
Boolean Satisfiability Solvers:
Techniques and Extensions

Georg WEISSENBACHER a and Sharad MALIK a

a Princeton University

Abstract. Contemporary satisfiability solvers are the corner-stone of many suc-
cessful applications in domains such as automated verification and artificial intelli-
gence. The impressive advances of SAT solvers, achieved by clever engineering and
sophisticated algorithms, enable us to tackle Boolean Satisfiability (SAT) problem
instances with millions of variables – which was previously conceived as a hope-
less problem. We provide an introduction to contemporary SAT-solving algorithms,
covering the fundamental techniques that made this revolution possible. Further,
we present a number of extensions of the SAT problem, such as the enumeration
of all satisfying assignments (ALL-SAT) and determining the maximum number of
clauses that can be satisfied by an assignment (MAX-SAT). We demonstrate how
SAT solvers can be leveraged to solve these problems. We conclude the chapter
with an overview of applications of SAT solvers and their extensions in automated
verification.

Keywords. Satisfiability solving, Propositional logic, Automated decision procedures

1. Introduction

Boolean Satisfibility (SAT) is the problem of checking if a propositional logic formula
can ever evaluate to true. This problem has long enjoyed a special status in computer
science. On the theoretical side, it was the first problem to be classified as being NP-
complete. NP-complete problems are notorious for being hard to solve; in particular,
in the worst case, the computation time of any known solution for a problem in this
class increases exponentially with the size of the problem instance. On the practical
side, SAT manifests itself in several important application domains such as the design
and verification of hardware and software systems, as well as applications in artificial
intelligence. Thus, there is strong motivation to develop practically useful SAT solvers.

However, the NP-completeness is cause for pessimism, since it is unlikely that we
will be able to scale the solutions to large practical instances. While attempts to develop
practically useful SAT solvers have persisted for almost half a century, for the longest
time it was a largely academic exercise with little hope of seeing practical use. For-
tunately, several relatively recent research developments have enabled us to tackle in-
stances with millions of variables and constraints – enabling SAT solvers to be effectively
deployed in practical applications including in the analysis and verification of software.

This chapter provides an introduction to contemporary SAT-solving techniques and
is organised as follows: Section 2 introduces the syntax and semantics of propositional
logic. The remaining chapter is split into three parts: The first part (Section 3) covers the

techniques used in modern SAT solvers. Further, it covers basic extensions such as the
constructions of unsatisfiability proofs. For instances that are unsatisfiable, the proofs of
unsatisfiability have been used to derive an unsatisfiable subset of constraints of the for-
mula, referred to as the UNSAT core. The UNSAT core has seen successful applications
in model checking. The second part (Section 4) considers extensions of these solvers
that have proved to be useful in analysis and verification. Related to the UNSAT core are
the concepts of minimal correction sets and maximally satisfiable subsets. A maximally
satisfiable subset of an unsatisfiable instance is a maximal subset of constraints that is
satisfiable, and a minimal correction set is a minimal subset of constraints that needs to
be dropped to make the formula satisfiable. Section 4 discusses how these concepts are
related and covers algorithms to derive them. The third part (Section 5) discusses ap-
plications of the techniques presented in the Sections 3 and 4 in the field of automated
verification. These applications include automated test case generation, bounded model
checking and equivalence checking, and fault localisation. Finally, Appendix A provides
a number of exercises and their solutions.

2. Preliminaries

This section establishes the notation and syntax we employ throughout this chapter and
the meaning (semantics) that is assigned to it.

2.1. Propositional Logic

Propositional logic is a formalism that enables us to make statements about propositions
(or variables). While propositions may have some underlying meaning associated with
them (e.g., the implicit meaning of x1 being true may be that “it is raining outside”), we
do not concern ourselves with such interpretations, but merely require that each proposi-
tion can have exactly one of two truth values (true or false).

2.1.1. Notation

Let V be a set of n propositional logic variables and let 0 and 1 denote the elements of the
Boolean domain B representing false and true, respectively. Every Boolean function f
Bn
→ B can be expressed as a propositional logic formula F in n variables x1, . . . , xn ∈

V . The syntax of propositional logic formulae is provided in Figure 1.
The interpretation of the logical connectives {−,+, ·,→,↔,⊕} is provided in Ta-

ble 1. We use≡ to denote logical equivalence. For brevity, we may omit · in conjunctions
(e.g., x1x3). An assignment A is a mapping from V to B, and A(x) denotes the value
that A assigns to x . We call A a total assignment if A is a total function. Otherwise, A is
a partial assignment. A satisfies a formula F(x1, . . . xn) iff F(A(x1), . . . ,A(xn)) is de-
fined and evaluates to 1 (denoted byA |H F). A formula F is satisfiable iff ∃A .A |H F ,
and unsatisfiable (inconsistent, respectively) otherwise. We use #AF to denote the num-
ber of satisfying total assignments of a formula F and drop the subscript if F is clear
from the context. A formula F holds iff A |H F for all total assignments A.

We use LitV = {x, x | x ∈ V} to denote the set of literals over V , where x is
the negation of x . Given a literal ` ∈ LitV , we write var(`) to denote the variable
occuring in `. A cube over V is a product of literals `1 . . . `m such that `i ∈ LitV and

x y x x · y x + y x → y x ↔ y x ⊕ y

0 0 1 0 0 1 1 0
0 1 1 0 1 1 0 1
1 0 0 0 1 0 0 1
1 1 0 1 1 1 1 0

Table 1. Definition of Propositional Logic Operators

formula ::= formula · formula | formula + formula |
formula→ formula | formula↔ formula |
formula ⊕ formula | formula | (formula) | atom

atom ::= propositional identifier | constant
constant ::= 1 | 0

Figure 1. Syntax of Propositional Logic

formula ::= formula · (clause) | (clause)
clause ::= clause + literal | literal
literal ::= atom | atom
atom ::= propositional identifier

Figure 2. Syntax of Propositional Logic in Conjunctive Normal Form

var(`i) 6= var(` j) for all i, j ∈ {1..m} with i 6= j . We write ` ∈ C to indicate that
the literal ` occurs in a cube C . Given an assignment A, we use CA to denote the cube∏n

i=1 `i where `i = xi if A(xi) = 1 and `i = x i otherwise.

