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Abstract

We present an approach for automatic software verification that combines the benefits of the
two complementary concepts of theorem proving and model checking. We apply theorem
proving and predicate transformers to remove detail from a C program to such an extent that
a model checker can be applied to search for erroneous execution traces (with respect to a
specification that must be provided by the user). The existence of such an error trace in the
abstract model indicates either an error in the original C program or it indicates that too
much detail was omitted. In the former case the corresponding error trace in the C program is
reported; In the latter case, we refine the abstraction by adding more detail and reiterate the
process. If the model checker is unable to find an error trace then the C program is correct
with respect to the specification.

We will give a detailed description of this approach and show how it can be used to detect
errors in C Programs. We will furthermore discuss the limits of the approach.
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Zusammenfassung

Diese Arbeit behandelt einen automatisierten Ansatz zum Auffinden von Pfaden in C Pro-
grammen, die bezliglich einer vom Benutzer vorgegebenen Spezifikation zu einem Fehler in
der Ausfihrung des Programmes fithren. Die Validierung des Programmes erfolgt statisch,
d.h. es miissen keine Testfalle vorgegeben werden. Mit Hilfe eines Theorem Beweisers und
Pradikatenabstraktion wird das C Programm so weit vereinfacht, dass ein Model Checker ver-
wendet werden kann, um nach fehlerhaften Pfaden zu suchen. Die Existenz solcher Pfade im
vereinfachten Programm weisst entweder auf einen Fehler im urspriinglichen Programm hin,
oder darauf, dass das Programm zu stark vereinfacht wurde. Im ersteren Fall wird der Fehler
dem Benutzer gemeldet, wahrend im letzteren Fall ein weniger stark vereinfachtes Programm
generiert und neuerlich iiberpriift wird. Sollte kein fehlerhafter Pfad gefunden werden, so
erfullt das urspriingliche Programm die vorgegebenen Eingeschaften.

Diese Diplomarbeit enthélt eine detaillierte Beschreibung dieses Ansatzes und zeigt, wie
er zur Suche von Fehlern in C Programmen verwendet werden kann. Weiters wird auf die
Beschrankungen des Ansatzes eingegangen.
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Chapter 1

Introduction

While devices that are equipped with software driven embedded processors have become
an indispensable part of our everyday life we have still not found a way to guarantee that
these systems “behave correctly” in every situation. Automatic verification of software and
hardware poses a problem that has been investigated by computer scientists for decades.
While there have been remarkable achievements in hardware verification in the last few years
the results for software are still discouraging. However, the necessity for software verification is
growing, since customers are unlikely to accept their cellular phones and washing machines to
be as unreliable as desktop computers are nowadays. Developers of safety critical applications
are already aware of this necessity, and for them the use of formal methods is obligatory.
However, it is still a long road to go until verification tools become sophisticated enough to
be accepted by the average programmer. In this thesis we present an approach for automatic
software verification that is promising to fill this gap.

Verification of large amounts of code can only be accomplished with help of a push-button
tool that does not require much user interaction. Model checking is a fully automatic approach
that provides explanations for the inadequacy of the inspected model if an error is detected.
However, model checking can only be applied to relatively small systems that adhere to certain
restrictions that we will discuss later. Theorem proving, on the other hand, can be applied to
highly complex systems, but results can only be achieved with extensive manual guidance by a
skilled computer scientist. Furthermore, proof based approaches usually require an annotated
model. The approach that we present here combines the benefits of these two complementary
concepts. With help of a theorem prover we cut down the size of the state space of a C
program so that model checking can be applied to the resulting abstraction.

Since we cannot assume that the piece of code we investigate contains annotations or
invariants we need to provide a number of constraints that must not be violated. Such a
constraint might be that a process in an operating system is not permitted to use a device
unless it has been granted access to it. Such temporal safety properties can be expressed by
specifying program points (resp. labels) that can only be reached if the property is violated.
The functions of a program must assert the specified property whenever they are called and
jump to a specific label whose reachability signals an error in the implementation if the
assertion does not hold. Later in this thesis we will explain how this method can be used to
ensure certain properties of a Linux device driver.

Given a C program and a point in this program (specified by a label) we wish to check if
this point is reachable, and if this is the case, we demand a detailed explanation of how it can



be reached (resp. an execution path that leads to the label). We have implemented a tool
called BOOP that is capable of providing this information. The BOOP toolkit is essentially
a reimplementation of the tools C2BP and NEWTON that are part of the Microsoft SLAM
toolkit'. While the SLAM toolkit provides its own model checker BEBOP for model checking
Boolean Programs [BR00] we have integrated the model checker MOPED? into the BOOP
toolkit. The abstraction algorithm that we present in Chapter 4 is the same as presented
in [BMMRO1]. We present a more elegant and evident way to find new predicates to refine
the abstraction and compare it to the approach that was used for NEWTON and presented
in [BR0O2]. Furthermore we show that there are classes of programs that neither the SLAM
nor the BOOP toolkit can handle efficiently.
The algorithm we implemented involves the following three steps:

1. Obtain an abstraction by removing detail from the original C program. This is ac-
complished by modeling the impacts of C statements on the control flow by means of
predicates over the infinite state of the C program. This yields an abstraction where
statements of which we assume that they have no influence on a potential path to the
program point in question are ignored. The effects that the remaining statements have
on the control flow are modeled by Boolean Programs. Boolean Programs are similar
to C programs with the restriction that all variables have Boolean type. Each Boolean
variable in the abstraction corresponds to a predicate that represents an assumption
about the state of the C program. At each point in the Boolean Program, this assump-
tion can either be true or false. Each C statement potentially changes the truth value
of this assumption. This is reflected by an assignment statement at the corresponding
program point in the Boolean Program. BOOP uses the theorem prover HOL98? to
determine how the truth values of predicates are affected by C statements.

2. Model checking the abstraction. With help of the model checking tool MOPED we try to
find an execution path in the abstract model that leads to a violation of the given safety
property. If no such path exists then the C program is correct with respect to the given
property. The existence of an erroneous execution path indicates either a violation of
the property in the original C program, or that too much detail was removed in the
abstraction phase. If the path can be shown to be feasible in the original C program, it
is reported to the user.

3. Finding new predicates to refine the abstraction. If the model checker reports an error
path that we found not to be feasible in the original C program, we omitted too much
detail when generating the abstraction. We use the information that the model checking
tool supplies to discover additional predicates that can be used to refine the abstraction
to such an extent that the spurious error path is eliminated.

These steps are repeated until the tool finds a path to the specified label or until it finds
out that the label is unreachable. In general this may result in a great number of iterations.
Even worse, the algorithm is potentially non-terminating for certain C programs. We will
show in Section 7.4 that there is a class of programs for which the algorithm is practically
infeasible. However, we found that in many cases the approach yields a result after a few
iterations.

"nttp://research.microsoft.com/SLAM
*http://wwwbrauer.in.tum.de/~schwoon/moped/
®http://hol.sourceforge.net/
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A potential target for the method we present are Open Source projects. Projects like
the Linux Kernel* involve many programmers that contribute their code via the Internet.
This “bazaar”-model [Ray98] of development imposes many challenges. The stability of the
Linux Kernel is to a great part due to the tremendous number of people who sacrifice each
minute of their spare time to test and improve the kernel. As Linux is becoming more popular
more and more hardware manufacturers provide kernel drivers for their devices. The impact
of these contributions to the monolithic Linux Kernel cannot be estimated yet. However,
integration testing of these components will definitely become more costly and less effective
as their number grows. A specification of temporal safety properties that device drivers must
adhere to could be given by writing stubs for the kernel functions that jump to a specific
label if one of the demanded properties is violated. The BOOP toolkit could then be used to
statically search for an execution path that violates the specified properties.

1.1 Related Work

Similar approaches are pursued by other research teams. We have already mentioned the
SLAM project at Microsoft Research and we cover this approach in detail in this thesis.

The BLAST?® toolkit of UC Berkeley [HJMS02] is based on the SLAM project, too, and
uses “lazy abstraction”. If the abstraction needs to be refined, only the parts that are affected
by the new predicates are updated. This algorithm yields different predicate sets for different
program points. Furthermore, unnecessary exploration of parts of the state space that are
already known to be free of errors is prevented.

The Java Path Finder® (JPF) tool developed at NASA Ames Research Center is able to
check invariants and search for deadlocks in Java bytecode programs [BHPV00]. The abstrac-
tion algorithm of JPF relies on user-specified abstraction criteria and uses the BANDERAT
tool set [CDHT00] for static program slicing of concurrent Java programs. The advantage
of JPF over our approach is that it is able to handle concurrent programs. Since JPF pro-
cesses Java bytecode it is not necessary to have access to the source code of the libraries that
the Java application uses. However, the necessity for user annotations makes the tool less
acceptable for a non-scientific audience. Furthermore, the specification of abstractions for
BANDERA by adding and removing variables to the abstract program requires a significant
amount of user interaction.

Stefan Schwoon’s model checker MOPED [ESO01] is integrated into our toolkit and is
discussed later in this thesis.

1.2 Organization of this Thesis

This thesis is organized as follows. Chapter 2 contains the preliminaries and notational
conventions that are prerequisite for the following sections. Chapter 3 gives an overview of
the approach by presenting the application of the BOOP tool on an example C program.
We will refer to this example throughout the remaining sections. Chapter 4 explains the
abstraction mechanism in detail. Chapter 5 shows how the C semantics is formalized in

*http://www.kernel.org
Shttp://www-cad.eecs.berkeley.edu/ rupak/blast/
Shttp://ase.arc.nasa.gov/visser/jpf/
"http://www.cis.ksu.edu/santos/bandera/
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terms of the logic of the theorem prover HOL98. Chapter 6 gives a brief description of the
principles that the model checking tool MOPED uses to determine the reachability of labels
in Boolean Programs. Chapter 7 describes how the feasibility of paths in the C program is
analyzed and how new predicates that are used to refine the abstraction can be discovered.
Chapter 8 contains our conclusions, discusses open problems and summarizes uncompleted
tasks and future work.



Chapter 2

Preliminaries

This chapter presents the concepts that are necessary to understand the matters presented in
this thesis. This chapter covers propositional and higher order logic, Weakest Preconditions
and Lattices. We give only a brief summary, since we assume that the reader is familiar with
these basic concepts. For an in-depth treatment of these matters refer to the references we
give in this chapter.

2.1 Formulae and Models

This section contains a short description of the notation that we are using to represent formulae
and how such formula are interpreted in terms of models. This section should at least be
skimmed in order to gain a unambiguous understanding of the notation that is used in the
remaining chapters.

Throughout this thesis we make use of propositional logic and higher order logic, which
are overlapping formalisms.

Definition 2.1. (Syntaz of propositional logic). A formula in propositional logic consists
of atomic formule A; (where i = 1,2,3,...) and the logical connectives \,V, = , and —.
Formule are defined inductively:

1. All atomic formule are formule.
2. (p1 N wa), (01 V), and (o1 = 2) are formule if 1 and @s are formule.
3. For every formula ¢, =@ is a formula.

Later on we will use the notion of a propositional combination of predicates. A proposi-
tional combination of predicates is a propositional formula in which the atomic formuls are
arbitrary predicates.

These predicates may represent higher order logic terms. By higher order logic or HOL
logic we denote the logic that is used by the theorem prover HOL9YS.

Definition 2.2. The BNF grammar of terms in HOL logic is defined as follows:

ty, = x4 Variables
| ¢ Constants
| (torso th)s Function applications (function t, argument t')

| (AZoytoy)oy -0y A-abstractions
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A A-term Az.t denotes a function v — t[v/z], where t[v/z] denotes the result of substi-
tuting v for x in . An application ¢ ¢’ denotes the result of applying the function denoted by
t to the value denoted by t. Each term in the HOL logic is associated with a unique type.
The notation ¢, is used to range over terms of type o. (Examples for valid types would be B
or N.) A detailed definition of the HOL logic and its semantics can be found in [Uni0Ola]. In
Chapter 5 we use HOL logic to formalize expressions of the C programming language.

Propositional formula are a subset of higher order logic terms. A definition of the logical
connectives A,V, and = in terms of higher order logic can be found in [Uni0Ola]. These
connectives are in fact nothing but special cases of infixed HOL functions of type Bx B — B.
We will give a definition of their semantics in terms of models. A model M of a formula
@ is an interpretation in which the formula becomes true. A model is therefore a tuple
(Uaty Iaq), where Uy denotes the domain of M and I is an interpretation function for all
function symbols, variables and constants that occur in ¢ (if M models ¢ we write = ¢).
Furthermore, 9 is valid if every possible interpretation is a model of . In this case we write
= .

In general, each formula has potentially infinitely many models. There are always an
unlimited number (a non-enumerable infinity) of models if there are any at all [Sch00, BBJ02].
Further on, we will denote the set (or class) of models of a formula 9 by Sy.

A model M is a model of a A 8 if and only if M models « as well as 5. Similarly,
Eum (aV p) if either =0 @ or F=aq . If M models the negation of a formula ¢ then it
cannot model the formula . Furthermore, a formula ¢ implies %) iff every model of ¢ is also
a model of ¢ [End72]. Based on this, we can give following corollaries:

Corollary 2.3. If S, is the set of models for «, and Sg is the set of models for [3, then
Sa N S is the set of models for o A\ B; similarly for V.
Corollary 2.4. A formula ¢ implies a formula 4 iff S, C Sy.

Therefore, deciding if a formula ¢ implies a formula 1) is essentially a subset check. We
will now consider conjunctions of the elements of a set I'. Further on, we denote /\%_ er Vi as

AT.
Lemma 2.5. If a conjunction \T' implies a formula 1, then 1 is implied by any conjunction
A A with T' C A.

Proof. The conjunction of the elements of A is a larger conjunction than the conjuncted
elements of T', since I' C A. Since A corresponds to an intersection of sets the models the
set of models for A is given by Sp N Sa. Then, Spr N Sa C Sr implies that A A implies
AT. Therefore the conjunction that corresponds to A implies 9 due to the transitivity of
implication. U

Consider the intersection of the sets of models of a formula and its negation:
Lemma 2.6. = (p A —p), since false formule have no model; therefore S, n-p) = 0.

Therefore a false formula implies any arbitrary formula.

Lemma 2.7. If AT implies —, then there is no A\ A with ' C A that implies 1) (unless
AT or = ANA).

Proof. First note, that A ' cannot imply 1) and —¢) unless = AT'. According to Lemma 2.5,
every A A must imply —¢ if the conjunction of the elements of I' implies —¢) and I' C A.
Therefore, the conjunction corresponding to A can only imply 4 if = A\ A. O
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2.2 Weakest Preconditions

In our abstraction algorithm we use formula (resp. predicates) to express assumptions about
the state space of a program. Any assignment statement may have an impact on the truth
values of these assumptions at the corresponding program point. The weakest precondition
presented by Dijkstra [Dij76] is a formalism that allows us to capture the impacts of imperative
statements on predicates. In [Gri8l], Gries defines the Predicate Transformer WP(S, R)
(or weakest precondition) to be the predicate that represents the set of all states such that
execution of the statement S begun in any one of them is guaranteed to terminate in a finite
amount of time in a state satisfying R:

Definition 2.8. For a predicate ¢ and an assignment statement “z := e” where z is a scalar
variable and e is an expression, the weakest precondition of ¢ for the statement “z := e” is
defined by

WP(“‘z := e’’, p) = ple/x] (2.1)

where ple/z] denotes substituting all occurrences of x in ¢ by the expression e (this can
alternatively be written as (A\x.p)e, if lambda calculus is the preferred notation,).

Example 2.1. Let S be the assignment statement “¢ := 4 + 1”7 and let R be i < 1. Then
WP(“4 =4 + 177,i<1) = (i <0)

for if i <0, then the execution of “i := ¢ + 17 terminates with ¢ < 1, while if ¢ > 0, the
execution cannot make i < 1 [Gri81].

2.3 Lattices and Partially Ordered Sets

This section contains a brief description of lattices. A more detailed introduction to lattices
can be found in [BvyW98]. This section can be skipped by readers who are familiar with
lattices.

Let A be a nonempty set and T a binary relation on A. If this relation is reflexive,
transitive and antisymmetric we call (A, C) a partially ordered set (or poset). A partial order
is total if @ C bV a C b holds for every a,b € A. A partial ordered set A is bounded if it has a
least element | and a greatest element T. For such posets | C a and ¢ C T for each a € A.

Example 2.2. The set of subsets P(A) and the set inclusion order C form a partially ordered
set. The least element is the empty set ) and the greatest element is the set A. (P(A),C) is
total only if A is the emtpy set O or a singleton set {a}.

A function M is called meet of a poset if it has following property:

(be B = MNMBLCbA((VbeB.aLb) = aLNB) (2.2)

The dual function is LI. Tt is called join of a poset and has following property:

(be B = bTUB)A((VbE BT a) = UBLC a) (2.3)
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Example 2.3. The partially ordered set (P(A), C) has the meet N and the join U. Substituting
N and U in Property 2.2 resp. Property 2.3 shows that the demanded properties hold:

b1 Nby C by and by Nby C by
aChANaCby — aCb Nb
b1 C by Uby and by C by U by
b CaNby Ca = bjUby Ca

A poset (A,C) is called a lattice if the meet a Mb and the join a U b exists in A for all
pairs a, b of elements of A.



