSAT core), and a minimal unsatisfiable core if
the set is minimal [12], [21]. Each assignment that satisfies
a formula can be represented as a product term containing x
if x maps to 1 and x if x maps to 0. The backbone of a
satisfiable formula is the set of literals which evaluate to 1 in
all satisfying assignments [25].

Every sequential circuit C corresponds to a Boolean relation
R : Bn+l × Bm+l encoding the graph of the function C :
Bn+l → Bm+l. Each input, output, and latch in C corresponds
to a Boolean variable, and each gate corresponds to a Boolean
operation in R. By introducing fresh variables n1, . . . , nh that
represent the output signals of gates, each gate (and circuit)
can be represented as a product of clauses [22], which is called



3

g1

g3g2

r0

r1

i0

n

i1

(a) Golden model

g1

?g2

r0

r1

i0

n

i1

(b) Faulty circuit

g01

g03g02

r10r00

i00

n0

r01

i01

r11

(c) ILA with k = 1

Fig. 1: Single-cycle diagnosis of a sequential circuit

conjunctive normal form or CNF. Let R be the encoding of
the combinational part C of a sequential circuit. The following
Boolean relation encodes the corresponding ILA of length k:

k−1∏
t=0

R

(
it1, . . . , i

t
n, r

t
1, . . . , r

t
l , o

t
1, . . . , o

t
m,

nt1, . . . , n
t
h, r

t+1
1 , . . . , rt+1

l

)
(1)

We define a surjective function γ which maps a clause in
Formula 1 to a particular gate in a particular cycle of the ILA.
This function γ, when combined with function ν, maps clauses
in a formula to gates in the original circuit.

A crash state is a state in the execution trace in which an
error is observed (e.g. a system hang or property violation
occurs). We assume that when a crash state is encountered,
the chip’s execution stops and signals in the scan chain (full
state information from crash state) and trace buffers (partial
state information for a number of cycles) are available [1].

B. Consistency Based Diagnosis
For a k-cycle execution on a sequential circuit, the observed

outcome can be represented as a product term P over the
variables of Formula 1. If the product of Formula 1 and P
is unsatisfiable, there are two possible explanations: (a) P
is the expected outcome according to the specification of the
circuit, and Formula 1 is derived from a faulty implementation,
and (b) Formula 1 encodes the circuit’s golden model, and P
represents a execution of a faulty silicon prototype. In fault
diagnosis, we consider the second scenario [20].

Consistency based diagnosis [17] is an approach that iden-
tifies fault candidates which cause the unsatisfiability. Recent
realizations of this technique are based on partial maximum
satisfiability (MAX-SAT) solvers and minimal correction sets
(MCS). Each MCS is an irreducible hitting set of the set
of minimal unsatisfiable cores [12]. In other words, each
clause of each minimal unsatisfiable core is part of some
MCS. To avoid missing a fault, it is necessary to consider all
MCSs [13], which is computationally expensive. By applying
γ (see Section II-A) to these MCSs, we obtain the temporal
and spatial location of the fault candidates in the ILA. This
set of fault candidates covers all gates that contribute to a
minimal unsatisfiable core. Therefore, our approach aims at
finding small unsatisfiable cores rather than MCSs.

Example 1: Figure 1a shows a simple sequential circuit
with two latches r0 and r1. Figure 1c depicts the corresponding

single-cycle ILA, with the following Boolean encoding:(
r10 = i00 · r00

)
·
(
r11 = n0 + r00

)
·
(
n0 = i01 · r01

)
(2)

To avoid clutter, we omit the encoding as CNF. In Figure 1b,
gate g3 has been replaced with a blackbox, which can represent
any type of fault, including permanent and transient faults. As
a consequence, the logic value in r11 may be corrupted. Assume
the corrupted value of r11 becomes 1. This fact, as well as the
initial state and the input values are encoded in the product
term r00 · r01 · i00 · i01 · r10 · r11 . The product of (2) and this term
is unsatisfiable, and

(r11 = n0 + r00) · (n0 = i01 · r01) · (r00) · (r11) · (i01) (3)

the unique minimal unsatisfiable core. The product becomes
satisfiable if either (r11 = n0 + r00) or (n0 = i01 · r01)
is dropped, suggesting that either g2 or g3 is at fault in
this single cycle execution. Note that this consistency based
diagnosis is independent of a fault model and gives all possible
fault candidates that may be responsible for the inconsistency
between chip’s design and behavior.