2.1.2. Conjunctive Normal Form

The Conjunctive Normal Form (CNF) of a formula is a restricted form of propositional
logic formulae. Figure 2 shows the syntax of propositional logic formulae in CNF. A
formula in CNF is product of sums (a conjunction of clauses, respectively). Note that the
empty clause (denoted by �) corresponds to the logical value 0.

The formula x1 ·(x1+x2)·(x1+x2)·x1 is in CNF, for instance. A commonly used al-
ternative (and more compact) representation of this formula is (x1) (x1 x2) (x1 x2) (x1),
i.e., the logical connectives · and + are dropped, since they are clear from the context.

Clauses are commonly regarded as sets of literals. While we stick to the notation
defined in Figure 2, we will implicitly assume that clauses have the properties of sets
of literals. Accordingly, (x1 x2 x2) and (x1 x2) are indistinguishable from their logically
equivalent counterparts (x1 x2) and (x2 x1), respectively. Therefore, a formula in CNF
is a set of sets of literals. Note that this representation implicitly incorporates factoring
(i.e., merging of unifiable literals).

Each formula F in propositional logic can be transformed into CNF. Unfortu-
nately, the resulting formula may be exponentially larger than F . It is, however, pos-
sible to construct a formula G in CNF such that F and G are equi-satisfiable (i.e.,
(∃A .A |H F)↔ (∃A .A |H G)) and the size of G is polynomial in the size of the orig-
inal formula F . Such an equi-satisfiable formula can be obtained by means of Tseitin’s

transformation [Tse83]. Given a formula F in propositional logic (as defined in Figure 1),
this transformation involves the following steps:

1. Recursively replace each sub-formula (F1B F2) of the original formula F (where
B ∈ {−,+, ·,→,↔,⊕}) with a fresh propositional identifier x and add the
constraint x ↔ (F1 B F2).

2. Rewrite the resulting formula into CNF by using the rules presented in Table 2.

Example 2.1 We demonstrate Tseitin’s transformation by converting the formula
(y ↔ z) into conjunctive normal form.

1. The first step is to replace (y ↔ z) with a fresh propositional identifier x1. After
adding the corresponding constraint, we obtain x1 · (x1 ↔ (y ↔ z))

2. In the next step, we replace x1 with x2. This step is optional, since (x1) is already
in clausal form. This transformation step yields the formula

x2 · (x2 ↔ x1) · (x1 ↔ (y ↔ z)) .

3. This formula can be rewritten according to Table 2:

x2 · (x2 ↔ x1)︸ ︷︷ ︸
(x1+x2)·(x1+x2)

· (x1 ↔ (y ↔ z))︸ ︷︷ ︸
(x1+y+z)·(x1+z+y)·(y+z+x1)·(y+z+x1)

4. We obtain an equi-satisfiable formula in CNF:

x2 · (x1+ x2) · (x1+ x2) · (x1+ y+ z) · (x1+ z+ y) · (y+ z+ x1) · (y+ z+ x1)

We also encourage the reader to solve the Exercises 1 and 2 in Section A.

3. Boolean Satisfiability Checking: Techniques

In this section, we formally introduce the problem of Boolean satisfiability (SAT) and
present a number of techniques to tackle it.

3.1. Problem Definition

Definition 3.1 (Boolean Satisfiability Problem) Given a propositional logic formula
F, determine whether F is satisfiable.

The Boolean Satisfiability Problem, usually referred to as SAT, is a prototypical NP-
complete problem [Coo71], i.e., there is no known algorithm that efficiently solves all
instances of SAT. While Definition 3.1 refers to formulae in propositional logic in gen-
eral, the problem can be easily reduced to formulae in CNF: Using Tseitin’s transforma-
tion (c.f. Section 2.1.2), any arbitrary propositional formula can be transformed into an
equi-satisfiable formula in clausal form. It is therefore sufficient to focus on formulae in
conjunctive normal form.

Negation:
x ↔ y ≡ (x → y) · (y → x)

≡ (x + y) · (y + x)

Disjunction:
x ↔ (y + z) ≡ (y → x) · (z→ x) · (x → (y + z))

≡ (y + x) · (z + x) · (x + y + z)

Conjunction:
x ↔ (y · z) ≡ (x → y) · (x → z) · ((y · z)→ x)

≡ (x + y) · (x + z) · ((y · z)+ x)

≡ (x + y) · (x + z) · (y + z + x)

Equivalence:
x ↔ (y ↔ z) ≡ (x → (y ↔ z)) · ((y ↔ z)→ x)

≡ (x → ((y → z) · (z→ y)) · ((y ↔ z)→ x)

≡ (x → (y → z)) · (x → (z→ y)) · ((y ↔ z)→ x)

≡ (x + y + z) · (x + z + y) · ((y ↔ z)→ x)

≡ (x + y + z) · (x + z + y) · (((y · z)+ (y · z))→ x)

≡ (x + y + z) · (x + z + y) · ((y · z)→ x) · ((y · z)→ x)

≡ (x + y + z) · (x + z + y) · (y + z + x) · (y + z + x)

Table 2. Tseitin transformation [Tse83] for standard Boolean connectives

There are two important sub-classes of SAT:

• 2-SAT. Each clause of the formula contains at most 2 literals. The satisfiability
of such 2-CNF formulae can be decided in polynomial time [Kro67]: each clause
(`1 `2) can be rewritten as an implication `1 → `2 (or 1→ `1 and `1 → 0 in case
of a clause (`1) with only one literal). The formula is satisfiable if the transitive
closure of the implications does not yield 0. This approach effectively amounts to
resolution (see Section 3.2).
• 3-SAT. Each clause of the formula contains at most 3 literals. This form is relevant

because any arbitrary formula in CNF can be reduced to an equi-satisfiable 3-CNF
formula by means of Tseitin’s transformation (Section 2.1.2).

3.2. Resolution Proofs

The resolution principle states that an assignment satisfying the clauses C+ x and D+ x
also satisfies C + D. The clauses C + x and D + x are the antecedents, x is the pivot,
and C + D is the resolvent. Let Res(C, D, x) denote the resolvent of the clauses C and
D with the pivot x . The corresponding resolution rule is formally described below.