Chapter 3

Overview

This chapter presents our abstraction/refinement algorithm by means of an example. We
explain how our tool BOOP processes a program that loads a device driver module and
accesses the corresponding device via the functions that the driver provides. (For a detailed
description of dynamic kernel modules refer to [RCO01].) We present the abstractions that
BOOP generates and show how the tool automatically refines them until it finds a feasible
execution path that is an example for an unintended behavior of the kernel module.

3.1 Architecture of BOOP

In Chapter 1 we have sketched the basic structure of the BOOP toolkit in terms of the
phases that it (repeatedly) passes. In this section we will give an overview of the complete
abstraction/refinement process and how it is implemented in our tool. The phases will be
described in detail in the Chapters 4, 6, and 7.

The essential idea is to repeatedly apply an abstraction algorithm on a C program and
check if the abstract model contains errors (with respect to a given specification). The abstract
model is refined until it is detailed enough to decide if the original C program adheres to the
specification or not. The upper half of Figure 3.1 shows a flow chart diagram that represents
the control flow of the BOOP tool. (The bottom half shows implementation details that will
be explained later in this chapter.)

In the flow chart diagram in Figure 3.1, the boxes with rounded edges represent the three
phases (resp. modules) of our model checking tool. The boxes with fat borders represent the
input and the output for the tool, and the remaining boxes denote the intermediate results.

A C program and a label that occurs in this program form the input for the BOOP toolkit.
The first step is to generate a sparse model of the C program that reflects the control flow
of the original C program. This first abstraction is usually very imprecise, since there is yet
no information about which details of the C program have relevant influence on its control
flow (i.e., the set of predicates that represent those details is empty). This model is then
represented as Boolean Program (a detailed description of this formalism can be found in
Chapter 4.2), which forms the input for the model checker.

The model checker searches for an execution path in the simplified program that leads
to the specified label. Our abstraction algorithm ensures that the label is not reachable in
the original C program if it is unreachable in the abstract model. (We denote this property
as soundness of the abstraction. This matter is treated with more detail in [BMR02]). On
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BOOP Abstraction/Refinement Toolkit

Predicates

r Label I {o1,-- -, 0n} )
Y

C Abstraction\_> Boolean [ Model l Boolean Feasability| , | Counter
program algorithm ) program cheécker path check example
AST Wrapper I

OK

} GCC backend hook } P11 (TCP/IP) } IPC/UNIX pipes
PROSPER Toolkit
GNU C Compiler v3.3 ‘A

MOPED Model Checker

Internal Syntax Tree HOL98

BOOP

Theorem Theory

Prover

Figure 3.1: Overview of the BOOP Abstraction/Refinement Toolkit

the other hand, the existence of such a path does not per se imply an error in the original
C program, because it might result from an insufficient model. Therefore, the path in the
Boolean Program has to be mapped to a corresponding path in the original C program. In the
case that BOOP can show the feasibility of this path in the original C program the erroneous
trace is reported to the user as counter example.

If the error path is found to be infeasible, BOOP extracts a number of predicates from
this spurious counter example that explain its infeasibility. These predicates represent details
which are not reflected in the abstract model, but have relevant influence on the control flow
of the program. Therefore, the tool starts over again and constructs a new abstract model
that does not neglect these details.

There are certain programs for which the BOOP toolkit iterates the three phases over
and over again without ever coming to a result. This is because the reachability problem is
in general undecidable, since if there was a (complete) decision algorithm that could tell us if
an arbitrary label £ is reachable in an arbitrary program P then we could use it to solve the
halting problem. The user can therefore specify a maximum number of iterations.

The bottom half of Figure 3.1 shows the components that the BOOP toolkit is built of:

e We use the GNU C compiler to parse the C programs. The internal representation of
the C program (which is described in detail in [Sta02]) is extracted via a backend hook
and transformed to an abstract syntax tree (AST) that is used by the BOOP toolkit.

e The PROSPER toolkit [DCN*00]! is used to integrate the HOL98 theorem prover into

"Mttp://www.dcs.gla.ac.uk/prosper/
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the BOOP toolkit. We supplied a HOL library that contains theorems and a decision
procedure specific to our tool. Chapter 5 covers this library in detail.

e The model checker MOPED [ES01] is used to examine boolean programs for reachability
of a specified label. Chapter 6 gives an introduction to the mechanism used by MOPED.

In the following section we will present how the BOOP toolkit works by means of an
example.

3.2 A Linux Device Driver Example

A monolithic kernel architecture? places a number of restrictions upon systems which loadable
modules were created to solve. Dynamically loadable modules enable the Linux Kernel to load
device drivers on demand and to release them when they are not needed anymore. When
a device driver is registered the kernel provides a major number that is used to uniquely
identify the device driver. The corresponding device can be accessed through special files in
the filesystem; they are conventionally located in the /dev directory. If a process accesses a
device file the kernel calls the corresponding open, read, and write functions of the device
driver. Since a device driver must not be released by the kernel as long as it is used by at
least one process the device driver must maintain a usage counter®. Figure 3.2 shows the
(strongly simplified) open function of a device driver called testdev.

int testdev_ open (struct inode *inode, struct file *filp)
{
assert (MAJOR (inode->i rdev) == major);
MOD_INC_USE_COUNT;

if (locked)

return -ENODEV;
locked = TRUE;
return 0; /* success */

Figure 3.2: open-function for a device

The function testdev_open makes sure that the device can only be accessed by one process
at a time. Of course a real device driver would provide a more sophisticated access control
mechanism. Allowing only one process to access the device is a brute-force way and is best
avoided [RCO1]. For reasons of simplicity, we have also omitted the calls to spin_lock and
spin_unlock that protect the global variable locked from concurrent access.

The Linux Kernel provides a number of macros to modify the usage count. The following
macros are simplified but basically equivalent to these macros:

2A detailed disputation concerning monolithic kernels vs. micro kernels was posted by L.B. Torvalds and
A.S. Tanenbaum in comp.os.minix in 1992 (http://www.dina.dk/~abraham/Linus_vs_Tanenbaum.html).

3In modern kernels, the system automatically tracks the usage count. However, device drivers that must
be portable to older kernels will need to adjust the usage count manually.
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major = register_chrdev (0, "testdev", &testdev_ops);
inode.i_rdev = major << MINORBITS;

init_module ();
A: testdev_open (&inode, &my file);

do

{
B: rval = testdev_open (&inode, &my_file);
if (rval == 0)
{
count = testdev.read (&my file, buffer, BUF_SIZE);
C: testdev_release (&inode, &my_file);
}
else
count = 0;

}

while (count !'= 0);
D: testdev.release (&inode, &my_file);
cleanup.module ();

&: unregister_chrdev (major, "testdev");

Figure 3.3: Registering the device driver and accessing the device

#define MOD_INC_USE COUNT (usecount = usecount + 1)
#define MOD DEC_USE_COUNT (usecount = usecount - 1)
#define MOD_IN _USE (usecount != 0)

The open function contains an obvious bug: The usage count is increased even if the
device is locked and access cannot be granted. We will show how BOOP is able to find it and
report an execution path that explains the inadequacy of the presented piece of code. Fig-
ure 3.3 shows a code snippet that loads the testdev device driver using the register_chrdev
function, accesses it via the testdev_open, testdev_read, and testdev release functions,
and unloads it again.

A short look at the code in Figure 3.3 shows that the program attempts to open the
device twice (at the locations A and B) without closing it before. The second attempt is
bound to fail, since the device driver maintains a lock that prevents simultaneous access to
the device. At locations C and D the program makes calls to the testdev_release function
(corresponding to the calls to tesstdev_open at B and A). Finally, the program tries to
unload the device driver at location &.

We have replaced register_chrdev with a stub function that initializes the usage count
to zero. unregister_chrdev examines the usage count and jumps to a label called ERROR if
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(a) Abstraction 2 of testdev_open

bool<2> testdev_open
({inode—i_rdev>> 8 =major})
begin
decl {testdev_open = 0};
assert ({inode—irdev>> 8 =major});
skip;
if (%) then
assume (!'0);
{testdev_open= 0} := choose (0,1);
return {inode—irdev>> 8 =major},
{testdev_open= 0};
else
assume (!0);
fi

{testdev_open= 0} := choose (1,0);
return {inode—irdev>> 8 =major},
{testdev_open= 0};
end

(b) Abstraction 3 of testdev_open

decl {locked# 0};

bool<2> testdev_open
({inode—i_rdev> 8 =major})
begin
decl {testdev_open = 0};
assert ({inode—irdev>> 8 =major});
skip;
if (%) then
assume ({locked# 0});
{testdev_open= 0} := choose (0,1);
return {inode—irdev:> 8 =major},
{testdev_open= 0};
else
assume (!{locked# 0});
fi
{locked# 0} := choose (1,0);
{testdev_open= 0} := choose (1,0);
return {inode—irdev>> 8 =major},
{testdev_open= 0};
end

Figure 3.4: 2nd and 3rd abstraction of testdev_open

MOD_IN USE evaluates to true. We have thus provided a simple specification that expresses
the constraint that the usage count must be zero when the program tries to release the device
driver. The program adheres to this specification only if ERROR is not reachable.

In the first iteration, BOOP extracts all expressions that are parameters to a call to
the function assert and constructs a Boolean Program with a very sparse control flow
graph. In our example, the first predicate set Ey contains only one predicate, namely
{inode—irdev>> 8 =major} which represents the expression (MAJOR (inode->i_rdev) ==
major)). Basically, the first abstract program allows all paths to be feasible. ERROR is reach-
able in this abstraction, because no restrictions are imposed on the control flow. MOPED
reports the following execution trace: Choose the then-branch in testdev_open when this
function is called at label A and B, enter the then-branch of the conditional statement below
B, call testdev_release at label C, and then continue the execution until unregister_chrdev
is called at label £. This execution trace leads to the label ERROR.

BOOP takes this execution trace, extracts the corresponding path from the original C pro-
gram and checks if the path is feasible. The outcome is that the path that MOPED suggested
is infeasible in the original C program, because label C can never be reached if the then-
branch of testdev_open was executed at label B. Now BOOP searches for predicates along
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that path that explain its infeasibility. It finds out, that the return value of testdev_open
influences the decision if testdev_release is called at label C. Therefore, BOOP addition-
ally considers the predicates {testdev_open= 0} and {rval= 0} for the construction of a more
detailed abstract program. The former predicate adds information about the return value
of testdev_open and the latter is used to keep track of the truth value of the guard of the

if-statement below label B.

decl {rval=0};

register_chrdev ();
skip;

init_module ();

prm; := choose (0,0);

A:reti,rety := testdev_open (prmi);

l: skip;
prm; := choose (0,0);

B: rety,rety := testdev_open (prm;);
{rval= 0} := choose (retg,!rets);
if (*) then

assume ({rval=0});
testdev_read ();
C: testdev_release ();
else
assume (!{rval=0});
skip;
fi
if (%) then
assume (!'0);
goto /;
fi
assume (!0)
D: testdev_release ();
cleanup module ();
&: unregister_chrdev ();

Figure 3.5: Abstraction of Figure 3.3

Figure 3.4(a) and Figure 3.5 present the
abstract program that was automatically
generated by BOOP during the 2nd itera-
tion. The notation that is used to represent
the abstract program is that of Boolean
Programs. The syntax and semantics of
Boolean Programs are discussed in Section
4.2 and defined in [BR0O0]. All we need
to know about Boolean Programs for now
is that they are essentially C programs in
which the only allowed type is B. Instances
of this type are represented by 0 and 1.
Boolean programs allow non-determinism
of the control flow, which is indicated by
the conditional expression *.

The assign statements in the boolean
program represent the effect of the C state-
ment s at the corresponding position in the
C program on the predicates in F;. BOOP
tries to express the boolean value of a pred-
icate ¢ after the execution of the statement
s in terms of 0, 1 and the remaining predi-
cates that are in scope at that point. How-
ever, it might be the case that the pred-
icates do not provide sufficient detail to
make an exact statement about the truth
of ¢. Boolean Programs provide a facility
to express a non-deterministic assignment
of truth values to predicates: the choose
function. This function takes two param-
eters and returns 1 if the first parameter
evaluates to 1 and 0 if the second parame-
ter evaluates to 1. If both parameters are 0
then choose non-deterministically returns
either 0 or 1. This means that ¢ can take

either value and the model checker has to consider both cases.

The testdev_open function presented in Figure 3.4(a) sets the value of the return predi-
cate {testdev_open= 0} to either 0 or 1, depending on the chosen branch of the if-statement.
The guard of an if-statement is always the conditional expression *. Restrictions on the con-
trol flow are imposed by a following call to the assume function. The model checker only
considers paths that do not contain calls to assume with an actual parameter predicate that
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Calling function register_chrdev.
Assignment is executed. !(locked# 0)
Calling function init_module.
A: Calling function testdev_open
Assertion holds.
Assignment is executed.
Condition is false; Jump over if-statement.
Assignment is executed.
Return from testdev_open. (locked# 0)
B: Calling function testdev_open.
Assertion holds.
Assignment is executed.
Enter then-branch of conditional statement.
Return from testdev_open.
Enter else-branch of conditional statement.

Assignment is executed. I(rval= 0)
Exit do loop.

D Calling function testdev_release.
Calling function cleanup.-module.

& Calling function unregister_chrdev.

Enter then-branch of conditional statement.
ERROR: Reaching label ERROR

Figure 3.6: Explanation for violation of the specification

evaluates to 0. In the second abstraction either branch of the if-statement can be chosen,
since the fact that the open function maintains a lock is neglected.

Figure 3.5 shows the second abstraction of the code in Figure 3.3. The labels A to &
relate the points in the code to the original program and / is fresh label introduced by BOOP.
The call to testdev_open at label B is of special interest: The second return value (which
corresponds to the value of {testdev_open= 0} in Figure 3.4) provides the information that
is necessary to decide if label C can be reached or not. We also see that in this abstraction it
has obviously no relevance how often the do-loop is iterated.

BOOP calls MOPED for a second time to determine if the label ERROR (which is hidden in
the call to register_chrdev at label &) is reachable in the second abstract program. Again
MOPED provides an example of how the label in question can be reached: The model checker
suggests to select the then-branch of the if-statement in testdev_open each time that the
function is called. Thus, the usage count is increased twice (in each call to testdev_open)
but only decreased once (in the call to testdev_release at label D). This is not far from the
truth, but the path is still infeasible, since the locked variable in the original C program was
initialized to 0 in register_chrdev and choosing then-branch in the first call to testdev_open
is therefore no option.

BOOP determines that the corresponding path in the original C program is infeasible,
because the value of the global variable locked was not considered. The tool discovers the
predicate {locked# 0} that reflects the value of this variable, constructs a new predicate set
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Ey = E; U {{locked# 0}} and calculates a new abstraction of the C program.

Figure 3.4(b) shows the third abstraction of the function testdev_open. Now the influence
of the lock on the control flow is reflected. The call to testdev_open does only fail if the
lock was already acquired. The abstract code in Figure 3.5 stays unmodified, since the new
predicate has no influence on it.

Now MOPED is able to find an execution path that is feasible in the original C program.
BOOP detects the feasibility and reports a detailed error path. We present a slightly simplified
version of the output of BOOP in Figure 3.6. The detailed information about the locations
of the statements is omitted; Furthermore we have suppressed most of the information that
BOOP gives on the value of the predicates.

BOOP delivered a correct explanation for the inadequacy of the program. This counter-
example provides the information the programmer needs to reproduce and correct the er-
ror. Deleting the line MOD_INC _USE_COUNT; and re-inserting it after the assignment locked
= TRUE; would be a possible improvement of the program that makes ERROR unreachable.
We cross-check by running BOOP on the modified program. After 4 iterations we yield the
answer that ERROR is indeed not reachable anymore.



Chapter 4

Abstraction Algorithm

4.1 Introduction

In this chapter, we give a detailed description of the abstraction algorithm that is used to
simplify the C program to such an extent, that it can be used as input to a model checking
tool.

Abstraction, one of the key concepts of computer science, is the central technique for
simplifying C programs to such an extent that state of the art model checking algorithms can
be applied.

Abstracting away details from a model (which is in our case the investigated C program)
yields a simpler model that still shares properties of interest with the original model, while
superfluous information has been removed. To gain an appropriate abstraction algorithm for
our problem, we have to define the properties we want to maintain and those we want to get
rid of.

BP
Abstraction algorithmT <—— Set of Predicates

C program
Figure 4.1: Generating a boolean program using Abstraction

Our intention is to test a C program for reachability of certain statements or program
points. Reachability can be decided for programs with bounded state space (resp. finite state
machines [Gor00]) and even for programs with an potentially unlimited state space if they
contain only variables of Boolean type [EHRS00, ES01, BR00].

We need an abstraction mechanism that maps a C program to an abstract program that
adheres to this restriction. This mechanism must preserve all possible execution traces of the
C program. To obtain a valid abstraction we must take care that no traces are lost, otherwise
we would forfeit completeness.

The execution traces (or paths) are determined by the truth values of the guard predicates
of the conditional statements. Furthermore, the concrete states of the original C programs can
be described by predicates [Gri81]. Predicate Abstraction is an approach where the concrete
states of an infinite state system are mapped to abstract states according to their evaluation
under a finite set of predicates [BMR02]. Each predicate can have the values true or false.

17
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Furthermore, non-deterministic control flow is introduced whenever the predicates do not
provide enough information about the concrete state to decide which branch of a conditional
statement must be chosen. This approach does therefore fit our purposes.