C. Sequence Interpolation
Let A and B be a pair of Boolean formulas whose product

is unsatisfiable. By Craig’s interpolation theorem, there exists
a Boolean formula I which is implied by A and inconsistent
with B (i.e. 1 ·A⇒ I and I ·B ⇒ 0), such that all variables
that occur in I also occur in A as well as in B. Then I is an
interpolant of (A,B). Interpolants are not unique. Let I1 and
I2 be interpolants of (A,B). Then (I1+I2) as well as (I1 ·I2)
are interpolants of (A,B).

Given k formulas Ak−1, . . . , A0 whose product is unsatis-
fiable, a sequence interpolant comprises formulas Ik, . . . , I0
such that Ik = 1, It+1 · At ⇒ It for 0 ≤ t < k, and I0 = 0.
Moreover, all variables that occur in It occur in Ak−1, . . . , At

as well as in At−1, . . . , A0 (for 1 ≤ t < k).

III. SLIDING WINDOWS AND FAULT LOCALIZATION

A. Sliding Windows for Limited Observability
In Example 1, we assumed that the inputs, outputs, and

latches are fully observable. In the post-silicon setting, how-
ever, we need to rely on trace buffers and scan chains, which
are only able to record a fraction of the execution history,
resulting in weaker constraints. Assume that the literal r00 is
not observable in the silicon chip and thus dropped from the
product term in Example 1. Since this literal is part of the
minimal unsatisfiable core in Formula 3, the diagnosis fails.

This problem can be addressed by considering an ILA of
greater length, as demonstrated in the following example.

Example 2: Consider an ILA of length four for the circuit
in Figure 1a. The corresponding instance of Formula 1 is

3∏
t=0

(
(rt+1

0 = it0 · rt0) · (rt+1
1 = nt + rt0) · (nt = it1 · rt1)

)
(4)

We assume that the final state (rt+4
0 ) · (rt+4

1 ) of the execution
of the faulty circuit from Example 1 has been recorded using a



4

r40 = 0

i30 = 0

n3

i31 = 0

r41 = 1

r30

i20 = 1

n2

i21 = 0

r31

r20

i10 = 1

n1

i11 = 0

r21

r10

r00

i00 = 0

n0

r01

i01 = 0

r11

Fig. 2: Minimal unsatisfiable core of the four-cyle ILA

scan chain, and that the inputs (i00) · (i01) · (i10) · (i11) · (i20) · (i21) ·
(i30)·(i31) are known. The nodes derived from the corresponding
minimal unsatisfiable core

(r10 = i00 · r00) · (r20 = i10 · r10) · (r30 = i20 · r20)·
(r41 = n3 + r30) · (n3 = i31 · r31) · (i00) · (i31) · (r41)

are marked in the ILA in Figure 2; each gate in the marked
area constitutes a viable fault candidate, which refers to
a particular gate (spatial location) in a particular cycle
(temporal location).

We use Bt(i
t
1, . . . , i

t
n, o

t
1, . . . , o

t
m, r

t+1
1 , . . . , rt+1

l ) to encode
the partially observed signals of cycle t. The formula encoding
the corresponding constrained ILA for a window starting from
cycle t0 and with length k is: W k

t0 =

t0+k−1∏
t=t0

R

(
it1, . . . , i

t
n, r

t
1, . . . , r

t
l , o

t
1, . . . , o

t
m,

nt1, . . . , n
t
h, r

t+1
1 , . . . , rt+1

l

)
·

Bt(i
t
1, . . . , i

t
n, o

t
1, . . . , o

t
m, r

t+1
1 , . . . , rt+1

l )

(5)

assuming that the initial state rt01 , . . . , r
t0
l is unconstrained.

In the setting of Example 2, the corresponding instantiation
is W 4

0 . In that particular example, we need to consider an ILA
of length at least four to locate the fault, since the instances
W k

4−k with 1 ≤ k ≤ 3 are satisfiable.
In practice, the length k required to obtain an unsatisfiable

core can be large, especially if the available state information
is sparse. The maximum k we can consider is limited by
the scalability of contemporary SAT solvers (e.g. [4]). This
problem motivated the idea of moving a sliding window with
fixed length backwards from a crash state along the execution
trace. This is effectively splitting the ILA [10], [25]. Formally,
for an execution trace of length c and a window of fixed length
k, this amounts to analysing the instances W k

i−k for k ≤ i ≤ c.
In general, this approach fails unless information is prop-

agated between the windows. In Example 2, for instance, all
formulas W 2

i−2, i ∈ {2, 3, 4} are satisfiable (see Section IV).
While the missing information may potentially be obtained
by observing additional executions of the circuit [6], [7],
we restrict ourselves to the constraints that can be derived
statically from the windows W k

i−k by symbolic reasoning. In
the following, we use sequence interpolants to characterise the
information required to find an unsatisfiable core.