C + x D + x
C + D

Res

Resolution corresponds to existential quantification of the pivot and subsequent
quantifier elimination, as demonstrated by the following sequence of logical transforma-
tion steps (where F(x←e) denotes the substitution of all free occurrences of x in F with
the expression e):

∃x . (C + x) · (D + x)

≡ ((C + x) · (D + x))(x←1) + ((C + x) · (D + x))(x←0)

≡ (C + 1)︸ ︷︷ ︸
1

· (D + 1)︸ ︷︷ ︸
D

+ (C + 0)︸ ︷︷ ︸
C

· (D + 0)︸ ︷︷ ︸
1

≡C + D

The repeated application of the resolution rule results in a resolution proof.

Definition 3.2 A resolution proof R is a directed acyclic graph (VR, ER, pivR, λR,sR),
where VR is a set of vertices, ER is a set of edges, pivR is a pivot function, λR is the clause
function, and sR ∈ VR is the sink vertex. An initial vertex has in-degree 0. All other
vertices are internal and have in-degree 2. The sink has out-degree 0. The pivot func-
tion maps internal vertices to pivot variables of the respective resolution step. For each
internal vertex v and (v1, v), (v2, v) ∈ ER , λR(v) = Res(λR(v1), λR(v2), pivR(v)).

A resolution proof R is a refutation if λR(sR) = �. A refutation R is a refutation
for a formula F (in CNF) if the label of each initial vertex of R is a clause of F .

Example 3.1 (Unit Propagation and Resolution) Figure 3 shows an example of a res-
olution proof for the formula

(x1) · (x1 + x2) · (x1 + x2) · (x1) . (1)

In Figure 3, each node v is represented by its label λ(v) (the parentheses around the
literals are dropped since each node is associated with exactly one clause and there is
no risk of ambiguity). Moreover, Figure 3 does not show the pivot variables explicitly,
since they are uniquely determined by the clauses labelling a node and its predecessors
and therefore clear from the context.

Note that this formula is a 2-CNF formula and can therefore be solved by means of
transitive closure of the corresponding implications. Equivalently, the unsatisfiability of
Formula (1) can be established by repeated application of the unit-resolution rule:

` D + `

D
URes

Here, ` denotes a literal over the pivot variable.

3.3. The Davis-Putnam Procedure

The resolution rule is sufficient to devise a complete algorithm for deciding the satisfia-
bility of a CNF formula [Rob65].

x1

x1x2 x1x2 x1

x2

x1

�

Figure 3. Resolution proof

Theorem 3.1 (Completeness of Propositional Resolution) If F is an inconsistent for-
mula in CNF, then there is a resolution refutation for F.

Proof sketch. By induction over the number of variables in F (c.f. [Bus98]). In the base
case, where no variables appear in F , the formula must contain the empty clause �. For
the induction step, let x be a fixed variable in F , and let F1 to be the formula defined as
follows:

1. For all clauses (C+ x) and (D+ x) in F , the resolvent Res((C+ x), (D+ x), x)
is in F1.

2. Every clause C in F which contains neither x nor x is in F1.

It is clear that x does not occur in F1 unless F contains trivial clauses C for which
{x, x} ⊆ C . W.l.o.g., such tautological clauses can be dropped. Then, F1 is satisfiable if
and only if F is, from whence the theorem follows by the induction hypothesis.

Remark Resolution is merely refutation-complete, i.e., while it is always possible to
derive � from an inconsistent formula, it does not enable us to derive all valid impli-
cations: we cannot deduce (x + y) from (x) by means of resolution, for instance, even
though the latter obviously entails the former.

The constructive proof sketch above is interesting for two reasons:

• It demonstrates that propositional resolution is refutation-complete even if we fix
the order of pivots along each path in the proof, and
• it outlines a decision procedure which is known as Davis-Putnam proce-

dure [DP60].

We refer to the algorithm presented in [DP60] as “Davis-Putnam” procedure or sim-
ply DP. The Davis-Putnam procedure comprises three rules:

1. 1-literal rule. Whenever one of the clauses in F is a unit clause, i.e., contains
only a single literal `, then we obtain a new formula F1 by

(a) removing any instances of ` from the other clauses, and
(b) removing any clause containing `, including the unit clause itself.

This rule obviously subsumes unit-resolution (see Example 3.1).
2. The affirmative-negative rule. If any literal ` occurs only positively or only nega-

tively in F , then remove all clauses containing `. This transformation obviously
preserves satisfiability.

3. The rule for eliminating atomic formulae. For all clauses (C + x) and (D+ x) in
F , where neither C nor D contain x or x , the resolvent Res((C + x), (D+ x), x)
is in F1. Moreover, every clause C in F which contains neither x nor x is in F1.

The last rule can make the formula increase in size significantly. However, it com-
pletely eliminates all occurrences of the atom x . The correctness of the transformation is
justified by the resolution principle (see Section 3.2).

In practice, the resolution rule should only be applied after the 1-literal rule and
affirmative-negative rule. The 1-literal rule is also known as unit propagation and lends
itself to efficient implementations.

Once this option is exhausted, we face a choice of which pivot variable x to resolve
on. While there is no “wrong” choice that forfeits completeness (as established in the
proof of Theorem 3.1), a “bad” choice of a pivot may result in a significant blowup of the
formula, and therefore retard the performance of the solver. We postpone the discussion
of selection strategies to Section 3.7.

3.4. The Davis-Putnam-Logeman-Loveland Procedure

For realistic problems, the number of clauses generated by the DP procedure grows
quickly. To avoid this explosion, Davis, Logemann, and Loveland [DLL62] suggested
to replace the resolution rule with a case split. This modified algorithm is commonly
referred to as DPLL procedure. It is based on the identity known as Shannon’s expan-
sion [Sha49]:

F ≡ x · F(x←1) + x · F(x←0) (2)

Accordingly, checking the satisfiability of a formula F can be reduced to testing F ·x
and F · x separately. The subsequent application of unit propagation (the 1-literal rule,
respectively) can reduce the size of these formulae significantly. This transformation,
applied recursively, yields a complete decision procedure.

In practice, this split is not implemented by means of recursion but in an iterative
manner (using tail recursion, respectively). We keep track of the recursive case-splits and
their implications using an explicit trail. Each entry in this trail represents an assignment
to a variable of F imposed by either a case split or by unit propagation. We refer to the
former kind of entries as guessed and to the latter as implied assignments.

Definition 3.3 (Clauses under Partial Assignments) A trail represents a partial as-
signment A to the variables V of F.