At each program point, the state space of the abstraction is defined in terms of a finite set
of predicates (refer to Chapter 7 for a description of how this set is obtained). The abstrac-
tion algorithm yields an overestimation of the concrete state space, because the potentially
unlimited number of possible states can not be represented by a limited number of Boolean
predicates. The impact of a C statement on the truth value of a predicate has to be expressed
by using the limited information about the current state that the predicates supply. We use a
theorem prover and Hoare Logic to calculate the abstract state transitions that approximate
the changes of the concrete state space (the exact mechanism is explained in Sections 4.3
and 4.4). This introduces a certain inaccuracy with respect to the possible execution traces
of the concrete program, resulting in superfluous paths and therefore potentially spurious
counterexamples!.

The abstraction can be presented using the control-flow constructs of the C programming
language. However, all variables are restricted to be of Boolean type. We call such programs
Boolean Programs (BP) in accordance to the SLAM approach. Section 4.2 covers Boolean
Programs in detail.

4.2 Boolean Programs

This section gives a description of syntax and semantics of Boolean Programs as they are
presented in [BROO] and implemented in the MOPED model checker. An overview of the
syntax is given in Figure 4.2.

4.2.1 Variables, Types, and Scopes

Boolean Programs are quite similar to C programs, apart from the fact that the type domain is
restricted to B. This means that Boolean Programs cannot contain integer variables, floating
point variables, pointers or compound types (e.g. structs). Since there is only one type,
variable declarations need not specify a type. The names identifying Boolean variables can
be regular C-style identifiers or arbitrary strings enclosed in curled braces, e.g. {a!=b}. The
latter form is a convenient way to associate predicates in another language such as C with
Boolean variables. Boolean variables are either global (declared at the head of the Boolean
program, outside the scope of a procedure) or local (declared inside the scope of a procedure).
The scope of a local variable is restricted to the procedure where it is defined.

A constant in a Boolean Program can either be true or false. This is represented by 1
resp. 0. Expressions can contain constants, variables, and logical connectives (see Figure 4.2).
Expressions in Boolean Programs are always free of side effects.

4.2.2 Statements
This section covers the statements that do not influence the control flow of Boolean Programs.

1. Skip Statement. The skip-statement does not modify the state of the program. It
is simply a placeholder for an instruction that has no effect. In fact, skip-statements

!Chapter 7 will explain how this case is handled
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could be completely omitted without changing the semantics of the program. However,
they simplify the task of associating statements in the abstract model (the Boolean
Program) with with statements of the original model (the C program).

2. Assignment Statement. Boolean Programs may contain parallel assignment state-
ments (as known from programming languages like OCCAM or CSP). A parallel as-
signment denotes the simultaneous assignment of the right hand side values to the
corresponding left hand side values. This mechanism allows to exchange the values of
two variables without using a helper variable, e.g. a, b := b, a;. This notation is
very convenient for our approach, since a single assignment in our original model may
change the value of more than one predicate in our abstract model.

4.2.3 Control Flow

At the beginning of this chapter we demanded that our abstract model reflects the control
flow of our original C program. Boolean Programs contain a subset of the control-flow con-
structs of C and do therefore perfectly suit our purpose. The feasible traces are determined
by the deciders. Deciders are either Boolean expressions which evaluate to 0 or 1, or *,
which evaluates to 0 or 1 non-deterministically. The non-determinism in Boolean Programs
allows a single program to represent a multitude of feasible paths without the necessity for
user interaction?. Whenever the abstraction algorithm is unable to provide enough detail to
describe the exact behavior of the original model non-determinism will be used to handle this
inaccuracy.

1. Goto Statement. The goto-statement unconditionally branches to a specified point
in the program. It is equivalent to the goto-statement in C programs.

2. Conditional Statement. if-then-else-statements allow to pass over the control to
one of two different program points (denoted then- and else-branch), depending on the
value of the guard (a missing else-branch is equivalent to an else-branch that contains
nothing else but a skip-statement). If the guard is a non-deterministic decider the
model checker may choose either of the two branches. As we will see in Section 4.5.3
this will be the common case in our abstract model. In contrast to languages like OC-
CAM or PROMELA, conditional statements in Boolean Programs have only one guard.
Therefore, the set of states in which the if-branch is chosen is the exact complement
of the set of states in which the then-branch is chosen. In Section 4.5.3 we will see how
this restriction can be weakened.

3. Loop Statement. Loops allow the (potentially unlimited) repetition of a sequence of
statements. The syntax of while-loops is:

while (decider) do
sseq
od

The while-loop is the only kind of iteration statement in Boolean Programs.

2In fact, non-determinism is often used in model checkers to simulate user interaction, since programs
should work correctly for any input
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4.2.4 Procedures

Boolean Programs contain procedures with call-by-value parameter passing and recursion.
Boolean procedures may return an arbitrary (but finite) number of values. The amount
of storage a Boolean Program can access at any program point is finite (resp. bounded).
However, since recursive calls to procedures are allowed the state space is potentially un-
bounded. Nevertheless, Boolean Programs are a class of programs for which reachability and
termination is decidable. We will explain in Chapter 6 how this can be accomplished.

The return-statement returns the control to the calling procedure. Depending on the
signature of the called procedure, it may return a number of values to the calling procedure.

Assertions form a special case of a procedure call. Assertions demand their actual param-
eters to evaluate to true. Any paths that lead to a violation of an assertion are reported by
the model checker, since they lead to an abnormal termination of the program. An assertion
statement can be understood as a call to the built-in assert procedure.

Assumptions are dual to assertions and are used to impose restrictions on the control flow.
Paths that encounter a call to assume with a parameter that evaluates to 0 are infeasible and
therefore ignored by the model checker.

Example 4.1. Figure 3.5 shows an excerpt of a Boolean Program. At label A the parame-
ter the parameter prmy is passed to the Boolean function testdev_open using call by value
semantics. The function returns two Boolean values that are assigned to rety and rety in
parallel.

Figure 3.4 shows the definition of a Boolean function. The function returns a tuple of
Boolean wvalues. This is denoted by bool<2>. The type of the formal parameter needs not
be specified, since B is the only type in Boolean programs. The body of the function starts
with the declaration of the predicate {testdev_open= 0}. Again, the type is not specified. The
declaration block is followed by a call to the function assert. At the end of the function, two
Boolean values are returned.

The i f-statements in Figure 3.5 show the use of non-deterministic deciders. The control
flow is restricted by calls to the assume-function, which is the dual to assert.

Finally, the statement goto ¢ demonstrates the use of gotos.

We have now completely defined Boolean Programs, which form the range of our abstrac-
tion function. The set of all valid C programs forms the domain. We assume that the reader
is familiar with the C programming language. A detailed description of the C programming
language can be found in the standard work of Kernighan and Ritchie [KR88].

We will now employ an algorithm that translates C programs to Boolean Programs with
respect to a set of C predicates. The detailed description of this algorithm will be subject of
the remaining part of this chapter.

Due to the restriction to a limited number of Boolean variables the behavior of the original
C program can only be described with limited detail. These Boolean variables correspond to
a set of arbitrary predicates over the unbounded state of a C program. Any C statement that
modifies the state of the original C program (our concrete model) may cause a change of the
value of the predicates at the corresponding program point.
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Syntax Description
A program is a list of global
prog = decl* proc* variable declarations followed by
a list of procedure definitions
decl decl id™; Declaration of variables
id n= [a—2zA —-Z]|la—zA —-Z0-9] An identifier can be a regular
| {string} C-style identifier
or a string of characters
between {’ and '}’
proc = id ( id* ) begin decl* sseq end Procedure definition
sseq = [stmt" Sequence of statements
Istmt n= stmt
| id : stmt Labeled statement
stmit »= skip;
|  goto id;
|  return expr’;
| idT = exprt; Parallel assignment
| if (decider) then sseq else sseq fi | Conditional statement
|  while (decider) do sseq od Iteration statement
| assert (decider ); Assert statement
| id (expr* ); Procedure call
decider == * Nondeterministic choice
| expr
expr = expr binop expr
| lexpr Negation
| eapr)
| id
|  const
binop n= VN =A== Logical connectives
const = 0|1 False/True

Figure 4.2: The syntax of Boolean Programs [BROO]
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4.3 The Weakest Precondition of Assignment Statements

To capture the impacts of imperative statements on predicates, we will make use of the
weakest precondition (see Definition 2.8 in Chapter 2) of assignment statements S ="x :=
e”, where = denotes a scalar variable in a C program, and e is an side effect free® expression.
The computation of WP is an essential element of the abstraction algorithm, since its
result yields information of how the predicates in the predicate set E are affected by an
assignment statement. If ¢y = WP("x := e”,¢) and ¢ € E then the effect of “x := e” is
that after the execution of this statement the predicate ¢ will be have the truth value that
had before its execution. However, in general it is not the case that 7 is contained in F.

Example 4.2. Suppose that E = {(x < 5),(z = 2)}. The weakest precondition WP("z := z
+ 17, x < b)isx < 4. However, (x < 4) € E, and therefore we cannot replace the assignment
statement “z := z + 17 by the new statement “{x < 5} := {z < 4}”, since no predicate
{z < 4} is defined in the abstraction. However, since (z = 2) = (z < 4) we know that
if the predicate (x = 2) is true before the assignment statement, then (x < 5) must be true

afterwards [BMMRO01].

Obviously, in some cases it is possible to define the truth value of a predicate ¢ after the
execution of an assignment statement in terms of a logical combination of the predicates in F.
If this is not the case, we cannot predict which truth value the affected predicate ¢ will have
after the execution and we will have to consider both the case that the predicate becomes
true and the case that it becomes false. Therefore we replace the assignment by “p:= *”.

In Section 4.4 we will present an algorithm that tries to find a logical combination that
implies the weakest precondition of the statement for a given predicate.

4.3.1 Handling Pointers and Aliasing

The formalism presented in [Gri81] (and the definition of the weakest precondition in Chap-
ter 2) does not cover the semantics of pointers that are inherent in the C programming
language. If the predicates or assignment statements contain pointers, then Equation 2.1
that was presented in Definition 2.8 is not necessarily correct. An assignment might change
the truth value of a predicate even if none of the variables that the predicate directly men-
tions are directly mentioned in the assignment statement (by “directly mentioning” we mean
a mention of the name of the variable):

Example 4.3. WP("z := 3”,%p > 5) is not (xp > b5) if x and xp are aliases, since if this is
the case, (xp > 5) cannot be true after assigning 5 to x (resp. xp) [BMMRO01].

A similar problem occurs when the left hand side of the assignment is a pointer dereference.
The result of ignoring these side effects is an abstract program that does not cover all the
paths that are feasible in the original C program, if the latter contains pointers. This would
imply that erroneous paths are not detected®.

3An expressions that has side effects would potentially modify an additional variable. Such expressions are
not covered by the definition given in Gries’s book [Gri81]. They must be split up into several assignment
statements, one for each variable that is modified

4This is the case at the current state of our implementation
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This problem is addressed by the introducing the concept of locations®. A location may
either be a variable or a dereference of a location®. We need to define an enhanced version of
WP that considers not only variables but also locations.

Definition 4.1. Let {y1,y2,...,yn} be the set of locations that are mentioned in the predicate
. Let x denote the location on the left hand side of the assignment statement. Then we define

plz,e,y] = (&a = &y A ple/y]) V (&x # &y A p) (4.1)
(where & denotes the address operator of C) and

WP(“z := €' ) = ¢lz,e,y1][z, e, 40] ... [z, €, n] (4.2)
in accordance to [BMMRO01].

If the set of locations mentioned in ¢ that are aliased by z cannot be restricted by
performing a pointer analysis [ASU86] then WP(S, R) will yield an expression of 2" disjuncts,
where each disjunct represents a possible aliasing scenario of the n locations with x. In the
SLAM project, Manuvir Das’s points-to algorithm [Das00] is used to estimate the set of
aliases at each program point (see also [Ste96]). Usage of such an algorithm does improve the
precision of the abstraction.

Our current implementation does not contain a pointer analysis algorithm.

4.4 Strengthening of Weakest Preconditions

In general, the weakest precondition 1) := WP ("x := e”,¢) of an assignment instruction has
no logical equivalent in the set F of predicates that are in scope at the corresponding program
point. Therefore, the value of the predicate ¢ after execution of “x := e” must be approxi-
mated by means of a logical combination of the predicates ¢; € E. In this section, we present
an algorithm that calculates the weakest combination of predicates that implies the weakest
precondition ¢. In accordance to [BMMRO1], we will call this procedure “strengthening” a
precondition 1 to an expression over the predicates in £” and denote the corresponding func-
tion by F (¢, E). Additionally, a function G(, E) that calculates the strongest combination
of predicates that is implied by an expression ¢ will be defined as counterpart to F. The
procedure of calculating G(+, E') will be called “weakening 9”.

4.4.1 Calculating C(¢, E)

As a prerequisite for the strengthening algorithm, we define a function C(4), ) that calculates
the weakest conjunctions of predicates ¢; € E and their negations —¢; that imply . Such
conjunctions will further on be called cubes.

The algorithm that we use to calculate C(¢, E') involves the following steps:

1. Construct an augmented set E’ that contains all predicates ¢; € F and their negations
—p;. Furthermore, start with an empty work queue and an empty result set.

’The approach we present here is the one used in the SLAM project. It is based on Morris’s Treatment of
pointers [Bor00]

5Note that we pursue a different approach for accessing structure fields than used in the SLAM project. A
detailed description of our approach will be given in Chapter 5.

"This is because the algorithm calculates the weakest compound proposition that is stronger than
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2. Assign an arbitrary (but total) order to the predicates ¢; € E'.
3. Insert the empty set () into the work queue.

4. Remove the front element I from the work queue. Check if there exists a set A in the
result set such that A C I'. If such an element exists, discard I" and continue with step 6.
(We could also consider all sets with a cardinality of one in the work queue, negate their
elements and check if (at least) one of the thus gained corresponding singleton sets is a
subset of T". If this is the case, I" can also be discarded.)

5. Construct the conjunction

¢:= N\ v (4.3)

vier

and let the theorem prover decide if either ¢ = 1 or ¢ = —) is a tautology (note
that ¢ is true if ' = ()). If one of these propositions can be proven to be true, tag I' with
T or | (depending on the result of the decision procedure) and insert it into the result
list. Otherwise, find the greatest element @5 € T' (with respect to the order introduced
in step 2), construct the sets

LU {g;} for each i with k < i < |E'| and —p; ¢ T (4.4)
and append them at the end of the work queue. Discard I'.

6. If the work queue is empty, terminate the algorithm and return the result set. Otherwise
continue with step 4.

4.4.2 Calculating F(¢, E) and G(¢, E)

Based on C, the result of strengthening an expression ¢ with respect to a predicate set E can
easily be defined to be

o=\ (A w) (45)

PreC(y.E) “pjelT
F(~,B) =\ ( A sog') (4.6)
’. (4.7)
Note that F (4, E) is false if C(3, E) = (). G(3, F) can now be defined in terms of F:
G(ip, B) := =F (), B) (4.8)

4.4.3 Efficiency Analysis

In this section, we will consider the space and time complexity of the algorithm that we use
to calculate F (1, E).

e Space Complexity. Each set E of cardinality n has exponentially many subsets
(including the empty set and F itself). Thus, the cardinality of the power set of E would
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be 2", but we gain 3" possible subsets if we also take the negated elements of E into
consideration. The algorithm that calculates C(v, E') as presented above enumerates
these subsets in ascending order with respect to their cardinalities. It prevents that all
3" subsets have to be held in memory at one time, however, in the worst case (when
the theorem prover cannot decide any of the propositions), we will still have to consider
all of them. In the s step, a maximum of 2% - #Ls), subsets will be in memory, what
is still O(2™) and therefore no significant improvement over the naive approach. Below
we will present an optimization of the algorithm that would yield a space complexity of

O(n) and we will explain, why we did not use this approach for our implementation.

e Time Complexity. As mentioned above, if the worst case occurs, we are forced to
consider all 3" possible subsets of E. As long as we are not willing to sacrifice some
precision the number of subsets that we have to inspect cannot be reduced. Therefore,
the time complexity of our algorithm is O(3").

Since the running time of the algorithm is dominated by the cost of theorem proving (due
to the exponential number of calls to the theorem prover), we found out that if the worst
case occurs for large predicate sets, the algorithm takes unacceptably long time to terminate.
In industrial projects, where the software is usually compiled at least once a day, users are
unlikely to accept compile times of several hours or even days. Therefore, since F (1), F) is
calculated at least once for every program point, we have to rely on that

e the set of predicates can be cut down by a syntactic cone-of-influence computation
before the procedure that calculates F is called

e the propositions that occur in the earlier steps of the algorithm can be decided, thus
yielding a reduction of the number of sets we have to consider.

As mentioned above, the space complexity of the algorithm could still be optimized. The
subsets of E' (with | E' |= n) are isomorphic to n-bit integers. A bit that is set indicates that
the corresponding predicate is contained in the subset that is represented by a n-bit integer.
An algorithm that enumerates n-bit integers in an appropriate order could thus be used to
construct an algorithm that does not store more than one subset at a time in memory.

For reasons of simplicity, we did not implement this algorithm. Even the usage of this more
complicated algorithm that constructs only one subset at a time would make exponentially
many calls to the theorem prover in the worst case. Thus we found the algorithm presented
above to be sufficient, since in the worst case, the user would not be willing to wait for the
termination of the algorithm anyway. Therefore, we decided that it does not matter if the
algorithm runs out of memory sooner or later.