B. Extracting the Unsatisfiable Core from Overlapping Win-
dows Using Sequence Interpolant

Given an unsatisfiable formula W c
0 , which represents the

entire ILA, let us consider a sequence of c−k+1 overlapping

windows W k
i for 0 ≤ i ≤ c−k. Consecutive overlapping win-

dows W k
i−1 and W k

i share all the variables it, ot, nt, rt, rt+1

for i ≤ t ≤ i + k − 1. Since the entire formula W c
0 is unsat-

isfiable, we can find a sequence interpolant, Ic−k+1, . . . , I0,
for this window sequence (W k

c−k, . . . ,W
k
0 ). By the definition

of sequence interpolant, for all 0 ≤ i ≤ c − k, we have
Ii+1 · W k

i ⇒ Ii. This is equivalent to the expression that
Ii+1 · W k

i · Ii is unsatisfiable for all 0 ≤ i ≤ c − k. The
following holds:

Theorem 1: Let Ŵ k
i be a product of a subset of the clauses

of W k
i such that Ii+1 · Ŵ k

i · Ii is still unsatisfiable. Then∏c−k
i=0 Ŵ

k
i is an unsatisfiable core of W c

0 .
Proof: The unsatisfiable formulas give us Ii+1 · Ŵ k

i ⇒
Ii for 0 ≤ i ≤ c − k. Recursively, we can obtain Ic−k+1 ·∏c−k

i=0 Ŵ
k
i ⇒ I0. Since Ic−k+1 = 1 and I0 = 0 by definition,∏c−k

i=0 Ŵ
k
i is unsatisfiable.

Note that even if each Ŵ k
i is a minimal subset of clauses

satisfying this property, the resulting core
∏c−k

i=0 Ŵ
k
i is not

necessarily a minimal unsatisfiable core of W c
0 . This is only

guaranteed if Ii and Ii+1 are the strongest formulas implied
by the prefix and the suffix of the trace, respectively. Lemma 1
enables us to find smaller cores by strengthening individual Ii:

Lemma 1: Let Ic−k+1, . . . , Ii, . . . I0 be a sequence inter-
polant as in Theorem 1. The unsatisfiable core of Ii·W k

i−1·Ii−1
must have the form Îi ·Ŵ k

i−1 · Îi−1, where Îi is a product of a
subset of the clauses of Ii. Then Ic−k+1, . . . , Îi, . . . I0 is also
a sequence interpolant.

Proof: Since Îi · Ŵ k
i−1 · Ii−1 is unsatisfiable, we have

Îi ·W k
i−1 ⇒ Ii−1. We can also derive Ii+1 ·W k

i ⇒ Ii∧Ii ⇒ Îi.
So Lemma 1 holds because Îi is weaker than Ii but still strong
enough to entail the subsequent interpolant.

Assume we apply Lemma 1 iteratively starting from I0 to
Ic−k+1. Eventually, the sequence interpolant will be updated
to Îc−k+1, . . . , Îi, . . . Î0. As suggested above, the benefit of
using this updated interpolant is that it enables our algorithm
to find a smaller unsatisfiable core. We might reach an Îi
(i ≤ c − k) which can be weakened to 1, and all subsequent
cores Ŵ k

j (i ≤ j ≤ c − k) are empty. Thus, the unsatisfiable
core can be pruned to Ŵ k

i−1 ·Ŵ k
i−2 · . . . ·Ŵ k

0 . In general, given
a sequence interpolant Ic−k, . . . , Ii, . . . , Ij , . . . , I0 with Ii = 1
and Ij = 0, we can prune the windows before Ii and after Ij .

Sliding windows are motivated by the fact that W c
0 is

prohibitively large. Therefore, we cannot expect an analysis of
the unsatisfiable core of W c

0 to be feasible. Thus, we propose
to derive the large core

∏c−k
i=0 Ŵ

k
i from individual formulas

by using sequence interpolant.
The remaining problem is whether the unsatisfiable core∏c−k
i=0 Ŵ

k
i gives us a valid set of fault candidates, which should

contain the actual fault in a circuit.

C. Identifying Fault Candidates from Unsatisfiability Cores

To prove that the unsatisfiable core
∏c−k

i=0 Ŵ
k
i contains the

actual fault, we first consider a single transient fault. This can
be derived from the following theorem:



5

Theorem 2: Given a single transient fault, which is only
stimulated in one cycle, there is a Ŵ k

i which contains the fault
in that cycle.