• A clause C is satisfied if one or more of its literals evaluates to 1 under the partial
assignment A.
• A clause C is conflicting if all of its literals are assigned and C evaluates to 0

under A.
• A clause C becomes unit under a partial assignment if all but one of its literals

are assigned but C is not satisfied. As such, C gives rise to an implied assignment.
In this case, we say that C is the antecedent of the implied assignment.
• In all other cases, we say that the clause C is unresolved.

Example 3.2 Consider the clauses

C1 ≡ (x1 x4 x3) and C2 ≡ (x3 x2) .

Level Partial Assignment Clauses Trail
0 – (x1 x4 x3)(x3x2)

1 {x1 7→ 1} (x1 x4 x3)(x3x2) x1, guessed
2 {x1 7→ 1, x4 7→ 1} (x1 x4 x3)(x3x2) x4, guessed

{x1 7→ 1, x4 7→ 1, x3 7→ 1} (x3)(x3x2) x3, implied
{x1 7→ 1, x4 7→ 1, x3 7→ 1, x2 7→ 0} (x2) x2, implied

Table 3. Assignment trail for Example 3.2

Table 3 shows a possible trail for this instance. Initially, neither of the clauses is
unit, forcing us to guess an assignment for one of the variables and thus to introduce
a new decision. We choose to explore the branch in which x1 is assigned 1 first. The
first entry in the trail, the literal x1, represents this decision. Neither of the clauses is
unit under this assignment; we decide to assign x4. The clause C1 is unit under the
partial assignment {x1 7→ 1, x4 7→ 1} and implies the assignment x3 7→ 1 (note that we
mark the assignment as “implied” in the trail). This assignment, in turn, makes C2 unit,
imposing the assignment x2 7→ 0. The resulting assignment satisfies C1 as well as C2.

A trail may lead to a dead end, i.e., result in a conflicting clause, in which case we
have to explore the alternative branch of one of the case splits previously made. This
corresponds to reverting one of the decisions or backtracking, respectively.

Example 3.3 (Backtracking) Consider the set of clauses

C1 ≡ (x2 x3) C2 ≡ (x1x4) C3 ≡ (x2x4) C4 ≡ (x1x2x3) .

Figure 4(a) shows a trail that leads to a conflict (assignments are represented as
literals, c.f. Section 2.1.1). Clause C4 is conflicting under the given assignment. The last
(and only) guessed assignment on the given trail is x1 7→ 1. Accordingly, we backtrack
to this most recent decision (dropping all implications made after this point) and revert
it to x1 7→ 0 (see Figure 4(b)). We tag the assignment x1 7→ 0 as implied, since x1 7→ 1
led to a conflict. Thus, we prevent that this assignment is reverted back to x1 7→ 1 at a
later point in time, which would lead to a non-terminating loop.

When backtracking enough times, the search algorithm always yields a conflicting
clause or a satisfying assignment and eventually exhausts all branches. However, always
reverting the last decision made is not necessarily the best strategy, as the following
example from [Har09] shows.

Example 3.4 Consider the clauses C1 ≡ (x1 xn xn+1) and C2 ≡ (x1 xn xn+1) as part
of an unsatisfiable formula F. Exploring the trail x1 x2 · · · xn−1 xn leads to a conflict
forcing us to backtrack and explore the trail x1 x2 · · · xn−1xn . Since F is unsatisfiable, we
are eventually (perhaps after further case-splits) forced to backtrack. Unfortunately, each
time we change one of the assignments to x2, . . . , xn−1, we will unnecessarily explore
the case in which xn is 1 again, since the solver is “unaware” of the fact that x1 → xn
(which follows from Res(C1, C2, xn+1)).

The next section introduces conflict clauses as a means to prevent the repeated ex-
ploration of infeasible assignments.

x1, guessed

x4, implied

x2, implied

x3, implied

�
(a) Conflicting trail

x1 7→ 0, x2 7→ 0, x3 7→ 1

x1, guessed

x4, implied

x2, implied

x3, implied

�

x1, implied

x2, guessed

x3, impliedba
ck

tr
ac

k
(b) Trail after backtracking

Figure 4. Backtracking

3.5. Conflict-Driven Clause Learning

In their solvers GRASP and RELSAT, João Marques-Silva and Karen Sakallah [MSS96],
and Roberto Bayardo and Robert Schrag [JS97], respectively, introduced a novel mech-
anism to analyse the conflicts encountered during the search for a satisfying assignment.

First, they partition trails into decision levels according to recursion depth of the
case-splits performed.

Definition 3.4 (Decision Levels) Each recursive application of the splitting rule gives
rise to a new decision level. If a variable x is assigned 1 (owing to either a case split
or unit propagation) at decision level n, we write x@n. Conversely, x@n denotes an
assignment of 0 to x at decision level n.

Secondly, the implications in a trail are represented using an implication graph.

Definition 3.5 (Implication Graph) An implication graph is a labelled directed acyclic
graph G(V, E).

• The nodes V represent assignments to variables. Each v ∈ V is labelled with a
literal and its corresponding decision level.
• Each edge in an implication graph represents an implication deriving from a

clause that is unit under the current partial assignment. Edges are labelled with
the respective antecedent clauses of the assignment the edge points to.
• An implication graph may contain a single conflict node (indicated by the symbol

�), whose incoming edges are labelled with the corresponding conflicting clause.

Example 3.5 (Implication Graph for Example 3.2) Figure 5 shows the implication
graph for the trail presented in Example 3.2.

x1@1

x4@2

x3@2 x2@2
C1

C1

C2

Figure 5. An implication graph for the trail in Table 3

x1@1 x4@1 x2@1 x3@1
C2 C3 C1 C4

�

Figure 6. An implication graph with a conflict

If the implication graph contains a conflict, we can use it to determine the decisions
that led to this conflict. Moreover, it enables us to derive a conflict clause, which, if added
to the original formula, prevents the algorithm from repeating the decision(s) that led to
the conflict.

Example 3.6 (Implication Graph with Conflict) Figure 6 shows an implication graph
for a trail emanating from the decision x1 7→ 1 for the clauses

C1 ≡ (x2 x3), C2 ≡ (x1x4), C3 ≡ (x2x4), C4 ≡ (x1x2x3) .