In this context it is interesting to note that if the above mentioned worst case occurs, the
resulting line in the abstraction is an assignment of choose (0, 0) (what is equivalent to
non-deterministic assignment) to the affected predicate.

4.4.4 Proof of Correctness

In this section we will show that the algorithm presented above does indeed yield the weakest
propositional combination® consisting of predicates ¢; and the operators —, A and V that

8The predicates ¢; may of course represent non-propositional expressions. However, by propositional com-
bination we denote a formula consisting of the predicates ¢; and the mentioned operators that is constructed
as if the ¢; were atomic formule, see Chapter 2
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0

///\\

{1} {2} {—e1} {—pa}
{102 Lo, mei) {er, w02} {w2,mo1} {w2,02) {—p1, w2}
{o1, 02,701} {o1,02, 702} {o1, 01,002} {02, ~p1, a2}

{1, 02,01, 72}
Figure 4.3: Lattice of predicates for |E| =n

implies 4. For this purpose, we will need a rigorous definition of what we mean by “weak”,
which we will give in terms of models.

Intuitively, an assertion or weakest precondition v restricts the set of valid states at a
program point. Thus, the set Sy of all models of 9 corresponds to the set of valid states at
the affected point in the program. Furthermore, each predicate p; € E represents a set S,
of models for ;.

The weakest logical combination ¢ = f(FE) of predicates that implies 9 can therefore be
understood as the largest set of models Syz)y C Sy that can be represented by a formula
consisting of the predicates in £/ and the connective symbols =, A and V.

Theorem 4.2. The algorithm for calculating F (1, E) presented in Section 4.4 calculates the
largest subset Sr(y ) C Sy that can be represented by a propositional combination of the
predicates in E.

Proof. Since for all propositional formulz there is an equivalent formula in Disjunctive Nor-
mal Form (DNF) [Sch00], it suffices to consider all possible disjunctions of conjunctions of
predicates ¢; € E to cover all logical combinations. For reasons of readability, we will further
on allow to interpret a set ' of predicates (i.e., a cube) as the corresponding conjunction of
these predicates:

r= A (4.9)
1€l

Whenever it is not clear from the context whether we mean the formula represented by
this conjunction or the set of predicates we will explicitely mention to which interpretation
we refer.

In step 1 of our algorithm that calculates C(1), F') an augmented set E’ that contains all
predicates @; € E and their negations is constructed. Then, the set P(E’) of all subsets of E’
forms a complete lattice under the set inclusion ordering [CGP99, BvW98]. Figure 4.3 shows
such a lattice for E' = {1, po} with n = |E|. The least element of the lattice is the empty set
(), whereas the greatest element is the set E’. The meet of the lattice is N and U is the join.

If we construct the conjunction of the predicates in each subset that is element of the
above mentioned lattice, then we get all possible conjunctions (or cubes) of predicates in E.
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The subsets that would yield a trivial falsity (because they contain —p; and ;) are depicted
gray in Figure 4.3. Therefore, only 3" of the 22" subsets are of interest.

Let us consider the sets of models that correspond with the above mentioned conjunctions.
Let Sp(pry be the set of sets of models that correspond to the subsets in P(E’"). Obviously,
Sp(pry does also form a lattice under the set inclusion ordering (however, note that the
lattices P(E') and Sp(gry are not homomorphic, i.e. the function that assigns sets of models
to formula is not a lattice homomorphism). N is the meet (M) of the lattice and corresponds
to the logical connective A, whereas U is the join (LJ) (corresponding to V). The least element
(S1) is the empty set ), corresponding to the formula false. The greatest element is the set
St of all models that model the formula true.

In step 4, the algorithm that calculates C(¢, E) traverses the lattice P(E') in Breadth First
Search (BFS) order’, thus considering the elements in ascending order with respect to their
cardinalities. All subsets representing trivial falseties are ignored, since the corresponding set
of models would be empty due to Lemma 2.6. (We want to find the largest subset of Sy, and
any non-empty set is larger than (). Furthermore, if the result set contains a subset A of the
investigated element T', we can safely discard T, since Sp M Sa C Sp (due to the Lemmas 2.5
and 2.7). The order of traversal we chose guarantees that neither I' nor one of its supersets
would contribute a set of models for ¢ that is larger than what we have already found. (Each
superset A of T will imply ¢ if ' € P(E’) implies 1.)

In step 5 we check if Sp with is a subset of Sy, or of S—y. If so, we can tag it and add it
to the result set.

We have thus shown that the algorithm that we use to calculate C(v, E) yields the largest
sets of models that can be represented by conjunctions, since we have considered all cubes
that can be constructed from the predicates in F.

The sets of models that the algorithm yields are in general disjoint. We gain the distribu-
tive union of these sets by constructing the disjunction of the conjunctions that correspond
to the elements of the lattice P(E') that are result of C(¢, E) (since the join function of the
lattice Sp(pry corresponds to V).

Assume that there is a formula F* consisting of the predicates in E and the logical
connectives =, A and V that has the same set of models as the formula F' that our algorithm
yielded plus at least one additional model M™. Then this formula FT can be represented
in Disjunctive Normal Form, and the model M™* must be element of (at least) one of the
sets Sy, that can be represented by conjunctions of the predicates in £ and their negations.
The formula F' can only contain conjunctions that correspond to the elements of the lattice
P(E"). This would imply that there is an element A € P(E’) that was not found by the
algorithm we used to calculate C(v, ). But this would mean that this algorithm has either
found an element I' C A or that the conjunction that corresponds to A does not imply .
Therefore, no such formula F' can exist. O

Note that the proof presented in Section 4.4.4 is only valid under the assumption that the
decision procedure of the theorem prover we use is strong enough to decide all propositions
that are constructed in step 5 of the algorithm we presented in Section 4.4.1. We will explain
in Section 5.7 why such a decision procedure cannot exist. For this reason, the result that
our algorithm yields can only be an approximation of the result that we expect. However,
since we assume that the decision procedure is correct, the implementation of the algorithm
that calculates F (1, E') cannot yield a formula that does not imply .

9At least in the worst case, when none of the branches of the tree that represents the lattice can be pruned.
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4.4.5 Optimizations

In Section 4.4.3 we mentioned that the runtime of the algorithm for (v, E') is exponential in
|E|, what means that the algorithm becomes infeasible for large sets of predicates. Therefore,
we try to cut down the set of predicates before calling the procedure that calculates F (1), F).
For this purpose, we make use of the fact that when we want to know whether or not M
is a model for a formula ¢, we don’t need all of the (infinite amount of) information the
interpretation gives us. All that matters are the values of the (finitely many) variables which
occur free in ¢ [End72]. This means that if the set of free variables of a formula ¢ does not
intersect with the set of free variables of a second formula v, then ¢ cannot imply v (due
to the semantics of implication that was defined in Chapter 2). We can therefore restrict
the set of predicates that are candidates for being part of a cube that implies the weakest
precondition by performing a syntactic cone-of-influence computation [BMMRO1].

Let vars(¢;) denote the function that yields all free variables of the formula ¢;. Then the
syntactic cone-of-influence computation corresponds to the least fixpoint [CGP99]

pZ A} U{p; | vars(p;) N < U vars(qﬁj)) #0Ap; € E} (4.10)
bjeZ
The computation starts with the empty set E~ := () of predicates, and successively adds

the predicates from E to E~ that have a set of free variables that intersects with one of the
sets of free variables from either 1 or the elements of the actual set £~. The computation
stops if it reaches an iteration that adds no more elements to £~ .

This computation is also correct in the presence of dereferences or aliases of the locations to
which the free variables of the expression correspond, since the weakest precondition mentions
the dereferenced locations explicitely (according to Definition 4.1). However, our current
implementation cannot handle aliases because of the lack of a pointer analysis.

Furthermore, we abstain from making a call to the theorem prover, when the assignment
statement has no effect on the predicate (i.e. Ap.WP("x := e”,¢) is the identity function
for the predicate), since in this case, the truth value of the predicate is not affected by the
side effects of the assignment statement.

In the SLAM project several additional optimizations were applied [BMMRO1]:

e Several syntactic heuristics are tried to construct F (¢, E') directly from ¢ (these include
a check if ¢y € E).

e All computations by the theorem prover (as well as the results of the alias analysis) are
cached, so that work is not repeated.

e As an approach that trades precision for efficiency, the length of cubes considered by
F(1, E) is restricted to a constant k.

These optimizations were not implemented as part of this thesis and are left for future
projects.

4.5 Abstraction of C constructs

This section provides a detailed description of how the predicate abstraction of various C
constructs is calculated. All C constructs that our current implementation covers are de-
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scribed. It will be explicitely mentioned whenever our implementation does not keep step
with the presented specifications. This section does also contain suggestions for improvement
of our implementation and hints of how various problems could be bypassed. Most of the
abstraction algorithms that are presented in this chapter are taken from [BMMRO1].

4.5.1 Restrictions

The BOOP toolkit supports only a subset of ANSI C. Most of the restrictions are of artificial
nature and result from the limited amount of resources that we were able to invest into this
thesis. We give a short summary of these restrictions:

1.

Expressions with side effects. When the ANSI C standard talks about expressions,
it usually means expressions with side effects. For reasons that we will explain in
Section 5.2.1, there is no equivalent for such expressions in the logic of the theorem
prover that we use. At the moment, expressions with side effects are not supported by
our implementation. Therefore, we assume that the C program has been converted into
a simple intermediate form in which all expressions are free of side effects. It is no great
problem to automatically rewrite a C program expressions with side effects to a new C
program that adheres to this restriction.

. Pointers and aliases. For the reasons that were mentioned in Section 4.3.1 pointers

and aliases are not yet handled by our implementation.

. Undefined Functions. At the moment, our implementation cannot handle undefined

or external functions without a function body, or functions with a variable number of
arguments. This is a severe restriction for “real world” C programs, because the user
would have to write stubs for all functions that he imported from external libraries. It
is therefore an urgent task to extend our implementation so that it can handle this case.
This is a non-trivial problem, since such a function can potentially modify the whole
state-space, i.e. we would have to assume that the values of all global predicates are
unknown after a call to an external function.

. Scopes. ANSI C allows to introduce a new scope at arbitrary program points by

insertion of a new code block. This facility is not reflected in Boolean Programs (see
Section 4.2), where the only places where variables (resp. predicates) can be declared
are the beginning of the program or at the beginning of a body of a function. This
means that a variable of nested scope in a C program would have to be translated to
either global scope or to the local scope of the procedure that encloses the variable. This
task can be accomplished by variable renaming. Our implementation does not provide
this functionality, therefore, it cannot handle C programs that contain nested scopes.

. Unsupported control constructs. There are several C control flow constructs that

our current implementation cannot handle. These include switch constructs and for-
loops, and the statements goto, break, and continue. Their translation would be
straight forward. However, they are not yet supported by our implementation.

. GNU extensions. Though our implementation is based on the GNU compiler col-

lection, none of the GNU extensions to the ANSI C standard (like inline assembler,
complex numbers, statement-expressions, etc.) are supported.
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Note that our implementation will abort if the input C program contains elements that
we cannot translate yet.

4.5.2 Assignment Statements

Our abstraction algorithm translates assignment statements of C programs to parallel assign-
ment statements. A C assignment statement potentially changes the values of all predicates
(resp. Boolean variables) in scope. Assume that “x = e;” is an assignment statement at
location £ in our C program. By applying the predicate transformer WP on every predicate
that is in scope at the program point ¢ in the Boolean Program we compute the predicates
that are possibly affected by the assignment statement. A predicate ¢ can have the value 1
after the execution of the assignment statement at £ if FOVP(“x = e”,4), E) holds before £.
Correspondingly, the predicate will have the value 0 if the strengthened weakest precondition
of =) holds before /. Unless result of F is false, it can only imply either ¢ or —). If no
predicate combination that is not false and that implies either 4/ or —) can be found, we
assign the non-deterministic value * to the predicate.

Depending on the results of F(WP(“x = e”,4), F) and FWP(“x = e”, ), E) we have
to decide which value we assign to the predicate ¢ at the location £. We use a procedure
choose to calculate this value. This function is defined as follows:

bool choose (pos, neg)
begin
if (pos) then
return 1;
else
if (neg) then
return 0;
else
return unknown ();
fi
fi
end

It makes use of the procedure unknown that non-deterministically returns either 1 or O.
This function is defined as follows:

bool unknown ()
begin
if (*) then
return 1;
else
return 0;
fi
end

The parallel assignment for the set of predicates {¢1,...,%,} that are in scope at £ is
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/-

P1yee s thni=
choose (F(WP(“x

e”awl)aE)a f(W,P(“X e”a_'wl)aE))’

choose (F(WP(“X e”afl/}n)aE)a F(WP(“X = e”a_'fl/}n)aE));

Example 4.4. The statement a, b := b, a; exchanges the values of a and b without ne-
cessity of an additional variable.

4.5.3 Gotos and Conditionals

Every goto statement in the C program can simply be copied to the Boolean Program.
The label is not changed, since existing labels are generally taken over from the C program.
However, gotos are not yet supported by our implementation.

The translation of conditionals is a bit more tricky, since a branch of a conditional must
not be executed if the corresponding guard v does not evaluate to true. As for the weakest
preconditions of assignment statements, it is in general not the case that the predicate set
we use for our abstraction contains a predicate that is equivalent to the guard v of the
conditional statement. We must therefore try to approximate the predicate v by means of
the predicates that are in scope at the corresponding program point in the Boolean Program.
An underestimation of the states in which « evaluates to true must be avoided — it would lead
to a Boolean Program that is no valid abstraction (for the definition of a walid abstraction
refer to the beginning of Chapter 4) of the C program that is inspected. That means that
we must replace v by a formula that is weaker or equal. This can be accomplished by
replacing it with G(v, F), i.e. by weakening 7 over the predicates in F (refer to Section 4.4
for the definition of G(v, F)). If G(v, F) holds, then the then-branch of the conditional may
be executed. Correspondingly, if G(—y, E) holds, then the else branch of the conditional
statement may be executed. Note that the branches of a conditional statement in a Boolean
Program are not mutually exclusive; that means that in some states it may be possible to
execute either of the branches. This agrees with the idea of overestimating the traces that
are feasible in the original C program. Spurious traces are sorted out in a later phase of the
abstraction/refinement algorithm.

Now consider a C program that contains a conditional statement with the guard . Assume
that the first statement in the then-branch is labeled with Z; and the first statement in the
else-branch is labeled with £ (this is in general not the case, but it makes it easier to tell the
branches apart). The conditional statement is then translated as follows:

C program Boolean program

if (%) then
if () { assume (G(v, F));
flt N Elt o
} else { else
ly: ... assume (G(—,FE));
} lo: ...

fi
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In the Boolean Program on the right side, F/ denotes the set of predicates that is in scope
at the program point where the conditional statement occurs. The assume function that is
called at the beginning of each branch assures that the branch can only be entered if its
parameter evaluates to true (it is therefore the dual of assert). Traces in which assume is
called with a parameter that evaluates to false are ignored by the model checker.

Example 4.5. Figure 3.5 shows the translation of conditional statements with help of non-
deterministic deciders. The then-branch of the conditional statement below label B is only
feasible if {rval= 0} evaluates to 1 when the branch is entered. Conversely, the else-branch
can only be entered when {rval= 0} evaluates to 0 at its entry point.

In this example, the guard for the else-branch is the negation of the guard of the then-
branch. However, the sets of states in which the two guards evaluate to 1 may also overlap,
allowing the execution of either branch. The branch will be chosen non-deterministically then,
i.e. the model-checker has to consider both paths.

4.5.4 Loops

By explaining how goto-statements and conditional statements are handled we have already
provided the fundamentals for translating loops. Loop constructs can always be simulated
by means of gotos and if-then-else constructs. In our current implementation it is still
necessary to replace for-loops this way, since only while- and do-while loops are supported
at the moment.

1. While Loops. while-loops can be translated relatively straight forward, because a
similar construct is provided in Boolean Programs. Therefore, all we have to do is to
replace the loop guard v with * and prepend the statement assume (G(v, F)); (where
E denotes the predicates in scope at the affected program point) to the loop body.

2. Do-While Loops. do-while-loop constructs have to be replaced by an equivalent if
(...) then goto construct. For this purpose, we have to introduce a fresh label /4,
and insert it before the body of the loop. When all statements of the body have been
executed the while-construct of the loop is simulated by a conditional statement.

C program Boolean program
Law:
do { 61: e
l: ... if (G(v,F)) then
} while (y); goto Law;
fi

As usual, v and E denote the guard resp. the set of predicates in scope. ¢1 is provided
to make clear where the loop body must be inserted.

3. For Loops. for-loops are not supported at the moment, since they are usually used
in connection with expressions with side effects. According to K&R [KR88] the for-
statement
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for (expri;expro;exprs)
statement

is equivalent to the while-loop

eTpry;

while (expra) {
statement
exrprs;

}

Obviously both constructs rely heavily on the side effects of expr; and exprs. Since
our implementation does not yet support expressions with side effects it would make
no sense to support for-loops. Therefore, the user has to “unfold” the expressions,
thus generating a sequence of assignment statements and to replace the for-loop by the
equivalent while-loop.

Example 4.6. Figure 3.5 shows how a do-while loop is simulated by a conditional statement
and o goto-statement. BOOP introduces a fresh label £ at the beginning of the body of the
loop. For reasons of simplicity, the first statement in the loop body of the abstract program
will always be a skip-statement. At the end of the loop, the control flow is transferred to ¢ if
the weakening of the guard evaluates to 1. The loop can only be left if the weakening of the
negation of the guard evaluates to 1.