Proof:
∏c−k

i=0 Ŵ
k
i is a superset of a minimal unsatisfiable

core U . The single fault in the particular cycle must be in
U [21]. Thus, the fault is also in

∏c−k
i=0 Ŵ

k
i .

If there are multiple transient faults, we might only identify
a subset of these faults. The unsatisfiable core contains at least
one of the transient faults at the cycle when it is stimulated.
The reason is that

∏c−k
i=0 Ŵ

k
i might not reflect all conflicts

present in W c
0 [17], [21], [11]. For the permanent fault model,

we only need to consider spatial localization. Given a single
permanent fault (e.g. stuck-at fault), it can be regarded as
multiple transient faults across the execution trace. Thus the
faulty gate is included in the unsatisfiable core. For multiple
permanent faults, our approach can guarantee that at least one
faulty gate is included in the core.

IV. INTERPOLANTS FROM BACKBONES

Section III proves that a sequence interpolant for sliding
windows can be used to identify fault candidates. In this sec-
tion, we show how the sequence interpolant can be constructed
using backbones. Our algorithm is first illustrated in examples
and then by the pseudo code in Algorithm 1.

Theorem 1 in Section III-B is based on a sequence inter-
polant for a partition of W c

0 . The construction of sequence
interpolants is typically based on a refutation proof of W c

0 .
Bayless et al. [3] recently presented an approach which en-
ables processing the partitions individually by separate SAT
solvers, but requires the windows to be repeatedly revisited to
propagate conflict clauses. Both techniques are at odds with
our assumption that W c

0 is prohibitively large.
Zhu et al. [25] present preliminary work which uses propo-

sitional backbones to propagate information from the suffix
to earlier cycles of W c

0 . Their work focuses on detecting
unsatisfiability and extracting fault candidates from a single
window. In the following, we show that backbones can be
used to derive interpolants. Consequently, the key concepts
presented in Section III can be applied to compute fault
candidates for the entire execution trace.

Our algorithm is composed of two phases. In the first
inconsistency-detection phase (ID phase), the sliding window
moves from the crash state towards the beginning state (illus-
trated in Example 3). In the second fault-localization phase
(FL phase), the sliding window moves in the reverse direction
towards the crash state (illustrated in Example 4).

Example 3: We continue working in the setting of Ex-
ample 2 in Figure 3a. As we are in the ID phase, the
sliding window moves from right to left. Given the final state
(rt+4

0 ) · (rt+4
1 ) and the input signals (i20) · (i21) · (i30) · (i31)

for the window W 2
2 , a SAT-based algorithm [8] yields the

backbone I2
def
= r20 · r30 · r31 . Similarly, from I2 · W 2

1 with
inputs i10 · i11 · i20 · i21 we derive I1

def
= r10 · r20 · r21 . Finally, we

obtain the unsatisfiable instance I1 · W 2
0 . This unsatisfiable

instance indicates the inconsistency between the golden gate-
level design and the faulty circuit’s behavior.

I1 ·W 2
0

I2·W 2
1⇒I1=r10 ·r

2
0 ·r

2
1︷ ︸︸ ︷

︸ ︷︷ ︸
W 2

2⇒I2=r20 ·r30 ·r31

r40 = 0

i30 = 0

n3

i31 = 0

r41 = 1

r30

i20 = 1

n2

i21 = 0

r31

r20

i10 = 1

n1

i11 = 0

r21

r10

r00

i00 = 0

n0

r01

i01 = 0

r11

(a) Fault localisation with backbones

I2 ·W 2
1 · Î1

r40 = 0

i30 = 0

n3

i31 = 0

r41 = 1

r30

i20 = 1

n2

i21 = 0

r31

r20

i10 = 1

n1

i11 = 0

r21

r10

r00

i00 = 0

n0

r01

i01 = 0

r11

(b) Locating faults W 2
1 using I1 and I2

W 2
2 · Î2

r40 = 0

i30 = 0

n3

i31 = 0

r41 = 1

r30

i20 = 1

n2

i21 = 0

r31

r20

i10 = 1

n1

i11 = 0

r21

r10

r00

i00 = 0

n0

r01

i01 = 0

r11

(c) Locating faults W 2
2 using I2

Fig. 3: Fault localisation with sliding windows

It is easy to see that the backbone sequence (1, I2, I1, 0)
is exactly a sequence interpolant for (W 2

2 ,W
2
1 ,W

2
0 ) in Ex-

ample 3. The backbones contain only literals that are shared
between windows. Non-shared literals can be safely dropped,
since they do not propagate information. Recall that the most
exact information that can be propagated from W k

i to W k
i−1

is the pre-image of Ii+1 ·W k
i . Backbones can be understood

as an abstract domain of limited expressiveness.
Zhu et al.’s technique [25] stops after this ID phase and only

derives a single faulty gate g1 from W 2
0 · I1 and misses the

actual faulty gate g3. Thus, it fails to locate the general type
fault introduced in Figure 3a, since their propagation technique
ignores the fact that the fault may occur in window W 2

1 or W 2
2 .