The final node in the graph represents a conflict. The initial node of the graph is labelled
with the decision that causes the conflict. Adding the unit clause (x1) to the original
clauses guarantees that the decision x1 will never be repeated.

Example 3.7 Figure 7 shows a partial implication graph for the clauses

C1 ≡ (x1x3x5), C2 ≡ (x1x2), C3 ≡ (x2x4), and C4 ≡ (x3x4)

and the decisions x1@5 and x5@2. Using the implication graph, the decisions responsi-
ble for the conflict can be easily determined. Adding the conflict clause (x1 + x5) to the
original formula rules out that this very combination of assignments is explored again.

The advantage of conflict clauses over simple backtracking becomes clear when
we revisit Example 3.4. Using an implication graph, we can quickly determine the as-
signments x1@1 and xn@m which caused a conflict for either C1 ≡ (x1 xn xn+1) or
C2 ≡ (x1 xn xn+1). The conflict clause (x1 + xn) eliminates this combination, pruning
a large fraction of the search space which simple backtracking would have otherwise
explored.

After adding a conflict clause, at least some of the decisions involved in the conflict
need to be reverted (otherwise, the trail remains inconsistent with the clauses). Changing
an assignment in the trail might invalidate all subsequently made decisions. Therefore, if
we backtrack to a certain decision level n, we discard all decisions made at a level higher
than n. It is clear that, of all decisions contributing to the conflict clause, we have to at
least revert the one associated with the current decision level (x1@5 in Example 3.7, for

x1@5

x3@5

x5@2

x2@5

x4@5

C4

C4
�

C1

C1

C2 C3

Figure 7. An implication graph for Example 3.7

instance). The conflict-driven backtracking strategy suggests to backtrack to the second
most recent decision level in the conflict clause [MZM+01] (level 2 in Example 3.7).
This strategy has a compelling advantage: The conflict clause is unit (or assertive) under
the resulting partial assignment. For instance, (x1 + x5) in Example 3.7 immediately
implies x1 in this scenario.

3.6. Conflict Clauses and Resolution

Clause learning with conflict analysis does not impair the completeness of the search
algorithm: even if the learnt clauses are dropped at a later point during the search, the
trail guarantees that the solver never repeatedly enters a decision level with the same
partial assignment.

We show the correctness of clause learning by demonstrating that each conflict
clause is implied by the original formula. The following example is based on [KS08].

Example 3.8 (Conflict Clauses and Resolution) Figure 8 shows a partial implication
graph for the clauses

C1 ≡ (x4 x10 x6) C2 ≡ (x4 x2 x5) C3 ≡ (x5 x6 x7) C4 ≡ (x6 x7) .

The conflicting clause in this example is C4. The immediate cause for the conflict
are assignments x6@6 and x7@6 to the literals x6 and x7 of the clause C4. These literals
are implied by the clauses C3 and C1, respectively. Clearly, C3 and C4 (and C1 and C4)
do not agree on the assignment of x7 (and x6, respectively). Accordingly, if we construct
the resolvent of C3 and C4 for the pivot x7, we obtain a clause C5:

C5 ≡ Res(C4, C3, x7) ≡ (x5 x6)

While C5 is certainly conflicting under the current partial assignment, we will not
use it as a conflict clause: both x5 and x6 are assigned at decision level 6 and therefore
C5 is not assertive after backtracking.

x4@6

x5@6

x6@6

x10@2

x2@2

x7@6

�
C4

C4

C2

C1

C2

C1

C3

C3

Figure 8. Conflict analysis and resolution

As previously mentioned, C1 is the antecedent of x6, and by a similar resolution step
as before we obtain

C6 ≡ Res(C5, C1, x6) ≡ (x4 x5 x10) .

Again, x4 as well as x5 are assigned at decision level 5. The clause C2 is the an-
tecedent of x5, and we execute a final resolution step:

C7 ≡ Res(C6, C2, x5) ≡ (x2 x4 x10)

The resulting clause (x2 x4 x10) has the virtue of containing only one literal which
is assigned at decision level 6 while still conflicting with the current partial assignment.
Accordingly, if we backtrack to a decision level below 6, C7 becomes assertive, forcing
the solver to flip x4. Therefore, we choose C7 as conflict clause. Note that this clause cor-
responds to a cut (shown in Figure 8) that separates the (implied and guessed) decisions
causing the conflict from the conflicting node.

We observe in Example 3.8 that it is possible to derive a conflict clause from the
antecedents in the implication graph by means of resolution. These antecedents might
in turn be conflict clauses. However, by induction, each conflict clause is implied by
the original formula. Formal arguments establishing the completeness and correctness of
clause learning and conflict analysis are provided in [MS95,MS99,Zha03].

The following example (based on the example presented in [MSS96]) demonstrates
that, in general, there is a choice of assertive conflict clauses.

Example 3.9 Consider the partial implication graph in Figure 9. Figure 10 shows three
possible cuts that separate the decisions causing the conflict from the conflicting node.
This results in three candidates for conflict clauses:

x1@7

x3@7

x7@1

x2@7

x4@7

x5@7

x6@7

x9@4

x8@4

C3

�

C2

C2

C1 C3 C4

C5

C4

C5

C6

C6

Figure 9. An implication graph with two unique implication points

x1@7

x3@7

x7@1

x2@7

x4@7

x5@7

x6@7

x9@4

x8@4

C3

�

C2

C2

C1 C3 C4

C5

C4

C5

C6

C6

Figure 10. Possible cuts separating decision variables from the conflicting clause

1. C7 ≡ (x8 x1 x7 x9)
2. C8 ≡ (x8 x4 x9)
3. C9 ≡ (x8 x2 x3 x9)

We can dismiss the last clause, since it fails to be assertive after backtracking. The
clauses (x8 x1 x7 x9) and (x8 x4 x9), however, are viable candidates for a conflict clause.

À If conflict at decision level 0→ UNSAT
Á Repeat:

Ê if all variables assigned return SAT
Ë Make decision
Ì Propagate constraints
Í No conflict? Go to Ê
Î If decision level = 0 return UNSAT
Ï Analyse conflict
Ð Add conflict clause
Ñ Backtrack and go to Ì

Figure 11. The DPLL algorithm with clause learning

The distinguishing property of clauses C7 and C8 when compared to clause C9 in
Example 3.9 is that the former two clauses contain only one literal assigned at the current
decision level. This literal corresponds to a unique implication point (UIP).