We noticed that in the example presented in Chapter 3 the number of iterations of the
do-while-loop has no influence on the reachability of the error label. Therefore, the weakening
of the guard as well as the weakening of its negation is 1, allowing any number of iterations.

4.5.5 Procedures

A major advantage of the presented refinement/abstraction algorithm over other approaches
that are limited to finite state machines (e.g. reachability checking with BDDs [Gor00]) is
that it can handle procedure calls. This opens the possibility of model checking programs with
a theoretically unrestrictedly large state space'’. Each procedure Rp in a Boolean Program
has access to the global predicates E¢ a finite number of local predicates Fr. Thus Fg U FEr
denotes the predicates that are in scope within the procedure Rp. The cardinality of the set
of predicates in scope is always bounded in a Boolean Program, since neither pointers nor
allocation of memory is allowed.

For a C program P the situation is quite different. Each procedure R can access the
global variables Gp, its local variables Ly, and its formal parameters Fz . It can potentially
even access variables that are local to other procedures, because one of the actual parameters
may be a pointer to such a location. By constructing a linked list the state space may thus
become arbitrarily large, even if we do not allow allocation of additional memory via malloc.
Memory allocation does additionally introduces the possibility of unbounded data types.

19The undecidability of the halting problem does of course impose some restrictions. These will be covered
by Chapter 6
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We provide summary of the notation that is used in this section in Figure 4.4. Note the
assumption that each C procedure has a unique return variable. Though a C procedure can
in general return an arbitrary expression, we assume for the sake of simplicity that the return
variable is assigned this expression and then returned. This is also the way of how the GCC
compiler handles return values.

Boolean Programs

E ... the set of predicates used for the abstraction

FEq ... FEg CE, global predicates of the Boolean Program

Er ... Er CE,ErnNEg=0predicates local to procedure Rp.

Ery ... Egrjy C ER, the set of formal parameter predicates of procedure Rp
Er, ... FEpy C ER the set of return predicates of Rp

C Programs

Gp ... global variables of the C program P

Lr ... wvariables local to procedure R

Fr ... formal parameters of procedure R

r ... return variable of procedure R

Figure 4.4: Notation used for abstracting procedure calls

Before we explain how procedures and procedure calls can be translated to Boolean Pro-
grams, we have to define the scope of predicates in a Boolean Program. A predicate is in
scope at a certain program point, if any of the variables that it mentions'' are in scope at the
corresponding program point in the C program. This does also include variables that can be
accessed via aliasing, though this case is not covered our the current implementation.

In order to gain an abstraction of C procedures we have to calculate the new signature of
the Boolean procedure with respect to the predicate set F. Furthermore we have to handle
the calls that are made to the procedure —i.e., determine the actual parameter predicates and
update the predicates in scope after the procedure has returned. Therefore, the translation
of a C procedure R involves two steps:

1. Calculating Signatures. In Figure 4.4 we have already specified the elements that
are needed to define a procedure in a Boolean Program. We will now give a formal
definition of how they are gained [BMMRO1]:

e Ex; is the set of formal parameter predicates of Rp.
{e € Ex | vars(e) N Lr = 0} (4.11)
This means that formal parameter predicates must not contain any reference to

local variables. They may mention either global variables or formal parameters of
the function R.

e [, is the set of return predicates of Rp. Note that procedures in a Boolean

"1n C programs, local variables may have the same name as global variables, thus shadowing some of the
global variables. In our internal representation of the variables, we assign a unique identifier to each variable,
thus preventing problems with variables of the same name.
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Program may have more than one return value (see Section 4.2).

Er, = {e € Ex ‘ (r € vars(e) A (vars(e) \ {r} N Lr = ®)> ! (4.12)

(e € Erys A (vars(e) N Gp # 0V drfs(e) N Fr # @)) }

The first line of Equation 4.12 determines that all predicates that mention the
return variable r but none of the other local variables of the procedure R must
be returned by Rp. These predicates contain information about the return value
of R. Predicates that mention local variables of Lz cannot be returned, since
the local variables are undefined outside R. The second line of Equation 4.12
says that all formal parameter predicates that mention either a global variable or
dereference a formal parameter of R must be returned. This is necessary to provide
information about any global values or call-by-reference parameters that may have
been changed by the procedure.

Example 4.7. Figure 3./(a) shows the definition of a Boolean function. There are
no global predicates, {inode—i_rdev> 8 = major} and {testdev_open = 0} are local to
testdev_open. The signature of the concrete C function is

int testdev_open (struct inode *inode, struct file *filp)

The wvariables that are local to testdev_open are inode, filp and the return variable
(which denote by testdev_open). We yield the set of formal predicate parameters from
Equation 4.11.

Ers = {{inode — i_rdev > 8 = major}}

Equation 4.12 gives us the two return predicates:

Er, = {{inode — i_rdev > 8 = major}, {testdev_open = 0}}

The first predicate in the set must be returned because it dereferences a formal parameter.
The second predicate mentions the return value and no local variable. Thus, we gain
the signature of the abstraction of testdev_open:

bool<2> testdev_open ({inode—i_rdev> 8 =major})

2. Handling Procedure Calls.
For each call to the C procedure R(fi,...,fn) (where {fi,...,fn} = Fg) with the

actual parameters aq,...,a, we must determine the actual parameter predicates for
the corresponding call to the Boolean procedure Rg(eq, ..., e,) (where {e1,...,en} =
Ery). For this purpose, we have to substitute the actual parameters ai,...,a, for the
actual parameters fi,..., f, in the formal parameter predicates:

es = eila1/f1,...,an/fn] (4.13)

This substitution can be understood as translating the formal parameter predicates
of Rp to the calling context. This is necessary, since the formal parameters have no
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interpretation outside Rp. The substitution yields a set of actual parameter predicates
that is in general not a subset of the predicate set F. Again, we have to approximate the
set of states described by these formal parameter predicates in terms of the predicates
in FgUFEg. (Here, S is the calling procedure, i.e. the procedure that contains the label
¢ where R is called. Eg U Eg are therefore the predicates in scope at the calling point.)

We must not overestimate the set of states that the predicates €f,..., el represent.

2N
Therefore we strengthen the predicates to expressions over the predicates in Eg U Eg.

The actual parameter for the formal e; is then

choose(F(e;, Eg U Es), F(—e;, Eg U Es)) (4.14)

and the procedure call in the Boolean Program will be

tly . b = R]B(choose(]:(ell, Eq U Es),f(—lell, Eq U ES)),
(4.15)
choose(F(el,, Eq U Es), F(—el., Eq U Es)));

/

where 1, ..., denote fresh variables with k being the cardinality of Ex, and €], ... el

are the formal parameter predicates translated to the calling context (as defined above).
C programs allow only one return value. Assume that this return value is assigned to v,
i.e. the call to the C procedure is v := R(aq,...,ay);. Such a call potentially changes the
value of all (global and local) predicates that mention v (either directly or indirectly).
Additionally, any predicate in Fg that mentions a global variable, a dereference of an
actual parameter, or indirectly (via pointers) mentions either of these kinds of locations
may have changed as result of the procedure call and must be updated!?.

Let E, denote the set of predicates that must be updated after a call to Ry. The
remaining predicates (EsU E¢) along with the return value predicates Er, are used to
update the predicates in F,. Any occurrences of predicates out of Ex, in the strength-
ened expression must be replaced by the corresponding element out of {¢1, ..., %}, since
the predicates in Fg, are undefined outside Rp.

Since we want to update predicates outside of R we have to translate the predicates
in Er, to the calling context:

For each e; € Eg,, €; = ¢;[v/r,a1/fi,...,an/fs] and Ex, = {€},... e}  (4.16)
Each €] is associated with the corresponding t;. Now, each e € E,, is assigned the value

choose(F(e, (Eqg U Es U Ex,) \ E,),

Floe, (B U Bs U i)\ B)) (4.17)

with the ¢; substituted for the corresponding e}.

120ur implementation does not cover the case that either global variables or (possibly transitive) dereferences
of actual parameters are mentioned via pointers, since it does not yet contain a pointer analysis algorithm.
In the SLAM toolkit, a pointer analysis is used to determine a conservative over-approximation to the set of
predicates to update [BMMRO1]
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Example 4.8. Figure 3.3 and Figure 3.5 show a call to testdev_open at label B. We
calculated the boolean signature of this function in Ezample 4.7. We will now show how
a call to this function is handled.

The only formal parameter of the function is e ={inode—i_rdev> 8 =major}. A transla-
tion of this predicate to the calling context yields €' ={(*(&inode)).i_rdev> 8 =major} (where
the variable inode in €' denotes a different location than in e, since the variable inode that
we substituted for the formal parameter is not in the scope of testdev_open). There exist no
predicates outside testdev_open that talk about the value of inode, therefore, the strengthen-
ing of the predicate in the calling context can only yield 0. The value of the formal parameter
predicate is therefore set non-deterministically.

Translating the return predicates of the function to the calling context yields the predicates
{(*(&inode)).i_rdev> 8 =major} and {rval= 0}. The former predicate has no influence on
the predicates that are in the scope of the calling function. The latter predicate, however, has
an ezxact equivalent. Therefore, the predicate {rval= 0} must be updated. It is assigned the
return value:

{rval= 0} := choose (rets,!rets);

The abstract code of testdev_open in Figure 3.4 (b) modifies the global predicate {locked#
0}. However, since no global predicate mentions the variable rval, there is no need to update
any global predicates.

4.5.6 Concerning Labels

As indicated in Section 4.5.3, labels are taken over unmodified. Additionally, we introduce
a fresh label for each line in the Boolean Program. This is necessary to map paths that
the model checker provides as counterexample back to the original C program. Such a label
usually consists of a prefix, the file name!®, the line number, and a unique identifier. (The
latter is necessary because a line in a C program may contain several statements).

13At the moment, the directory names are truncated. This may lead to problems in big projects where
duplicate filenames occur in the different directories.
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Chapter 5

Formalization of C expressions in
HOL9S8

5.1 Introduction

In the previous chapter we have assumed that there is a decision procedure that is able to
decide if a C expression is either true or false. Such a procedure is necessary for weakening and
strengthening of preconditions (as explained in Section 4.4) and for determining the feasibility
of a path (covered by Chapter 7). However, most theorem provers (including HOL98) are
based on first order logic or higher order logic and do not accept C expressions as input.

In order to be able to attempt formal proofs on C expressions we have to make rigorous
assumptions about the semantics of the C programming language. The C expressions must
be transformed to the logic of the theorem prover.

Due to our decision for the Theorem Prover HOL98 we will give a definition of the seman-
tics of C expressions in terms of the logic underlying the HOL system (as specified in [UniOla]).
In this chapter, we assume that the reader is familiar with the HOL98 Theorem Prover. A
recommendable introduction can be found in [UniO1b].

Following the notation used in [Sch86] we define a translation function [-] for expressions
and (-) for types. The former function maps C expressions to HOL expressions, while the
latter function maps C types to HOL types. This Chapter covers the complete subset of
expressions that can be handled by the Theorem Prover module at the current state of the
implementation. The covered parts of the type system of C are formalized in Section 5.3.
Section 5.6 covers all kinds of operations, including pointer arithmetic (Section 5.6.3).

Furthermore, several constructs that may occur in C expressions have no equivalent in
higher order logic. This chapter covers in detail how these constructs are translated.

Some of our assumptions about the semantics of C expressions may lead to a model that
is inappropriate for certain platforms or compilers. We cannot overcome this problem unless
we restrict our considerations to a certain compiler on a specific platform. Even then it
might be hard to model every detail of the concrete semantics in terms of a formal system.
We will therefore content ourselves with an approximate (but still rigorous) definition of the
meaning of C expressions. Admittedly, this introduces the possibility of either spurious or
missing counterexamples. However, this will only be the case if the programmer makes use of
platform- or compiler-dependent properties of the C programming language (which should be
discouraged in favor of portability). The restrictions we made are presented in Section 5.2.
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At the end of this chapter, we provide a brief overview of our decision procedure, and
we explain, why there are C expressions that it cannot decide (as mentioned at the end of
Section 4.4.4).

5.2 Restrictions

We had to make several restrictions to the set of C expressions that can be handled by
the Theorem Prover. Some of them are quite natural and can be justified by the different
interpretations of the notion of an expression inherent to the C programming language and
the HOL system. Others are due to the limited (time) resources that were available for this
master’s thesis. For restrictions of the latter nature we will give some suggestions of how our
program can be extended to cover those cases.

5.2.1 Expressions with Side Effects

Expressions with side effects (like (a == ++b)) are an element that is heavily used by many
programmers (even though such constructs often impair readability). In higher order logic
there is no equivalent to expressions with side effects'. Instead of attempting to model
this property of C programs, we restrict the set of expressions we can handle to side effect
free expressions. Note that an expression with side effects can always be split up into a
sequence of statements that is executed before the evaluation of the expression, a side effect
free expression, and a sequence of statements that follow the evaluation. Though such a split
is in general not hard to accomplish, it is not yet part of our implementation. At the moment,
it is task of the programmer to keep the expressions in his program free of side effects.

5.2.2 Pointer arithmetic

Though our implementation of the predicate transformer WP does not handle pointers at
the moment (see Section 4.3.1) the Theorem Prover can handle at least a subset of the
expressions that contain pointer arithmetic. However, if a memory location is accessed by
dereferencing a constant value or by dereferencing an expression like (&a+10) we cannot make
any assumptions on the result of such an operation (unless a value was assigned to exactly
this location, as in (¥(0xA50) = 10Ab = 0xA50) = b < 20)). Since we have no knowledge
of where the objects exactly reside in memory (this may be different for each execution of
the program) we must assume that such an expression can reference an arbitrary object.
Therefore, such constructs must be avoided.

5.2.3 Bit manipulation operators

At the current state of our implementation the only supported bit manipulation operators are
shift right (>>) and shift left (<<). Integers are represented by the standard interpretation
of N as defined in HOL98. The integer Theory of HOL98 does not provide bit manipulation
operators. We have added a new (but yet incomplete) theory to HOL98 that defines the above
mentioned operators in terms of standard operations for N. This theory will be described in
detail in Section 5.6.1.

'Furthermore, the predicate transformer WP(S, ¢) is not defined for expressions ¢ with side effects.
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5.2.4 n-bit integers

The range of values that integer variables in C programs may take is bounded by the bit size
of the variable. Integer variables in HOL do not have this property. Still, the usage of N-typed
variables for representing n-bit integers does not introduce an inaccuracy; It is the semantics
of the operations defined in the integer theory of HOL98 that does not adhere to the same
rules as the integer operations in C programs. This problem could be overcome by using a
modulo-arithmetic. The word theory of HOL98 would fit such purposes. Alternatively, we
could check for integer overflows explicitely. However, we found it more natural to make use
of the integer theory, because this allows us to use the powerful decision procedures of this
theory. A similar approach has been chosen in the SLAM project.

5.2.5 Floating Point Arithmetic

Floating point types in C programs have restricted accuracy. Elements of type R in the
real Library of HOL98 do not adhere to this restriction. While the set of float values in
C programs is recursively enumerable, the set R is non-enumerable. This fact is neglected
in our implementation, since we do not expect the approach to yield satisfying results for
C programs that make heavy use of floating point arithmetic. An exact formalization of C
floating point types would lead to complicated HOL terms that cannot be decided by our
decision procedure.

5.3 Types

As mentioned in Chapter 2, higher order logic is a strongly typed formalism. Therefore,
we need to translate C types to HOL types. This requires a consistent type system for
our formalization of C expressions. At the current state of our implementation, we support
following C types:

1. Booleans. ANSI C does not support Boolean types. However, we still provide the pos-
sibility to handle expressions that contain Boolean types, since they may be introduced
by our wrapper routines that transform the GCC abstract syntax tree to our internal
representation of C programs, e.g. when binary expressions involving conjunction or
disjunction are translated. In HOL we are using the type B of the bool theory.

2. Integer types. The ANSI C standard defines the integer types char and int. Both
may either be signed or unsigned, and their bit length may be varied with help of the
modifiers long and short. The only restrictions that the ANSI C standard makes on
these types are that short and int variables have at least 16 bits, long at least 32 bits,
and that the range of short values is not larger than the range of int values, and that
the range of int values must not be larger than the range of long values [KR88]. Since
the size of these integral types varies from platform to platform (and for other reasons,
as mentioned in Section 5.2.4) we chose to translate all integer types to the Z type of
the integer theory of HOL.

([signed|unsigned] [short|long| char) = Z (5.1)
([signed|unsigned] [short|long] int) = Z '
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. Real types. As discussed in Section 5.2.5 representing C floating point types (real and

float) as R is not completely accurate. Rounding errors are not reflected if we translate
floating point values to elements of R. A completely accurate formalization of IEEE
floating point arithmetic would have been beyond the scope this thesis. Furthermore,
we would not have been able to use the decision procedures that HOL98 provides for
real arithmetic.

(float) =R

([long] double) = R (5.2)

. Enumeration constants. We handle enumeration constants similar to integer con-

stants.

(enum {...}) =7 (5.3)
We use Z to represent enumeration constants, though N would be more intuitive. How-
ever, since most operators are only defined for Z and R, this decision prevents the
introduction of type casts from N to Z, which would be introduced whenever enumera-
tion constants occur in expressions.