The FL phase in our algorithm can rectify this by analyzing
the remaining windows.

In our algorithm, we continue searching for fault candidates
in W 2

1 and W 2
2 , by moving the sliding window from left to

right towards the crash state. Example 4 shows this FL phase:
Example 4: In the setting of Example 3, an unsatisfiable

core is obtained in W 2
0 as shown in Figure 3a as the grey

box. Since only r10 of I1 exists in this core, we can update
I1 = r10 · r20 · r21 to Î1 = r10 as suggested in Lemma 1. We



6

proceed to analyse I2 · W 2
1 · Î1 , where I2 = (r20 · r30 · r31).

Intuitively, this query determines the gates in W 2
1 through

which the corrupted value r10 can propagate. The resulting
minimal core is indicated in Figure 3b as a grey box with
one AND gate. Again, by applying Lemma 1, I2 is updated to
Î2 = r20 , since only r20 exists in the core. The final window W 2

2

is inconsistent with Î2 and further yields the core from Î2 ·W 2
2

in Figure 3c. Finally, the sequence interpolant is updated to
(1, Î2, Î1, 0). We can see that the three cores in Figure 3 can be
linked together to form the same core illustrated in Figure 2.
This is consistent with Theorem 1.

The sequence interpolant algorithm is shown as the pseudo
code in Algorithm 1. The entire flow contains both the ID
phase (lines 7-21) and the FL phase (lines 22-35). When a
faulty chip reaches a crash state, we are able to record a partial
observable history leading to this crash state. The length of this
observable trace is limited by the on-chip trace buffers’ size
and is defined as traceLength in the algorithm. The input
W k is a vector of size-k windows, each of which contains
observable information from the trace history and is defined
as Formula 1. The global variables I and C are two vector
structures for the sequence interpolants and unsatisfiable cores
respectively. They are initially empty and their indices are
indicated as subscripts.

In the ID phase, t decreases in each iteration. The isSAT ()
subroutine checks whether window W k

t , when constrained
by It+1, is a satisfiable instance. Given that the instance is
satisfiable, the subroutine ComputeBackbone() returns the
backbone It for the formula It+1 · W k

t . The ID phase ends
when an inconsistent window is encountered. Consequently, a
0 interpolant value is derived at the end. If the IL phase fails
to detect any inconsistency within the trace of traceLength
cycles, it stops. The completeness of inconsistency detection
is not guaranteed in this work, as clarified in Section I.

In the FL phase, t increases in each iteration. The subroutine
ComputeUnsatCore() computes the unsatisfiable core Ct for
window W k

t , under the constraint given by It+1 and clause
It. The clause It is crucial for this routine because without
it the instance will not be unsatisfiable. The UpdateItps()
subroutine updates the interpolant It+1 by intersecting it with
Ct. Note that if there is no intersection between them, It+1

will be updated to 1, which indicates an end to the FL phase.
Finally, the Merge subroutine is used to obtain the final un-

satisfiable core (fault candidates) by linking unsatisfiable cores
between window at cycles flPhaseStart and flPhaseEnd.
It also removes all the interpolants from the cores. When the
algorithm finishes, both 0 and 1 are derived in the sequence
interpolant. Thus, the length of the merged core is pruned to
be only a fraction of the length traceLength, as discussed in
Section III-B.

V. EXPERIMENTAL EVALUATION

We selected 20 circuit benchmarks in AIG netlist format1:
• 2 circuits from Opencores.org2: 68HC05 and 8051 mi-

crocontroller.
1http://fmv.jku.at/aiger/FORMAT
2http://opencores.org/projects

Algorithm 1 Unsatisfiable Core from Sequence Interpolants
Input: W k: a vector of windows with size k.
Input: traceLength: The length of trace history
Output: FC: Final UNSAT core to return

1: /* Global Variables */
2: I: a vector of sequence interpolants, initially empty
3: C: a vector of UNSAT cores, initially empty
4: crashWindow ← traceLength− k
5: t← crashWindow
6: /* ID phase starts here, with decreasing t. */
7: It ← 1
8: while true do
9: if t < 0 then