Definition 3.6 (Unique Implication Point) A unique implication point is any node
(other than the conflict node) in the partial conflict graph which is on all paths from the
decision node1 to the conflict node of the current decision level.

Accordingly, we can stop searching for a conflict clause (which is done by means of
resolution) once we reach a unique implication point. But which UIP should we choose?
We will base our choice on the following property of the conflict clause corresponding to
the UIP closest to the conflict (referred to as the first UIP): by construction, the conflict
clause induced by the first UIP subsumes any other conflict clause except for the asserting
literal. For instance, in Example 3.9, C7 ≡ (x8 x1 x7 x9) contains all literals that occur
in C8 ≡ (x8 x4 x9), except for the literal x4 which was assigned at decision level 6.
Therefore, choosing C8 as conflict clause has the following advantages:

1. The conflict clause C8 is smaller than C7, making it a more likely candidate for
unit implications at a later point in the search algorithm.

2. Stopping at the first UIP has the lowest computational cost.
3. The second most recent decision level in the clause C8 is at least as low as in

any other conflict clause, which forces the solver to backtrack to a lower decision
level.

The “first UIP” strategy is implemented in CHAFF [ZMMM01], whereas GRASP
[MSS96], in contrast, learns clauses at all UIPs.

Figure 11 shows the complete DPLL algorithm with clause learning.

3.7. Decisions and Decision Heuristics

Step Á.Ë of the algorithm Figure 11 leaves the question of which variable to assign
open. As we know from Section 3.3, this choice has no impact on the completeness of the
search algorithm. It has, however, a significant impact on the performance of the solver,
since this choice is instrumental in pruning the search space.

1The decision node of the current decision level is a unique implication point by definition.

3.7.1. 2 Literal Watching for Unit Propagation

The choice is clear as long as there are clauses that are unit under the current assign-
ment. The book-keeping required to detect when a clause becomes unit can involve a
high computational overhead if implemented naı̈vely, though. The authors of the CHAFF
solver [MZM+01] observed that it is sufficient to watch in each clause any two literals
that have not been assigned, yet: a clause with m literals can only be unit (or conflicting)
after at least m − 1 of its literals have been set to 0. Assignments to the non-watched
literals can be safely ignored. When a variable is assigned 1, the solver only needs to
visit clauses where the corresponding watched literal is negated. Each time one of the
watched literals is assigned 0 the solver chooses one of the remaining unassigned literals
to watch. If this is not possible, the clause is necessarily unit under the current partial
assignment: any sequence of assignments that makes a clause unit will include an assign-
ment of one of the watched literals. The computational overhead of this strategy is rela-
tively low: in a formula with n clauses and m variables, 2 · n literals need to be watched,
and n/m clauses are visited per assignment on average. One of the key advantages of
this approach is that the watched literals do not need to be updated upon backtracking.
This is in contrast to the solver SATO [Zha97], for instance, which uses head and tail
pointers that need to be updated whenever decisions are reverted.

In the case that no clauses are unit under the current partial assignment, however,
it is necessary to choose a decision variable in step Á.Ë in Figure 11. In the following,
we will discuss only a few such selection strategies; we refer the reader to [MS99] and
[KS08] for a more complete overview over heuristics for choosing decision variables.

3.7.2. Dynamic Largest Individual Sum

It is conventional wisdom that it is advantageous to assign the most tightly constrained
variables, i.e., variables that occur in a large number of clauses. On representative of such
a selection strategy is known as the dynamic largest individual sum (DLIS) heuristic. At
each decision point, it chooses the assignment that satisfies the most unsatisfied clauses.
Formally, let px be the number of unresolved clauses containing x and nx be the number
of unresolved clauses containing x . Moreover, let let x be variable for which px is maxi-
mal, and let y be variable for which ny is maximal. If px > ny , choose 1 as the value for
x . Otherwise, choose y 7→ 0. The disadvantage of this strategy is that the computational
overhead is high: the algorithm needs to visit all clauses that contain a literal that has
been set to true in order to update the values px and nx for all variables contained in
these clauses. Moreover, the process needs to be reversed upon backtracking.

3.7.3. Variable State Independent Decaying Sum

A heuristic commonly used in contemporary SAT solvers favours literals in recently
added conflict clauses. Each literal is associated with a counter, which is initialised to
zero. Whenever a (conflict) clause is added, its literals are boosted, i.e., the respective
counters are increased. Periodically, all counters divided by constant, resulting in a decay
causing a bias towards recent conflicts. At each decision point, the solver then chooses
the unassigned literal with the highest counter (where ties are broken randomly by de-
fault). This approach, known as the variable state independent decaying sum (VSIDS)
heuristics, was first implemented in the CHAFF solver [MZM+01]. CHAFF maintains
a list of unassigned literals sorted by counter. This list is only updated when conflict

clauses are added, resulting in a very low overhead. Decisions can be made in constant
time.

The emphasis on variables that are involved in recent conflicts leads to a locality
based search, effectively focusing on sub-spaces [MZ09]. The sub-spaces induced by
this decision strategy tend to coalesce, resulting in more opportunities for resolution of
conflict clauses, since most of the variables are common.

Representing the counter using integer variables leads to a large number of ties.
MINISAT avoids this problem by using a floating point number to represent the
weight [ES04a]. Another possible (but significantly more complex) strategy is to con-
centrate only on unresolved conflicts by maintaining a stack of conflict clauses [GN02].

3.8. Unsatisfiable Cores

Given an unsatisfiable instance F , we can use the techniques described in Section 3.6
to construct a resolution refutation (see Definition 3.2 in Section 3.2). Intuitively, such
a refutation identifies a reason for the inconsistency of the clauses in F . The clauses at
the leaves of a resolution refutation are a subset of the clauses of F . By construction, the
conjunction of these clauses is unsatisfiable.

Definition 3.7 (Unsatisfiable Core) Given an unsatisfiable formula F ≡ C1 ·C2 · · ·Cn ,
any unsatisfiable subset of the set of clauses of F is an unsatisfiable core.

Resolution proofs and unsatisfiable cores have applications in hardware verifica-
tion [McM03]. Note that a formula typically does not have a unique unsatisfiable core.
The following example demonstrates how we can use a SAT solver to construct an un-
satisfiable core.