. Pointer types. Pointer arithmetic is a property of C programs that is not reflected

in any standard logic as higher order logic. Though the values of pointers can be
represented as elements of N, the problem remains that the value that is referenced
by the pointer may be of arbitrary type. This yields the necessity of wrapping and
unwrapping the elements that are referenced by a pointer. A detailed description of
this approach will be given in Section 5.6.3. For the time being, we content ourselves
with the fact that natural numbers are a suitable way of representing pointers.

(o+) =N (5.4)

Here, o+ denotes a pointer to an arbitrary type o.

. Compound types. Compound types denote either structs or unions. We handle

both types the same way, though this may lead to inaccuracies if the programmer
tries to exploit the mechanism of how variables of type union are stored in memory.
This, however, is a platform dependent property. Schmaranz recommends to avoid the
union type unless there is a compelling reason to use it [Sch02]. Though HOL supports
compound types (resp. records) and this would be the obvious way to represent C
structures in HOL, we have decided to use a different encoding for reasons of simplicity?.
We represent any structure object as natural number and access its fields with help of
projection functions. There are several ways of unambiguously encoding an n-tuple
of values in one element of N (one would be to use products of prime numbers, e.g.
(n,m,r,...) =3"-5™.7".... [BBJ02]). By representing the above mentioned projection
functions as function variables, we leave the exact field access mechanism open and just
specify enough of their properties to restrict the number of possible models to those
that fit our purpose (see Section 5.6.4).

(struct {...}) =N

(union {...}) =N (5:5)

2HOL records need to be defined explicitely before they are used. This would require us to define HOL

records for all compound types that occur in the C expressions, resulting in additional calls to the theorem
prover. The implementation would have been more complicated than the implementation of the approach that
we use at the moment
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7. Field types. The type of a field in a structure is simply the type of the specific element
as given in the definition of the struct type. (We find this fact worthy of being noted,
since the GCC uses a separate type for fields of compound types).

5.4 Constants

Constants are an essential element of C expressions. We provide a description of all constants
that we support at the moment.

1. Boolean constants. Though Boolean constants are not directly supported by ANSI
C compilers, we provide a representation for them, since Boolean constants may be
introduced by the functions that are responsible for the calls to the theorem prover
(e.g., cubes that contain no predicates are represented by the boolean constant “true”.
The bool theory of HOL provides the two constants F (for false) and T (for true), of
which we make use.

2. Integer constants. Though the integer types of C and HOL differ in the cardinality of
their ranges, we use the integer representation of HOL for the representation of C integer
constants. The integer theory of HOL does not provide constants for each integer value,
since this would result in an infinite signature of the theory. Instead, integer constants
are decomposed into bits and expressed with help of constructor functions [UniOlal.
This mechanism is hidden by the parser of the HOL theorem prover.

3. Real constants. HOL does not support real constants directly. They must be con-
structed using quotients of integers instead [UniOla] (e.g., the floating point constant
123.4 must be represented as 1234/10). Our current implementation does not support
real constants.

4. Compound constants and other constants. At the current state of our implemen-
tation, Boolean and integer constants are the only supported constant values. Note that
enumeration constants are handled similar to integer constants.

5.5 Variables

Any occurrence of a C variable a is simply translated to a HOL variable of the corresponding
type (see Section 5.3). In our implementation, an unique identifier is appended to every
variable name. This is necessary to prevent the confusion of variables that are defined in
different scopes.

5.6 Operations

Most of the C operations that are supported by our current implementation are mapped to
their equivalent operations in HOL in a natural way. Some operations (like bit manipulation
operations) do not have equivalent operations in the HOL98 theories that we use. In this case
it was necessary to add a theory that defines the missing operations in terms of existing ones.
This theory will be described in Section 5.6.1 together with the bit manipulation operations.
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In ANSI C any operator can be used on virtually any type. Whenever the type of an
operand does not fit for the operator that is used, the compiler implicitly introduces a type cast
(this operation will be described in the section that covers the unary operations). However,
the usage of logical operators like && and | | must be handled separately, since the notion of a
Boolean type does not exists in ANSI C - a C expression is assumed to be true if its evaluation
yields a value different from zero. This means, that e.g. 5 && (a == b) is a perfectly valid
C expression. HOL, with its rigorous type system, does not allow such constructs. A negated
comparison of such “integral” Boolean values to 0 yields a Boolean expression that can then
be translated to the HOL logic (e.g., [6 && (a == b)]= —(5 = 0) A (¢ = b)). From here
on, we do not mention this conversion anymore, and we assume that it is applied whenever
necessary.

5.6.1 Binary Operations

The types of the binary operations that define here have the structure oy x o1 — o9 (the shift
operations are an exception). This means that expressions like (5.1 < 3) are not supported at
the moment, since type casts are not completely implemented yet (type casts are described
together with the unary operations).

The HOL system supports overloading of operations, what means that two different op-
erations constants may be denoted by the same symbol [Uni0la]. This mechanism does not
introduce ambiguity, since the operations can still be kept apart by their signature®. Our
implementation uses the non-overloaded names of the operations. In this section we favor the
usage of the overloaded (and pretty-printed) names for reasons of simplicity. The translation
function inserts the proper operation depending on the types of the type of the left and the
right operator.

Following binary expressions are supported by our implementation:

1. Logical Disjunction and Conjunction. Conjunction and Disjunction is translated
to the corresponding operations of the HOL bool theory.

[er && ea] = [er] A [ei]
[[61 || 62]] = [[61]] V [[61]] (56)

2. Comparisons. The expressions [e;] and [e2] can be either be of type R or of type N.
In the following definitions, we use the overloaded names for the HOL operations:

[er == e2] = [e1] = [ed]
[e1 1= e2] = —([ex] = [ea])
[er > ea] = [e1] > [e]
fer < ea] = [e1] < [ed]

[e1r <=e2] = [e1] < [ed]

[e1 >=e2] = [e1] > [ed]

(5.7)

3A signature consists of the operator name and the operator type, e.g. < can either be of type Nx N — B
or of type R x R — B, thus representing the two different operations int_le and real_le.
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3. Arithmetic Operations. The remarks regarding overloaded operations that were
made with respect to comparisons are valid for arithmetic operations, too. However,
note that there is no modulo operation for R.

[er + ea] = [e1] + [e1]

[er — e2] = [e1] — [ed]

[e1 « e2] = [er] - [ed] (5.8)
[e1/e2] = [ex]/[e1]

[e1%ea] = [e1] mod [eq]

4. Bit Manipulation Operations. At the moment, the only supported operations are
shift left and shift right. The effect of applying the shift right operation to signed values
may be a shift with insertion of either the sign bit or the null bit on the left side.
The concrete semantics is implementation dependent and may vary from compiler to
compiler. Even the same compiler might yield different results on different platforms.
If we consider the shift right operation and apply it to a signed char value as follows

((signed char) — 1) >> 8

we get an expression whose truth value depends on the compiler and the platform that
is used*.

Since none of the HOL Theories we use contains operations that can be used for ma-
nipulating single bits we had to add a theory that defines such operations in terms of
existing operations. The Theorem SHIFTLEFT_THM provides a recursive definition of the
shift left operation:

SHIFTLEFT (v:7Z) (0:N) = v

(5.9)
SHIFTLEFT (v : Z) (SUC n : N) = SHIFTLEFT (v + ) n

Here, SUC denotes the successor function for natural numbers. By taking n as measure
we can show that the recursive definition yields a terminating rewriting rule (from left
to right) [BN98, UniOla]. Thus, the theorem prover is able to replace all occurrences
of SHIFTLEFT by a series of additions. Obviously we have chosen to maintain the sign
of the left operand. This is not compliant with the ANSI C standard, but yields a very
simple definition of the shift left operation. A more complex definition would result in
expressions that are harder to decide for the theorem prover. Note, that this inaccuracy
may lead to incorrect results.

The SHIFTRIGHT function is defined similar by using division by 2 instead of addition.
Now the shift operations can be translated as follows:

[er << es] = SHIFTLEFT [e;] Num([ez])

[er >> es] = SHIFTRIGHT [e;] Num([ez]) (5.10)

where Num: Z — N denotes the (partial) function that maps integer values to natural
numbers.

4This is partly because of the loose specification of the shift right operation, but also because the bit size
of the signed char type may vary from platform to platform — though this is usually not the case.
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Example 5.1. “% << 37 will be translated to “SHIFTLEFT i Num(3)”. HOLY8
rewrites this expression to “i +i4+i+i+1i+i4+i+1” (what is equivalent to 8 -1).

Furthermore, we added some supportive theorems for the rewriting tactics of the theo-
rem prover:

Va n. SHIFTRIGHT (SHIFTLEFT a n) n=a

(5.11)
Va n. (SHIFTLEFT (2-a) n)/2 = SHIFTLEFT a n

The HOL system ensures that only well-formed theories can be constructed by allowing

theorems to be created only by formal proof [Uni0la]. The theorems defined above were

proved using induction on n.

5.6.2 Unary Operations

This section covers all unary operations that we support at the moment. Unary operations
include type casts and address and pointer operations, too.

1. Negations. Logical and Arithmetic Negations are translated the natural way. Note

that the minus prefix is polymorphic and denotes different operations for Z and R.

[ter] = —[ei]

[—e1] = —[ea] (5.12)

2. Type Casts. As mentioned above, C compilers implicitly introduce type casts whenever

necessary. At the moment we have implemented only rudimentary support for type
casts. Since we represent integer types of all sizes as elements of Z (no matter if they
are signed or unsigned) and all floating point values as elements of R, all conversions
that would not change the type of the expression in the HOL expression that results
of [-] are ignored. In the remaining cases, which are not yet supported, the operators
int_of num and real_of num of the integer resp. the real theory of HOL98 might be
useful for representing type casts.

[([signed|unsigned]| [short|long] char|int)ival] = ival, if [ival] is of type Z

5.13
[([long] double|float)rval] = rval, if [rval] is of type R (5.13)

. Address and Pointer Operations. The translation of the unary operations & and *

will be explained in Section 5.6.3.

5.6.3 Pointer arithmetic

Despite the restrictions that were mentioned in Section 5.2.2 our current implementation of
the translation function [-] can handle most expressions that contain pointers (resp. the
unary operations & and *). There is no “natural” way of translating C pointers to Higher
Order Logic, since the notion of a location does not exists in HOL. Furthermore, the usage
of pointers indirectly introduces a type polymorphism by allowing void#* pointers. When
referencing and dereferencing variables with help of the operations & and * the initial type
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must not be changed (i.e., * (&a) must have the same type as a). Therefore, we introduced a
new compound datatype for the representation of pointer values. As explained in Section 5.3,
C types are translated to either Z, R or N. The datatype loc wraps the original type of the
referenced variable.
Hol_datatype loc = Z-loc of Z
| R-loc of R (5.14)

| Nloc of N

Additionally, we have defined one unwrapping function for each type that can be wrapped up
in a loc-type.
unrep-Z (Z-loc i) =1
unrep-R (R-loc r) =r (5.15)
unrep-R (R-loc n) =n

To represent the “address of” and “points to” operations, we introduce a new function variable
ptr: N —loc that will be used to model the dereferencing operation *. We just specify enough
of its properties to restrict the number of possible models to those that fit our purpose.

1. Referencing Variables. If referencing a variable a with help of the operation & yields
an address £, we have to guarantee that ptr(¢,) = a. We add this information by
supplying a premise that states that the pointer function maps the address we gained
as result of the translation function to a.

unrep-Z (ptr(addr_a)) = [a] = ...addr_a... if [a] is of type Z
[&a] = { unrep-R (ptr(addr_a)) =[a] = ...addr_a... if [a] is of type R
unrep-N (ptr(addr_a)) = [a] = ...addr_a... if [a] is of type N

(5.16)

Here, addr_a is a variable name that uniquely represents the address of the variable a.
This variable name is constructed by the translation function and is the resulting value
that is associated with &a. The translation works similarly for fields of structures, but
not for arbitrary expressions, since a C expression does in general not have an address.

2. Dereferencing Pointers. Since the properties of the function ptr are specified in the
premise of the HOL expression, we can make use of it in the conclusion.

unrep-Z (ptr([e1])) if [e1] is of type Z-loc
[*e1] = < unrep-R (ptr([e1])) if [e1] is of type R-loc (5.17)
unrep-N (ptr([e1])) if [e1] is of type N-loc

Example 5.2. If a is of type integer, then the translation of p == &a && *p + 1 == 5 yields
unrep-7Z (ptr(addr_a)) = a = (p = addr-a) A (unrep-Z (ptr(p)) + 1 =5) (5.18)

The formalization we chose forced us to split the HOL expression into a premise and
a conclusion. This fact is not reflected elsewhere in this chapter, since the only affected
operations are & and *. The translation of all other constructs will only contribute to the
conclusion, not to the premise.



48 5.7. DECISION PROCEDURE

5.6.4 Field access

In order to access fields of compound types (structs or unions) we introduce a new function
variable that represents a projection function for each field of a compound type. These
functions can be understood as partial functions that map the corresponding fields of the
instances of the compound type to their values. We do not specify how this mapping is
accomplished (since different compilers might use different strategies for storing the fields
in memory, and even the same compiler might support several approaches for optimization
purposes). This does of course mean, that accessing fields via pointer arithmetic is bound
to fail. However, this is no serious disadvantage compared to the SLAM approach, since the
pointer analysis [Das00] algorithm that was used in the SLAM toolkit [BRO1] assumes that
*(p+1i) and *p point to the same object, no matter which value i takes.

The projection function variable must have a name that uniquely identifies the field of
the structure that is accessed. This is accomplished by constructing the function name of the
name of the compound type®, the field name and a prefix.

[ei.fieldName] = proj_typeName_fieldName([e1]) (5.19)
Example 5.3. Given a compound value inode defined as

struct inode {
kdev_t i_rdev;

} inode;
the translation of the C expression inode.i rdev == 5 yields

proj_inode_i_rdev(inode) = 5 (5.20)

5.7 Decision Procedure

Instead of providing our own decision algorithms we make use of a composition of the powerful
Tactics [Uni0la] that come with the HOL98 theorem prover. First we try to simplify the
expression using the FULL_SIMP_TAC of simpLib. This tactic applies a set of rewriting rules
to the expression until no more simplifications can be made. The set of rewriting rules we
are using is hol_ss, which includes theorems appropriate for lists, pairs, and arithmetic,
combined with a number of integer reduction rules and the theorems we added to handle the
shift operations and pointers. Whenever this decision procedure failed in our tests, we tried to
extend the set of rewriting rules by a number of appropriate rules from the integer theory.
If this simplification approach does not yield either true or false, the COOPER_TAC tactic is
applied to the simplified expression. This tactic is particularly good at deciding expressions
of Presburger Arithmetic [End72]. If the composition of FULL_SIMP_TAC and COOPER_TAC fails
to decide if an expression is valid or not, it is very likely that the expression contains floating
point arithmetic. In this case, we alternatively apply REAL_ARITH_TAC from the real Library
of HOL9S.

5Anonymous types are yet not supported.
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The decision procedure we described above is far from being perfect. A desirable ex-
tension would be a “lightweight” Nelson-Oppen approach®, i.e. a congruence closure al-
gorithm [HurO1] that reduces the number of (or ideally eliminates all) occurrences of the
function variables that we introduced to represent pointers and field projections. The func-
tion applications could be replaced by fresh scalar variables, e.g. proj_inode_i_rdev(inode;) =
proj_inode_i_rdev_inode; and proj_inode_i_rdev(inodes) = proj_inode_i_rdev_inodes. Then
iode; = inodey would imply that projinode_i_rdev_inode; = proj_inode_i_rdev_inodes.
This can be done repeatedly until no more function variables occur in the expression. Of
course, the expression would be exponentially bloated. An expression simplified to such an
extent could be easily decided by the COOPER_TAC tactic, as long as the only operations used
are those that are part of Presburger Arithmetic.

‘ Structure ‘ Theory ‘

(N) Decidable. Not finitely axiomatizable.
(N,0,5, <) Decidable. Finitely axiomatizable.
(N,0,5,<,+) Decidable (Presburger)
(N,0,S,<,+,-) | Undecidable.

Figure 5.1: Decidability of certain structures [End72]

We can of course not expect to find a complete decision procedure that can decide all ex-
pressions that occur in our abstraction/refinement approach. This is because of the undecid-
ability of number theory of natural numbers with multiplication” (see [End72, BBJ02, G6d31]
and [Smu92]). Figure 5.1 gives an overview over the properties of some structures in number
theory (where S denotes the successor function).

The incompleteness of the decision procedure effects our refinement/abstraction approach
in so far that we cannot expect to yield useful results for programs that make heavy use
of multiplication (or other operations that can only be defined in terms of multiplication).
Furthermore, we are note able to apply highly complex decision procedures, since the time
consumed by calls to the theorem prover has crucial influence to the over-all runtime of our
tool.

5.8 Conclusions

Our current formalization of C expressions and the implementation of the decision procedure
leave a lot of room for optimizations, since our principal aim was to provide a simple interface
to the theorem prover without spending too much time on the implementation. For example,
the use of HOL records for formalizing C structures would be much more intuitive than the
approach we are using at the moment. Such a modification would very likely have positive
impacts on the efficiency of the decision procedure. Another approach that might be worth-
while trying would be the use of the word theory of HOL98, which provides a formalization
of bounded integer values.