10: /* Inconsistency detection fails */
11: return fail
12: else if isSAT(W k

t , It+1) then
13: /* The window is SAT. Save its backbone */
14: It ← ComputeBackbone(W k

t , It+1)
15: else
16: /* The window is UNSAT. Inconsistency found */
17: It ← 0
18: break
19: end if
20: t← t− 1
21: end while
22: /* FL phase starts here, with increasing t */
23: flPhaseStart← t
24: while t ≤ crashWindow do
25: if It = 1 then
26: break
27: end if
28: /* Obtain UNSAT core from interpolants */
29: Ct ← ComputeCore(W k

t , It+1, It)
30: /* update the interpolant */
31: UpdateItps(It+1, Ct)
32: t = t+ 1
33: end while
34: flPhaseEnd← t
35: /* Obtain fault candidates by linking the UNSAT cores */
36: FC = Merge(C, I , flPhaseStart, flPhaseEnd)
37: return FC

• 5 circuits from ITC’99 benchmarks3: b12, b14, b15, b17,
b22. They are chosen among the 22 benchmarks due to
their larger circuit size and AIG format availability.

• 13 other circuits from HWMCC’104 benchmarks. They
include the largest circuits from HWMCC’10 bench-
marks, e.g. bjrb07amba10andenv and neclaftp, as well as
a variety of other randomly chosen circuits to diversify
our benchmark set.

The designs listed above constitute the golden models in
our experiments. We evaluate our methodology by injecting
stuck-at-faults into these designs to create 20 faulty netlists.

3http://www.cad.polito.it/downloads/tools/itc99.html
4http://fmv.jku.at/hwmcc10/benchmarks.html



7

We chose stuck-at faults because they are well understood and
commonly used to evaluate fault diagnosis algorithms [19][20].
However, our methodology, which analyzes the consistency in
a chip’s execution trace, is not limited to permanent faults or
any other specific fault model, as described in Section I.

We used PicoSAT-v951 [4] as the underlying SAT solver for
computing backbones, interpolants and unsatisfiable cores as
explained in Section IV. When the resulting cores are merged,
the resulting core provides both temporal as well as spatial
locations for the fault candidates. The time-frames spanned by
the core indicate possible temporal locations of the fault, while
all gates covered by the core indicate the spatial locations.

The experiment is composed of two parts:
• In the first part, we make no assumption that we know

the type of the fault. They maybe either transient or
permanent, single or multiple. For such a general fault,
our algorithm is able to report both the spatial and
temporal location of the fault (for single faults) or at least
one of the faults (for multiple faults). This diagnosis is
used when the type of the fault is not available.

• In the second experiment, we presume knowledge of
the fact that there exists a single permanent fault in
the circuit. By this assumption, we are able to increase
the accuracy of the spatial localization. The temporal
information is irrelevant for permanent faults.

For the entire experiment, we fixed the following parame-
ters: 1. Besides the full execution information obtained from
inputs and outputs, 5% of the intermediate latches (randomly
selected) as well as the full final state are observable (by means
of trace buffers of 1000 cycles and a scan chain). 2. We fixed
the sliding window size to 4 cycles. Optimizing the sliding
window size [25] and trace buffer selection [24] can improve
the efficacy of our work, but is orthogonal to our approach.

A. Localizing Fault Candidates without Assuming Fault Model
For each of the 20 faulty netlists, we did the following:

1. The circuit design is simulated with random inputs for 10
thousand cycles or until it crashes, whichever comes later; 2. In
this simulation, several crash states can occur. One crash state
is randomly selected from this error trace; 3. Starting from this
random crash state, we run Algorithm 1.

Table I illustrates the spatial and temporal fault localization
results for the general faults. Each row in the table indicates a
different faulty benchmark circuit. The second column shows
the number of gates of each netlist. The third column gives
the number of suspected gates (spatial locations for fault candi-
dates) identified by our algorithm. The numbers in parentheses
are not relevant at this point and will be introduced later in
Section V-B. Our algorithm is able to reduce the number
of suspected gates dramatically, with an average reduction
rate of 93.9%, as shown in column 4. While columns 3–
4 give the spatial localization result, column 5 provides the
temporal locations of fault candidates. Our algorithm identifies
a small portion (4–24 cycles) of the entire execution trace as
temporal fault locations. This is consistent with Section III-B,
where it is proved that the sequence interpolant can be used
to prune the error trace. We verified that the faulty gate is

TABLE I: Spatial and Temporal Fault Localization for General
Faults

Circuit Name
No.
of

Gates

Suspected
Faulty
Gates

Reduction
Rate
(%)