Example 3.10 (Constructing Unsatisfiable Cores) Consider the following formula in
conjunctive normal form:

(x + y) · (x + y) · (x + z) · (x + z) · (z + y + x)

The problem instance does not contain unit literals, so the satisfiability solver is forced
to make a decision. The VSIDS heuristic (see Section 3.7) assigns the highest priority to
the literal x. Accordingly, the solver assigns x 7→ 0. This decision immediately yields
a conflict, as depicted in Figure 12(a). Accordingly, the solver derives a conflict clause
(x) – the justifying resolution step is shown in Figure 12(b). The conflict clause (x)
forces the solver to assign x 7→ 1 at decision level zero (x@0). Again, this leads to a
conflict (see Figure 12(c)). The corresponding conflict clause is (x) (see Figure 12(d)).
This time, however, the conflict occurs at decision level zero and the satisfiability solver
determines that the instance is unsatisfiable. The SAT solver finalises the resolution proof
by resolving (x) and (x) (see Figure 12(e)).

The unsatisfiable core

{ (x + y), (x + y), (x + z), (x + z) }

can be easily extracted from the resolution proof in Figure 12(e). The clause (z + y + x)
did not contribute to the contradiction and is therefore not contained in the core.

z@1

x@1

�

(x + z)

(x + z)

(a) Implication
graph for implica-
tion x@0

x + zx + z

x
(b) Resolution for conflict
clause (x)

y@0

x@0

�

(x + y)

(x + y)

(c) Implication
graph for decision
x@1

x + yx + y

x
(d) Resolution for conflict
clause (x)

x + yx + y

x

x + zx + z

x

�
(e) Final resolution proof

Figure 12. Construction of a resolution proof

An unsatisfiable core is minimal if removing any clause from the core makes the
remaining set of clauses satisfiable.

Definition 3.8 (Minimal and Minimum Unsatisfiable Cores) Let UC be an unsatisfi-
able core of the formula F (i.e., a set of clauses UC ⊆ F such that C1 · C2 · · ·Cn → 0
if Ci ∈ UC for 1 ≤ i ≤ n). The unsatisfiable core UC is minimal if removing any one
of its clauses Ci leaves the conjunction of the remaining clauses UC \Ci satisfiable. An
unsatisfiable core is minimum if the original formula does not contain an unsatisfiable
core UC2 such that |UC2| < |UC|.

3.9. Incremental Satisfiability Solving

Many applications of SAT solvers require solving a sequence of similar instances which
share a large number of clauses. Incremental satisfiability solvers [Str01,KSW01] sup-
port the reuse of learnt clauses in subsequent calls to the SAT solver when only a fraction
of the clauses of the original problem have changed. To this end, an incremental solver
drops all learnt clauses and reverts all decisions that derive from clauses that are part of
the original instance but not of the subsequent related problem.

Example 3.11 Recall the formula from Example 3.3:

(x2 + x3) · (x1 + x4) · (x2 + x4) · (x1 + x2 + x3)

Assume that the SAT solver derives the initial satisfying assignment

{x1 7→ 0, x2 7→ 0, x3 7→ 1, x4 7→ 0}

for this formula, which can be represented as the cube x1 · x2 · x3 · x4. Note that at this
point the SAT solver has learnt the clause (x1) (c.f. Figure 4).

Assume that in the next step we want to add the clause (x1 + x2 + x3 + x4) (which
happens to be the negation of x1 · x2 · x3 · x4) to the current set of clauses:

(x2 + x3) · (x1 + x4) · (x2 + x4) · (x1 + x2 + x3) · (x1)︸︷︷︸
learnt

· (x1 + x2 + x3 + x4)︸ ︷︷ ︸
new clause

Note that, while we have to revert the decisions made during the first run of the SAT
solver, we are allowed to retain the learnt clause (x1), since it is a logical consequence
of the original formula (i.e., at decision level 0). The SAT solver can now proceed to
find a new satisfying assignment (e.g., {x1 7→ 0, x2 7→ 1, x3 7→ 1, x4 7→ 1}). In this
example, the new clause (x1+ x2+ x3+ x4) guarantees that this assignment differs from
the previous one.

3.10. Pre-processing Formulae

This section covers pre-processing techniques presented in [EB05] which enable us to
reduce the size of the formula either before passing it to a satisfiability checker or during
the search process.

3.10.1. Subsumption

A clause C1 is said to subsume a clause C2 if C1 ⊆ C2, i.e., all literals in C1 also occur
in C2. If formula in CNF contains two clauses C1 and C2 such that C1 subsumes C2,
then C2 can be discarded. This is justified by the fact that, given a resolution proof, we
can replace any occurrence of a clause C2 by a clause C1 which subsumes C2 without
invalidating the correctness of the proof. In fact, such a modification typically enables a
reduction of the size of the proof [BIFH+11].

3.10.2. Self-subsuming Resolution

Even though initial instance does not necessarily contain clauses subsuming others, such
clauses may materialise during the search process. Eén and Biere [EB05] observes that
formulae in CNF often contain clauses (x+C1) which almost subsume clauses (x+C2)
(where C1 ⊆ C2). After one resolution step we obtain the clause Res((x + C1), (x +
C2), x) = C2, which subsumes (x+C2). Accordingly, the clause (x+C2) can be dropped
after resolution. Eén and Biere dubbed this simplification rule self-subsuming resolution.

Efficient data structures for implementing (self-)subsumption are presented in [EB05].

3.10.3. Variable Elimination by Substitution

Formulae that are encoded in CNF using the transformation introduced in Section 2.1.2
(or a similar approach) typically contain a large number of functionally dependent vari-
ables, namely the fresh variables introduced to represent terms (or gate outputs, respec-
tively). In the following formula, for instance, the value of the variable x is completely
determined by the values of y and z (c.f. Example 2.1):

(x ↔ (y ↔ z))︸ ︷︷ ︸
(x+y+z)·(x+z+y)·(y+z+x)·(y+z+x)

The algorithms previously presented are oblivious to this structural property and
therefore fail to exploit it.Eén and Biere [EB05] presents an approach that eliminates
dependent variables by substitution in an attempt to reduce the size of the resulting for-
mula. First, note that the auxiliary variable x can be eliminated using the rule for elim-
inating atomic formulae introduced in Section 3.3. The application of this rule amounts
to variable elimination by means of resolution. In general, given a set S of clauses all of
which contain x , we can partition S into clauses containing x and clauses containing x .
Let Sx

def
= {C |C ∈ S, x ∈ C} and Sx

def
= {C |C ∈ S, x ∈ C}. Abusing the notation we

introduced in Section 3.2, we define

Res(Sx , Sx , x)
def
= {Res(Cx , Cx , x) |Cx ∈ Sx , Cx ∈ Sx } .