5This term was coined by Konrad Slind, who was a great help whenever we had questions regarding the
HOL98 theorem prover
"In fact, if number theory was finitely axiomatizable then the halting problem would be decidable
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A translation of C expressions to propositional logic would make our expressions decidable
with help of Binary Decision Diagrams or SAT solvers. In practice, it is questionable if
the approach is feasible: Though Propositional Logic is decidable in theory, the decision
procedures are not efficient enough to handle large formulse. A translation of a bounded
subset of the specification language VDM-SL to BDDs that we implemented as part of the
PROSPER project turned out to be infeasible for larger specifications [Wei01].

Furthermore, caching the results of the theorem prover would prevent that work is re-
peated. Finally, it would be desirable to evaluate the suitability of other theorem provers for
our approach. The theorem provers Simplify, Vampyre, and PVS were used in the SLAM
project [BRO1].



Chapter 6

The model checker MOPED

This chapter provides a brief description of the basic concepts of the model checker MOPED.
We explain how Boolean Programs can be represented as pushdown systems and give a rough
idea why reachability in such systems is decidable.

6.1 Pushdown Systems

Boolean Programs are equivalent to pushdown systems. A pushdown system is essentially a
finite automation with a stack. The stack is used to store symbols, and only the symbols at
the top of the stack are accessible. We give a formal definition of pushdown systems:

Definition 6.1. [EHRS00] A pushdown system P is a system (P,I', A) where
1. P is a finite set of control locations,
2. ' is a finite stack alphabet, and

3. AC (P xT)x (P xT¥) is a finite set of transition rules.

If ((q,7), (¢',w)) € A then we write (q,7) = (¢, w)-

Notice that pushdown systems have no input alphabet. We are only interested if a certain
configuration of a pushdown system representing a state of a Boolean Program is reachable.
By a configuration of a pushdown system we denote a control location and the symbol at the
top of the stack. Correspondingly, a state of a Boolean Program is a location in the program
and a valuation to the variables in scope. An efficient algorithm to decide the reachablity of
configurations in pushdown systems is presented in [EHRS00].

6.2 Translating Boolean Programs to Pushdown Systems

In the following, we give a brief overview of how Boolean Programs can be translated to
pushdown systems. A more detailed presentation of these matters can be found in [ES01].

First we represent each procedure of the boolean program as flow graph. The edges of
these flow graphs are associated to the statements of the Boolean Program, whereas the nodes
correspond to control points in the procedure.

ol
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Symbols of the stack alphabet are used to encode valuations to local variables of procedures
and program points. A stack symbol is a tuple (n,l) € I, where n represents a point in the
Boolean Program (respectively a node of one of the above mentioned flow graphs) and [
represents a valuation to the local Boolean variables that are in scope at this program point.
Such a valuation can be represented as binary string, i.e. L = {0, 1}¥ for k local variables. The
size of the stack alphabet depends on the largest number of local variables in any procedure,
since local variables of two different procedures cannot be in scope at the same time. The
global variables are encoded in the control locations, i.e. if the program contains m global
Boolean variables, then they can be encoded as binary strings G = {0, 1}™.

Each program statement can be represented as transition in the pushdown system. These
transitions can be derived from the flow graphs of a boolean program. We explain how this
can be accomplished for assignments, procedure calls and return statements:

e Assignments. An assignment potentially changes the global or local variables. There-
fore, we translate an assignment to a set of rules of the form

<gv (nlal)> — <g,v (nQv ll))

where the control location g and ¢’ correspond to the valuation of the global variables
before and after the assignment, and [ and I’ represent the local variables before and
after the assignment. ny is corresponds to the node in the control flow graph that comes
before the assignment statement, and ns corresponds to the node after the assignment
statement.

e Procedure calls. A procedure call in a Boolean Program corresponds to pushing the local
variables of the calling procedure § and the return address on the stack and transferring
the control flow to the entry point of the called procedure R. This is represented by a
transition rule

(ga (”1,ls)> — (ga (mo, lR)(nQJS))

where mg denotes the entry point of the procedure R, no represents the return location,
and [ denotes the initial values of the local variables of R. The parameters are rep-
resented as local variables of the procedure, i.e. the procedure has several entry points
with different values of I, one for each valuation of the parameter predicates.

e Return statements. Returning from a procedure call means popping the local variables
from the stack and transferring the control flow to the return location. Therefore, the
transition rule for a return statement has an empty right side:

(9,(n,1)) = (g, )
The global variables may change, since procedures which return values can be simulated

assigning the return values to additional global variables.

Example 6.1. Figure 6.1 shows the flow graph for the procedure testdev_open presented in
Figure 3.4(b) and parts of the flow graph for the code in Figure 3.5 (the main function)'. In the

!Notice that the call to the choose function is handled as single assignment. Internally, g := choose(e,f)
is translated to the Boolean expression (e A g') V (me A f A —g’) V (me A =f), where g’ denotes the value of g
after the assignment.
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testdev_open: main:
{inode—i_rdev:> 8 =major}

skip B: call testdev_open

\ {locked# 0} a {rval=0}:=

choose(retsy, 'retsy)

{locked# 0}

{testdev_open=|0}:=1 {locked;é 0} .=1 {rval: 0}/ \< !{rval: 0}
{testdev_open= 0}:=1 ¢call

testdev_read

return

return C: call testdev_release

Figure 6.1: Representing Boolean Procedures as Flow Graphs

function main, between control location 0 and 1 a call to testdev_open is performed. If lyain
represents the local variables of main at the time of the function call, then the corresponding
transition function is

<p07 (maiﬂo, lmain)> — (pUa (teStdeU—Open[]a ltestdev_open) (mainla lmain)>

where testdev_opengy represents the entry point of the procedure and liesigey_open TEPTEsents the
wnitial values of the local variables of the called procedure. The values of the parameters are
encoded in licstdev_open-

The conditional statement in function testdev_open is represented by two transition re-
lations (starting at different control locations, because the predicate {locked# 0} is a global
variable:

<p07 (teStdeU—Open2a ltestdev-open)) — (pOa (testdev_open3, ltestdev_open)>
<p17 (teStdeU—Open2a ltestdev-open)) — (pla (testdev_open5, ltestdev_open)>
Obuviously, the conditional statement does not change the state.

The assignment statement {locked# 0} :=1 changes the global variables, while {testdev_open=
0} :=1 changes the local variables:

(pla (teStdev—Ope%a ltestdev-open)) — <p2a (teStdeU—OpenGa ltestdev_open)>
(p2, (testdev_openg, liestdev_open)) > (P2, (testdev_opens, l'testdw_opm»

Finally, the return statement changes the global variables, because the return value is simulated
by a global variable:

<p2’ (testdev-opem, lltestdev-open)) — <p3a €>



o4 6.2. TRANSLATING BOOLEAN PROGRAMS TO PUSHDOWN SYSTEMS

The call to the return statement uncovers the return location and the valuation of local vari-
ables before the call, which would be (mainy,lymqin) in our case.

Reachability in pushdown systems is decidable, and an efficient algorithm is presented
in [EHRS00]. This algorithm is implemented in the MOPED model checker. The basic idea
behind the algorithm is, that in a pushdown system, the elements relevant for the control flow
are the actual control state and the symbol at the top of the stack. There are only finitely
many such tuples (p,~y), since the set of control states as well as the number of stack symbols
is finite. If a configuration is encountered repeatedly (with increasing stack size) then the
model checker can conclude that the investigated path is looping and further investigation will
not lead to new configurations. Therefore, the model checker is able to calculate all reachable
configurations without getting caught in a loop.

In all other chapters, we treat MOPED as a black box, i.e. an oracle that decides if a
label is reachable in a given Boolean Program. If the label is reachable, MOPED provides
a detailed description of how it can be reached (in terms of program points and valuations
to the predicates). We map this error trace back to the original C program and check the
feasability of the resulting path. The next chapter explains how such a feasability check can
be accomplished.



Chapter 7

Feasibility of Paths and Refinement

This chapter discusses the algorithm that we use to discover predicates for iterating the
abstraction algorithm. We will compare our approach to the algorithm used by the SLAM
toolkit. Finally we will show that the whole abstraction/refinement algorithm is potentially
non-terminating.

In Chapter 4 we have presented an abstraction algorithm that simplifies a C program to
such an extent that a model checker can be applied to check for the reachability of a certain
label in this program. We have argued that an abstraction is valid when it allows at least
all paths that are feasible in the original program. This means that the set of paths that is
feasible in the abstract program is a superset of the set of paths that is feasible in the original
C program. Therefore, an error path reported by the model checker does not always imply
an error in the C program.

Example 7.1. In Chapter 3 (Figure 3.4(a)) we have presented the second abstraction of
the function testdev_open (for the original C function refer to Figure 3.2). The model
checker reported an error path that calls testdev_open twice and chose the then-branch of
the conditional statement each time. This error path is spurious, since it neglects the fact that
a lock is maintained to prevent simultaneous access to the device.

We have to inspect the path in the original C program and check if it is feasible. If this is
not the case, we have to refine the abstraction to such an extent that the spurious error path
is eliminated.

This chapter covers the algorithm that we use to check the feasibility of a path and to find
new predicates for a refining the abstraction. Since our algorithm differs from the approach
that the SLAM toolkit uses, we will also give a brief introduction to the algorithm presented
in [BR02] and compare it to our solution.

7.1 Feasibility of non-branching Paths

Paths reported by the model checker do not contain any branching statements. If we map the
Boolean path back to the corresponding concrete path in the C program, we get a path that
contains assignment statements, function calls, scope statements and assumptions. Function
calls are expanded by replacing them by a basic block that contains assignments of the actual

5%)



o6 7.1. FEASIBILITY OF NON-BRANCHING PATHS

locked = FALSE; // in init_module ()
A: { // call to testdev_open ()
struct inode  *tmpg;
struct file *tmpo ;

tmpy = &inode;

tmpy = &my file;

inode = tmpy;

filp = tmpy;

assume ((inode->irdev) >> 8 == major);
usecount = usecount + 1;

assume (locked) ;

Figure 7.1: Example for an expanded linear path

S=x = e . P=A{p|p=WP(s,q) Nqe Q}

s = assume(p) . P=0U{p}

declaration of V = {vary, varg, ..., var,} ... P=0Q\{p€ Qlvars(p)NV #0}
end of scope .. P=Q

Figure 7.2: Calculating pre-conditions for linear paths

parameters to the formal parameters' followed by the function body.

Example 7.2. We consider a sub path of the path we discussed in Example 7.1. The code
in Figure 3.3 calls init_module and initializes the variable locked to FALSE. At label A the
function testdev_open is called. Within the function body the then-branch of the conditional
statement is executed. The corresponding expanded linear path is shown by Figure 7.1.

The feasibility of such expanded paths can be checked by calculating the weakest precon-
ditions for the contained statements (see Section 4.3 and Definition 2.8 in Chapter 2). Each
assume statement introduces a condition that must hold at the corresponding program point.
Showing that a path is infeasible means proving that one of these conditions does not hold.

Each element of the expanded path has a set of pre-conditions P and a set of post-
conditions Q. The post-conditions of an element s; coincide with the pre-conditions of the
subsequent element s;y;. A path is infeasible if we can find a program point ¢ where the
conjunction of the conditions in P; yields a contradiction.

For an assignment statement s we can calculate the set of pre-conditions from the set
of post-conditions by applying WP(s,¢) on each ¢ € P. An assumption ¢ yields a set
of pre-conditions that contains ¢ and all post-conditions. The set of pre-conditions P of
a beginning-of-scope statement contains all elements of the set of post-conditions Q, except
those, that contain variables declared in the new scope. An end-of-scope scope statement has
no effect on the conditions. The different cases are summarized in Figure 7.2.

'Due to recursion, the set of variables in the actual parameters may overlap with the set of formal pa-
rameters. We bypass this problem by introducing intermediate variables with fresh names in the assignment
block.
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Statement Conditions
ly: locked = FALSE; {FALSE}, {&inode->i_rdev>>8==major}
¢1: { struct inodex ... {locked}, {&inode->i_rdev>>8==major}
ly: ... {locked}, {&inode->i rdev>>8==major}
l3: assume ((inode->irdev)>>8==major); {locked}, {inode->irdev>>8==major}
£4:  usecount = usecount + 1; {locked}
l5: assume (locked) ; {locked}
0

Figure 7.3: Showing the infeasibility of the path in Figure 7.1

The calculation of the pre/post-conditions starts with an empty set of post-conditions at
the label that the model checker reports to be reachable and is performed from the end of this
path towards the beginning of the path. The calculation is stopped if either the beginning
of the path is reached or if the conjunction of the pre-conditions at the actual program point
yields a contradiction. In the former case, the path is feasible and is reported to the user. In
the latter case, the path is infeasible and the abstraction must be refined.

Example 7.3. Figure 7.3 shows corresponding pre-conditions (resp. post-conditions) to the
statements in the path presented in Figure 7.1. For a better understanding the statements in
Figure 7.3 should be considered from bottom to top.

We start at the end of the path with an empty set of post-conditions. The assume
(locked) ; statement at label ¢5 adds a new predicate to the set of pre-conditions. Since
this condition is not contradictory we have to continue our inspection. The assignment at
label 04 leaves our set of conditions unchanged, while the assumption at 3 enlarges it by one
predicate. Still, the conjunction of the two predicates yields no contradiction. The effect of
the following assignment statements (indicated by the ellipsis) is a substitution of &inode
for inode in the predicate {inode->i_rdev>>8==major}. Note that basic blocks are processed
in one step, i.e. the intermediate results for each single assignment statement are not con-
sidered (this prevents predicates that reference temporary variables that were introduced for
function calls). The scope definition at 1 does not define any variables that are mentioned
by the actual predicates, therefore, the predicates stay unmodified. Note that the parameters
are local to the called function testdev_open, too. But the local parameter inode refers to a
different location than the variable inode in the predicate {&inode->i_rdev>>8==magjor} (the
latter refers to the location that was handed over as actual parameter). Therefore we keep the
predicate. Finally, at £y, WP (“locked = FALSE" {locked}) yields the pre-condition {FALSE},
which s definitely a contradictory predicate. Therefore, the concrete path is infeasible.

7.2 Discovering Refinement Predicates

The infeasibility of a path reported by the model checker reveals the necessity to refine the
abstract program. As we have already stated above, we must additionally consider a set of
predicates that makes the spurious error path infeasible. By definition of the weakest precon-
dition (Definition 2.8) the set of all predicates encountered during the feasibility computation
suffices to explain the infeasibility. If we consider Example 7.3, an abstraction over the predi-
cates {FALSE}, {locked}, {inode->i_rdev>>8==major}, and {&inode->i_rdev>>8==major} to-
gether with the predicates that were used to generate the abstract program in Figure 3.4(a)
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would provide enough detail to make the spurious error path infeasible. Therefore, for an in-

feasible path si,..., s, with the corresponding sets of preconditions Py, ..., P, the predicate
set
U 7 (7.1)
i=1,...,n

yields an abstraction that does not contain this very path.

A first implementation of this algorithm showed immediately that it yields far too many
predicates. In the example from above, the predicate {FALSE} is of absolutely no use for the
abstraction algorithm, since it does not add any information. Even for simple examples, the
calculation of the abstract programs became unacceptably long after a few iterations. There-
fore, we implemented a more sophisticated algorithm that reduces the number of predicates
that explain the infeasibility of a spurious error path.

We introduce the notion of a condition thread. Each predicate in the set of weakest
preconditions P; for a statement s; originates from an assumption statement s; with 4 < j. It
was either directly introduced by the assumption statement s; or it resulted from a (repetitive)
application of the predicate transformer WP on the predicate that was introduced by the
assumption statement s;. We denote such a predicate as p; ; and define it as follows:

Definition 7.1. Let s; be the assumption assume(yp). If s; is not a scope statement and
1 < j, then

- { WP(si,pi—1,) if si is an assignment statement
i

; . . 7.2
Di—1,j if s; is an assumption (7:2)

If s; is a beginning-of-scope statement that contains a declaration of one of the variables
referenced in p;—1j, then p;; is undefined. If s; is a beginning-of-scope statement that does
not declare any variables referenced by p; 1, then p;j = p;—1;. If s; is an end-of-scope
statement, then p; ; = p;i—1,j. If i = 7, then p; ; = ¢. For i > j, p;; is not defined.

Definition 7.2 (Condition Threads). A condition thread is a sequence of predicates
[Dijs Die1,j,-- -+ Pj,j] corresponding to a (sub-)path s;,...,s;, where s; is an assumption state-
ment. We denote the first element of this list the head of the condition thread.

Corollary 7.3. If the head of a condition thread is a predicate representing a false formula
then the corresponding (sub-)path is infeasible.

A path may have more than one associated condition thread. Each assumption introduces
a new condition thread. Each beginning-of-scope-statement potentially kills a condition thread
(i.e., the predicates that occur in this condition thread have no influence on the feasibility of
the path anymore, because the head of this condition thread is undefined).

As in the naive approach, we process the path from its end towards its beginning. The
condition threads are constructed on the fly. In each step we consider the conjunction of
the heads of the actual condition threads (this corresponds to the conjunction of the pre-
conditions for the actual statement, as described in Section 7.1). The path is infeasible iff
this conjunction yields a contradiction (due to the definition of the weakest precondition).