Fault
Cycles Runtime

itc99 b12 1002 240 76.0 6 19s
viscoherencep3 1610 63 96.1 4 4s

bobsmi2c 1821 34 98.1 6 6s
eijkbs3271 2229 280 87.4 7 2m 13s
bj08vsar12 4266 148 96.5 24 2m 48s
itc99 b14 4749 533 88.8 5 3m 36s

68hc05 5991 119 98.0 6 1m 59s
pdtvisvsa16a12 6261 68 98.9 4 24s
pdtvisvsa16a27 6291 116 98.2 6 1m 13s

pdtswvsam4x8p0 6376 733 88.5 12 29m 30s
itc99 b15 9068 712 92.1 9 13m 42s

bobsynthetic 12541 142 98.9 4 4m
itc99 b22 19017 211 98.9 4 6m 12s

bobaesdinvdmit 21650 2842 86.9 4 133m 49s
8051 23600 1192 94.9 7 103m 51s

itc99 b17 28101 178 (81) 99.4 8 20m 59s
bobsmmem 30920 91 (9) 99.7 4 3m 30s

bjrb07amba6andenv 35272 5538 (203) 84.3 7 911m 5s
neclaftp1001 63383 274 (265) 99.6 4 65m 5s

bjrb07amba10andenv 98004 2372 (489) 97.6 9 829m 37s
AVG 93.9

excited at least once within the identified cycles, which is
proved in Section III-C. The last column lists the running time
for localizing fault candidates on a workstation with an Intel
Xeon 3.2 GHz CPU with 16 GB RAM. The running time and
space of our algorithm is dominated by the window-size. Our
algorithm can be scaled for large circuits with long error traces,
as long as each window can be handled by the workstation.
Furthermore, one may tailor the window size for individual
circuits, although it is fixed to be 4 in our experiment.

B. Localizing Fault Candidates for a Single Permanent Fault
Consider the case where we assume a single permanent fault.

Multiple error traces can be used to further advantage in this
context. Since the fault is permanent, it explains the faulty
behavior for every error trace. By taking the intersection of
the fault candidates from every trace, we can obtain a more
accurate spatial localization result. While our methodology
is applicable to both transient as well as permanent faults,
we can provide more accurate spatial locations for permanent
faults, since this scenario allows us to combine the information
obtained from multiple test runs.

In our experiment, we picked the 5 largest circuits from
the 20 benchmarks, which are injected with single permanent
faults. They are diagnosed using six random error traces.
Each error trace is analyzed by our algorithm to obtain a set
of fault candidates, which we project to the original circuit
using ν (See Section II-A). The assumption that there is a
single permanent fault ensures that each resulting set of fault
candidates contains the actual fault. Therefore, intersecting the
sets of fault candidates results in a smaller set which is still
guaranteed to contain the actual fault.

Figure 4 indicates the reduction rate of spatial fault can-
didates by analysing multiple traces. The number of fault
candidates decreases as the number of error traces used for



8

95

96

97

98

99

100

1 2 3 4 5 6

re
du

ct
io
n 
ra
te
 (%

)

number of error traces used for localizing the permanent fault

bjrb07amba10andenv
bjrb07amba6andenv
bobsmmem
neclaftp1001
itc99_b17

Fig. 4: Single Permanent Fault Localisation Using Multiple
Test Traces

diagnosis increases. As we can expect, it gradually saturates.
For the given five benchmarks, the final number of spatial fault
candidates obtained by using 6 test traces are shown in the
parentheses of the third column in Table I. More than 99.4%
of gates are pruned from the spatial fault candidates.

In both parts of the experiment, we have verified that the
injected faults are contained in the resulting set of fault candi-
dates, as proved in Section III-C. Through the experiment, we
have shown that the unsatisfiable core computed from sequence
interpolants can correctly localize the actual fault.

VI. CONCLUSIONS

We propose a novel framework for fault diagnosis based
on sequence interpolation. Our scalable approach iteratively
computes unsatisfiable cores, which identifies both temporal
and spatial locations for fault candidates in an execution trace.
On the theoretical side, at least one of the actual faults is
guaranteed to reside in the reported set of fault candidates.
Our interpolation-based methodology finds an unsatisfiable
core for a large unsatisfiable propositional formula by merging
smaller cores derived from multiple windows, which signifi-
cantly reduces the scalability requirements for the underlying
decision procedure. On the practical side, the experimental
results demonstrate that our approach can significantly narrow
down the faults’ potential location, which facilitates manual
inspection. Our algorithm can be successfully applied to cir-
cuits with around 100 thousand gates and reduce the suspected
faulty gates by an average of 93.9% without an assumption
of the fault model. We instantiate our framework by using
propositional backbones for computing interpolants. Since the
expressiveness of backbones is limited, we intend to explore
other means of obtaining interpolants as future work.

Acknowledgments: This work was supported in part by
C-FAR, one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA, and by the Austrian National Research
Network S11403-N23 (RiSE) of the FWF and the Vienna
Science and Technology Fund through grant VRG11-005.

REFERENCES

[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller. A reconfigurable design-for-debug infrastructure for SoCs.
In DAC, pages 7–12, 2006.

[2] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital systems
testing and testable design. Computer Science Press, 1990.

[3] S. Bayless, C. G. Val, T. Ball, H. Hoos, and A. J. Hu. Efficient modular
SAT solving for IC3. In FMCAD. IEEE, 2013.

[4] A. Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.
[5] Y. Chen, S. Safarpour, J. Marques-Silva, and A. Veneris. Automated

design debugging with maximum satisfiability. TCAD, 29(11):1804–
1817, 2010.

[6] F. M. de Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang.
BackSpace: Formal analysis for post-silicon debug. In FMCAD, pages
1–10. IEEE, 2008.

[7] F. M. de Paula, A. Nahir, Z. Nevo, A. Orni, and A. J. Hu. TAB-
BackSpace: unlimited-length trace buffers with zero additional on-chip
overhead. In DAC, pages 411–416. ACM, 2011.

[8] M. Janota, I. Lynce, and J. Marques-Silva. Experimental analysis
of backbone computation algorithms. In Experimental Evaluation of
Algorithms for solving problems with combinatorial explosion (RCRA),
2012.

[9] D. Josephson. The good, the bad, and the ugly of silicon debug. In
DAC, pages 3–6. ACM, 2006.

[10] B. Keng, S. Safarpour, and A. Veneris. Bounded model debugging.
TCAD, 29(11):1790–1803, Nov. 2010.

[11] B. Keng and A. Veneris. Managing complexity in design debugging
with sequential abstraction and refinement. In ASPDAC, pages 479–
484. IEEE, 2011.

[12] M. H. Liffiton and K. A. Sakallah. Algorithms for computing minimal
unsatisfiable subsets of constraints. J. Autom. Reasoning, 40(1):1–33,
2008.

[13] J. Marques-Silva, F. Heras, M. Janota, A. Previti, and A. Belov. On
computing minimal correction subsets. In IJCAI, 2013.

[14] K. L. McMillan. Interpolation and SAT-based model checking. In CAV,
volume 2725 of LNCS, pages 1–13. Springer, 2003.

[15] S. Mitra, S. Seshia, and N. Nicolici. Post-silicon validation opportuni-
ties, challenges and recent advances. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pages 12–17, June 2010.

[16] S.-B. Park, T. Hong, and S. Mitra. Post-silicon bug localization in
processors using instruction footprint recording and analysis (IFRA).
TCAD, 28(10):1545–1558, Oct. 2009.

[17] R. Reiter. A theory of diagnosis from first principles. Artif. Intell.,
32(1):57–95, Apr. 1987.

[18] S. Safarpour, H. Mangassarian, A. Veneris, M. H. Liffiton, and
K. Sakallah. Improved design debugging using maximum satisfiability.
In FMCAD, pages 13–19, 2007.

[19] D. Sengupta, F. M. de Paula, A. J. Hu, A. Veneris, and A. Ivanov.
Lazy suspect-set computation: Fault diagnosis for deep electrical bugs.
In GLSVLSI, pages 189–194. ACM, 2012.

[20] A. Smith, A. Veneris, M. F. Ali, and A. Viglas. Fault diagnosis and logic
debugging using boolean satisfiability. TCAD, 24:1606–1621, 2005.

[21] A. Suelflow, G. Fey, R. Bloem, and R. Drechsler. Using unsatisfiable
cores to debug multiple design errors. In Great Lakes symposium on
VLSI, pages 77–82. ACM, 2008.

[22] G. Tseitin. On the complexity of proofs in poropositional logics. In
Automation of Reasoning: Classical Papers in Computational Logic
1967–1970, volume 2. Springer, 1983.

[23] M. J. Y. Williams and J. B. Angell. Enhancing testability of large-
scale integrated circuits via test points and additional logic. IEEE
Transactions on Computers, 22(1):46–60, Jan. 1973.

[24] J.-S. Yang and N. Touba. Automated selection of signals to observe for
efficient silicon debug. In VLSI Test Symposium, 2009. VTS ’09. 27th
IEEE, pages 79–84, May 2009.

[25] C. Zhu, G. Weissenbacher, and S. Malik. Post-silicon fault localisation
using maximum satisfiability and backbones. In FMCAD, pages 63–66,
2011.