Example 7.4. Figure 7.4 shows condition threads associated with a the path of Figure 7.1.
The assume(locked) statement introduces a new condition thread. After processing the assign-
ment statement usecount = usecount + 1; the head of this condition thread is still {locked},
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condition thread 1 condition thread 2
locked = FALSE; {FALSE} {inode.i_rdev:> 8 =major}
{ struct inode *inode, ...; {locked} {inode.i_rdev:> 8 =major}
itrr:)%ziizgl;d;e %il;)rilg;;(iz;my_ﬁle; {locked} {inode.i_rdev>> 8 =major}
ass(lilﬁide—ﬁ_rdev» 8 =major); {locked} —| {inode—i_rdev:> 8 =major}
e ecount+; {locked}
assume(locked); — {locked}

Figure 7.4: Condition Threads

since the weakest precondition for this assignment leaves the predicate unmodified. The next
assumption statement introduces a second condition thread, but leaves the head of the first
condition thread unmodified. The basic block modifies the heads of the second thread. The
declarations of the beginning-of-scope-statement do not contain variables that are referenced
by the head of either thread, therefore none of the two threads is killed. Finally, the head of
the first thread is modified by the predicate transformer WP for locked = FALSE;.

In each step, we check if the conjunction of the heads of the actual threads yields a
contradiction. If this is the case, the computation can be terminated and the infeasibility of
the path is proved. If the complete path has been processed and the conjunction of the heads
is no false formula then the path is feasible.

If the inspected path turns out to be infeasible we have to determine a set of predicates
that explains the infeasibility. If one of the heads of the condition threads represents a false
formula then the elements of this thread are sufficient to explain the infeasibility (due to
Corollary 7.3). Otherwise, we try to determine a subset of condition threads that suffices to
explain the infeasibility.

We consider the shortest thread (which is always the one that has been introduced last)
first and work towards the longest thread (the one that has been introduced first). We do
not consider killed threads. The computation involves the following steps:

L. Sort the heads py j,, Pk js» - --» Pk,j, Dy ascending order of j; (i.e., consider the shortest
threads first) and store them in a list. Start with an empty set of predicates and call it
T.

2. Consider the next head in the list and add it to I". Construct the conjunction /\,ﬁ er Vi
and check if it yields a contradiction. If this is the case, continue with step 3, otherwise
reiterate step 2.
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3. The element py, ;, that was added to I' last is decisive for the contradiction. Therefore,
compute the syntactic cone-of-influence as introduced in Section 4.4.5 by Formula 4.10
and remove all predicates from I' that are not involved in the contradiction.

4. The threads whose heads are in ' are sufficient to explain the infeasibility of the path.
Therefore, add the elements of these threads to I'.

5. Finally, remove all predicates that are false from I". Return I'.

Note that this algorithm does not yield a minimal set of predicates that explain the feasi-
bility. The result could be improved by eliminating one predicate at a time and by checking
if the remaining set of predicates is still sufficient to explain the infeasibility. However, we
have found that in practice the resulting set of predicates is a good approximation.

Example 7.5. The algorithm discovers that the predicate {locked} is sufficient to explain the
infeasibility of the path presented in Figure 7.1. This is because the head of the first condition
thread in Figure 7.4 is FALSE, and therefore the predicates of the second thread are discarded.
Considering this predicate in the next abstraction yields a new abstract program that does not
allow this very path to be feasible.

The watchful reader will have noticed that we have ignored the problems that occur in
connection with pointers and aliases in a path. The reason is that our current implementation
of BOOP does not support pointers, as we have already mentioned in Section 4.3.1. However,
since the path does not contain any branching statements, it would be possible to determine
the exact location that is aliased by a pointer with help of a pointer analysis.

7.3 Comparison to Newton

As we have already mentioned, our feasibility checking algorithm differs from the algorithm
used by the SLAM NEWTON tool. We give a short summary of the algorithm presented
in [BR02] and compare its results to the results of our algorithm.

Instead of using the WP predicate transformer, NEWTON calculates the strongest post-
condition of the given path. In [BR02] the strongest post-condition (SP) is defined as follows:

SP(x:=e) = \f3z".f[z' /2] A (z = e[z /z])

SP(assume(e)) = Af.f Ae (7.3)

For a sequence of statements, p = s1, $2,..., 8y, SP(p) = SP(s,)0SP(sp—1)0...0SP(s1),
where g o h denotes the functional composition Az.g(h(z)) of two functions. The quantifiers
are eliminated by introducing Skolem constants. The path is processed from its beginning
towards its end, and each time when a variable z is used in statement s without being defined,
a “symbolic constant” 6, is introduced and “x := #,” is inserted immediately before statement
s.

NEWTON uses a a slightly modified version of the strongest post-condition to symbolically
simulate the path. For this purpose, NEWTON maintains the following three components:

- 2 maps each variable to its actual “value”, i.e. if an assignment z := e associates a
variable with an expression e, then the updated Q will map z to Q(e).
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- ® is used to store the conditions introduced by assumptions. Each time an assumption
assume(e) is encountered, 2(e) will be added to the set of conditions.

- II is a relation that represents the past valuations to the variables in the path. If an
assignment statement z := e is encountered, then (z,Q(z)) is added to II before Q is
updated (if = is an element of the domain of ).

NEWTON processes the path p until it either its end is reached or SP(p’)(true) becomes
false for a sub-path p’ of p. In the former case, the path p is feasible. In the latter case, p’ is
infeasible. Then the set of predicates that explains the infeasibility is extracted as follows:

For each pair (z,e) in IT let C((z,e)) denote the boolean expression (z =5 e) (where =,
is used to distinguish this equality from equalities that arise from assume statements). C is
defined similar for x — e in Q. C is generalized to maps and sets of pairs the usual way.
Then, the set of predicates £ = C'(Q) UC(IT) U @ is sufficient to explain the infeasibility of p.

NEWTON attempts to reduce the number of these predicates by considering sub-paths of
p and by applying a heuristic to eliminate predicates.

NEWTON attempts to get rid of the Skolem constants by post-processing the resulting
predicates. The post-processing step keeps 6, if x has been updated since the initial use of
z and eliminates 8, otherwise. NEWTON is not always able to replace the Skolem constants.
Therefore, the predicates that NEWTON discovers may contain Skolem constants that do not
occur in the original C program. Therefore, C2BP, the abstraction tool of the SLAM toolkit,
has to insert additional assignments into the code before a new abstraction can be calculated.

Since BOOP uses the weakest pre-condition instead of the strongest post-condition to
check the feasibility of a path, it is not necessary to introduce Skolem constants. Therefore,
there is also no necessity to modify the original C program.

The advantage of the algorithm that NEWTON uses is that it augments ® resp. II with
only one predicate for each processed statement. BOOP adds one predicate if an assumption
is encountered, but it potentially adds one new predicate to each condition thread if an
assignment is encountered. However, BOOP implicitly performs a data flow analysis [ASUS86],
i.e. assignments that have no influence on predicates that occur later in the program are
ignored. Furthermore, if a predicate is not affected by an assignment, no new predicate is
added.

Example 7.6. Figure 7.5 shows the intermediate results’® of the feasibility calculation of
NEWTON for the path presented in Figure 7.1. Obuviously, these intermediate results involve
a number of predicates that are not necessary to explain the infeasibility. We assume that
NEWTON can discard most of these predicates with help of the heuristic that is mentioned
(but not explained in detail) in [BR02]. However, if NEWTON fails to remove all predicates
that refer to the Skolem constant 03, C2BP has to insert the assignment “usecount= 03” into
the original C program.

7.4 Problematic C Programs

We have already stated that there are C programs that force the SLAM and BOOP toolkits
to iterate very often. In fact, due to the undecidability of the halting problem, there are also

2NEWTON handles pointers and aliasing slightly different than presented here. However, for reasons of
simplicity we omit a detailed description of these matters.
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Path pl Q P 11

locked = FALSE; locked—FALSE

&inode = 6, locked—FALSE, &inoder 6,

tmp; = &inode; locked—FALSE, &inode— 6y,
tmpy — 01

&my file = 0, locked—FALSE, &inode— 61,
tmp; — 601, &my _file— 6o

tmpy = &my file; locked—FALSE, &inode— 6,
tmpy; — 6y, &my_file— 65,
tmps — 0

inode = tmpy; locked—FALSE, &inode— 6y,

tmp; +— 6y, &my_file— 65,
tmps — 02, inode— 91

usecount = 3 locked—FALSE, &inode— 6y,
tmp; — 6y, &my_file—~ 65,
tmps > 6>, inode— 6y,
usecount— 63, ...
usecount = usecount + 1; locked—FALSE, &inode— 61, ... (usecount,f3)
tmpy; — 6y, &my_file— 65,
tmps +— 6, inode— 6y,
usecount— A3 + 1, ...
assume (locked) ; locked—FALSE, &inoder 6, (FALSE),... ( usecount,fs)
tmpy; — 6y, &my_file— 65,
tmps +— 6, inode— 6y,
usecount— A3 + 1, ...

Figure 7.5: NEWTON Feasibility Calculation for Figure 7.1

programs for which the algorithm does not converge®. A high number of iterations results in
an unacceptable response time of the toolkit. In this section, we present a class of programs
for which the approach is practically inapplicable.

Remember that BOOP is forced to reiterate if an error path that the model checker
suggests is infeasible. Assume that the label ¢ in a C program is only reachable if a loop is
iterated IC times:

i=0;
while (1 < K) {

i=1+1;

IS Raad

It is necessary that ¢ is indeed reachable and that there are no other assumptions that

In [BRO1] it is stated that the SLAM refinement algorithm may not converge due to the undecidability of
property checking
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make the path infeasible. Let us inspect the first few iteration steps our algorithm would pass
through for the given C program:

1. Assume that the abstraction algorithm is started with the empty set of predicates.
Obviously, the model checker will find a path that reaches the label /. However, the
refinement algorithm cannot prove the feasibility of such a path, since for this purpose
it would have to show that the guard of the loop is false at label £. This attempt must
fail, since (1 < K) evaluates to true under the assumption that K is very large.

2. The refinement algorithm suggests the new predicate {—(: < K)} to improve the ab-
straction. Thus, the abstraction algorithm will generate a boolean program similar to
the following program:

{=(: < K)} := choose(0,1);
while (*) do
assume (! {=(i < K)});

{_‘(Z < K)} := choose ({~(i < K)}, 0);
od
assume ({—(1 < K)});
l:

3. Again, the model checker will find a path that reaches the label ¢ by executing the loop
body once, because choose ({—(i < )}, 0) returns 0 or 1 non-deterministically (note
that {—( < )} is 0 when choose is called).

4. Of course, the path found by the model checker is not feasible, since =(i < K) cannot
be true after one iteration of the loop. By investigating the spurious counter example,
the refinement algorithm will find one new predicate, namely —(i + 1 < K).

5. After several iterations of the abstraction/refinement algorithm, the boolean program
will contain a block of assignments that represents a binary counter:

{-( <K},

{—|(i +1< IC)},
{—|(i+1+1 <IC)}
<KIV{-(i+1<O}, H=(i+1+1<)V{-(i+1<K)}P;
<K} V{-GE+1<KO}V{-(G+1+1 <KL H=(E+1+1<K)}P),
<K} V{-G+1<K}Vv{-(i+1+1<K)}, 0);

choose ({—(
choose ({—(i
choose ({—(

After each iteration, the feasibility checking algorithm adds a new predicate to the
abstraction predicate set. This is crucial, since it prevents us from aborting the ab-
straction/refinement cycle*. Only after K 4 1 iterations BOOP determines that the
path is feasible (because —(i + K < K) is true for ¢ = 0).

If a greatest fixpoint of the abstraction predicate set is found, then execution can be aborted, since an
additional iteration would yield no new results
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A similar problems occurs for programs that use recursion instead of iteration. Therefore,
the algorithm is inadequate for such programs. A typical example would be a program that
contains an off by one error or a buffer overflow error.



Chapter 8

Conclusions

In this chapter we summarize the work presented in this thesis and present an assessment of
the results. Finally we point out open problems and gives suggestions for future work.

8.1 Synopsis

In this thesis we have presented an approach for automatic software verification based on
the SLAM project [BRO1] of Microsoft Research. We have described how C programs can
be abstracted to such an extent that a model checking tool can be applied to determine the
reachability of erroneous states. We used predicate abstraction to translate C programs to
Boolean Programs. The concrete states of the C program were mapped to abstract states,
which were represented by a finite set of predicates. We presented the algorithm that we used
to calculate the abstract state transitions that approximate the changes of the concrete state
space. Furthermore we proved the correctness of this algorithm.

We presented a formalization of C expressions in terms of the logic of the HOL98 theorem
prover.

Furthermore we explained how the model checker MOPED translates Boolean Programs
to pushdown systems. We discussed why the counter examples provided by MOPED may
present spurious execution traces that are not feasible in the original C program, and we
presented a way to determine the feasibility of such paths. Furthermore we explained how
such spurious counter examples can be used to refine the abstraction. Our algorithm for
discovering new predicates differs from the algorithm implemented in the NEWTON tool, and
we have pointed out its advantages and disadvantages.

We have provided an example of how the approach can be used to validate temporal safety
properties, and we showed that the approach is not suitable for a certain class of programs.

8.2 Assessment of Results

Due to the early state of the implementation, the BOOP toolkit could only be applied to
relatively small examples. Based on the results of the tests we carried out, we draw the
following conclusions:

e Applicability. We believe that the approach is suitable for industrial development, since
it requires no scientific skills of the programmer. Since there is no need to learn a
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specification language (and therefore no need for initial training) the method is likely to
be accepted by programmers. The fact that the approach was developed by scientists
at Microsoft Research raises the hope that it will soon be integrated into widely-used
development environments.

Scalability. We were not able to perform a practical evaluation of the scalability of our
approach, because the BOOP toolkit is not yet applicable to real world C programs.
In Section 7.4 we have presented a class of programs that demand an unacceptably
large number of abstraction/refinement cycles, which make the algorithm practically
infeasible. Furthermore, software systems that make heavy use of complicated (floating
point) computations are likely to overcharge the theorem prover.

The applicability for validation of temporal safety properties in operating systems is
not affected by these restrictions. We believe that the approach is well suited for the
verification of device drivers and embedded systems software, due to the lack of float-
ing point computations in such applications. Experimental results of other research
teams [BRO1, HIMS02] confirm this assumption.

8.3 Open Problems and Future Work

There are several unfinished tasks and open problems that could not be addressed within
the scope of this thesis. First, we summarize the problems that can be easily overcome by
investing more resources. Then we discuss several inherent limitations of the approach.

We provide an enumeration of problems that need to be addressed by future projects. We

do believe that no further theoretical investigation is necessary to solve these problems; they
are mainly of practical nature.

e Pointer Analysis. Due to the lack of a pointer analysis, the current implementation of

BOOP is not applicable to real world C programs like the Linux kernel. The implemen-
tation of a pointer analysis algorithm as presented in for example [Ste96] or [Das00] is
therefore indispensable in case that the development of the BOOP toolkit is continued.

Complete Formalization of C expressions. The formalization of C expressions (presented
in Chapter 5) is incomplete. Several important operations are not yet covered. In
particular, it is necessary to formalize bit manipulation operations, due to their heavy
use in device drivers.

Missing C constructs. At the moment, not all C constructs are yet covered by BOOP.
The most urgent extension would be to handle C expressions with side effects. Further
on, several control flow constructs like for-loops, switch-statements and case-labels,
goto-statements and break/continue-statements are not yet supported.

Repeated FEffort in Abstraction Calculation. At the moment, the abstraction of the
complete program is re-calculated in each refinement step, even if parts of the code are
not affected by the new predicates. This problem was addressed by the developers of
the BLAST toolkit by using lazy abstraction [HIMS02]. The BLAST toolkit restricts
the code regions that are iteratively abstracted. A similar extension would be desirable
for the BOOP toolkit.
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e Optimization of Theorem Proving. The principal aim of our project was to close the
abstraction/refinement cycle. Therefore, our integration of the theorem prover is sub-
optimal. Caching of the calls to the theorem prover would be desirable to improve the
performance. Furthermore, optimizations of the decision procedure are necessary. It
might be worthwhile to investigate the suitability of various formalizations of bounded
integer types (e.g. the word theory of HOL98, or BDDs) for our approach.

The approach we presented has some inherent restrictions. The following problems are
candidates for further theoretical investigation. There might be ways to overcome these
problems by extending the approach or by combining it with other approaches.

e FExternal Functions. At the moment the programmer must supply stubs for external
functions. Partly, this is necessary anyway, because the interface constraints are speci-
fied in terms of function stubs. However, the programmer should not be forced to supply
stubs for external functions that are not relevant parts of the interface. We are not yet
completely sure how (and if) this problem can be overcome, since external functions
can potentially change the complete state space. For open software systems, i.e. sys-
tems that do not use libraries for which source code is not available, no restrictions are
imposed. A specification pool with stubs for common libraries that are only available
as binaries would be an interesting subject for future work.

e Specifications in Temporary Logic. The MOPED model checker supports specifications
in LTL logic [ES01]. This yields counter examples that do possibly contain iterations
(i.e. a path that contains a while loop but no conditional statements). We believe that
the feasibility of such error traces with cycles is harder to decide than the feasibility of
non-cyclic traces; However, we were yet unable to prove this assumption. Extending
the specification language with LTL logic would be very desirable.

e Object Oriented Languages. Investigation of the extensibility of our approach to object
oriented languages would be worthwhile. We believe that the treatment of object ori-
ented languages imposes the need for a more sophisticated pointer analysis. Since C
and C++ share the same internal representation in the GCC, extending BOOP to cover
C++ should be possible.
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