A clause is trivial if it contains a literal and its negation. We observe that the pair-
wise resolution of the clauses corresponding to a definition of x introduced by the Tseitin
transformation (see Table 2) yields only trivial clauses. We demonstrate this for the defi-
nition x ↔ (y ↔ z) introduced in Example 2.1. Let

G def
= {(x + y + z), (x + z + y), (y + z + x), (y + z + x)}

denote the set of clauses introduced by the transformation. Splitting G as suggested
above yields

Gx = {(x + y + z), (x + z + y)} Gx = {(y + z + x), (y + z + x)} ,

and we obtain

Res(Gx , Gx , x) = {(y + z + z), (y + z + y), (z + y + y), (z + y + z)} .

The reader may verify that this holds for all transformations presented in Table 2.
Accordingly, given a set of clauses S (all of which contain x) and the definition G ⊆
S of x , we can safely omit the resolution steps Res(Gx , Gx , x). Let R = S \ G be
the remaining clauses that are not part of the definition of x . Then one can partition
Res(Sx , Sx , x) into

Res(Rx , Gx , x) · Res(Gx , Rx , x)︸ ︷︷ ︸
S′′

· Res(Gx , Gx , x)︸ ︷︷ ︸
G ′

· Res(Rx , Rx , x)︸ ︷︷ ︸
R′

.

In our example, Gx and Gx encode x + (y ↔ z) (i.e., x → (y ↔ z)) and x + (y ↔
z), respectively. Accordingly, Res(Rx , Gx , x) can be interpreted as substitution of (y ↔
z) for x in Rx (and similarly for Res(Gx , Rx , x)). As a consequence, R′ can be derived
from S′′ in a single hyper-resolution step (or a sequence of resolution steps) [GOMS04].
It is therefore admissible to replace S with S′′.

Example 3.12 Consider the CNF instance

(x1 + u)︸ ︷︷ ︸
Rx1

· (x1 + v)︸ ︷︷ ︸
Rx1

· (x1 + y + z) · (x1 + z + y)︸ ︷︷ ︸
Gx1

· (y + z + x1) · (y + z + x1)︸ ︷︷ ︸
Gx1

.

We obtain

S′′ ≡ (u + y + z) · (u + z + y) · (v + y + z) · (v + y + z) ,

allowing us to reduce the size of the original formula by two clauses.

A more elaborate example for this approach is provided in Exercise 10 in Ap-
pendix A.

4. Boolean Satisfiability Checking: Extensions

After covering contemporary techniques to generate satisfying assignments or refutation
proofs for propositional formulae in Section 3, we address a number of extensions of the
SAT problem (Definition 3.1). As we will see, an in-depth understanding of the internals
of SAT solvers is crucial to the techniques discussed in this section – the naı̈vely applying
a SAT solver as a black box may result in a suboptimal performance of the resulting
algorithm.

4.1. All-SAT

Given a satisfiable formula, the algorithms presented in Section 3 provide a single satis-
fying assignment. Some applications, however, require us to enumerate all satisfiable as-
signments of a formula [McM02]. It is easy to see that solving this problem is at least as
hard as the Boolean satisfiability problem (Definition 3.1). In fact, the problem of deter-
mining the number of satisfying assignments of a formula is a prominent representative
of the complexity class #P (see, for instance, [AB09]).

In practice, the problem can be tractable for certain instances, even though no poly-
nomial algorithm is known. We can force the SAT solver to enumerate all satisfying as-
signments by subsequently blocking all assignments previously found. As explained in
Section 2.1.1, any satisfying assignment A of a formula F can be represented as a cube
over the variables of F . The negation of such a cube is a clause (by De Morgan’s the-
orem). Adding this clause C to F effectively blocks the assignment, since C is clearly
in conflict with the current assignment. C is therefore called a blocking clause. In fact,
this approach has already been demonstrated in Example 3.11. To obtain all satisfying
assignments, the process in Example 3.11 is repeated until the formula becomes unsatis-
fiable.

While we can take advantage of incremental satisfiability checking algorithms
(c.f. Section 3.9), the size of the formula augmented with blocking clauses grows quickly.
Moreover, blocking clauses which contain all variables of the original instance are
less likely to become unit. Therefore, it is desirable to reduce the size of the blocking
clause [McM02], i.e., to construct a smaller clause which still blocks the assignment A.
One possibility is to block the decisions that led to the current assignment (this informa-
tion can be extracted from the trail described in Section 3.4). Let D be the cube repre-
senting these decisions. Clearly, F · D ↔ CA, i.e., the decisions, in conjunction with the
original formula, imply the single and unique assignment A (and vice versa). Moreover,
D→ CA. Therefore D is a viable candidate for blocking A.

An example application of All-SAT is presented in Example 4.7.

s = a ± b

FA

a3 b3

o
s3

FA

a2 b2

s2

FA

a1 b1

s1

FA

a0 b0

s0

m

(a) Ripple carry adder

ciba

co s

(b) Full adder

Figure 13. Encoding addition and subtraction in propositional logic

4.2. Cardinality Constraints

Satisfiability solvers are designed to work in the Boolean domain and do not support
numeric reasoning per se. There is a number of applications for which it is desirable,
however, to have at least rudimentary support for arithmetic over bounded domains. A
common approach is to represent binary numbers using the two’s complement system
and to encode arithmetic operations using their corresponding circuit representation. Fig-
ure 13 shows the encoding of addition/subtraction as a ripple-carry-adder (Figure 13(a)),
implemented as a chain of full adders (Figure 13(b)). This technique is known as eager
bit-flattening. We refer the reader to [KS08] for a more detailed treatment of this topic.

Cardinality constraints are a common application of numerical constraints. Given a
set {`1, . . . , `n} of literals, a cardinality constraint ((

∑
i `i) ≤ k) rules out all assign-

ments in which more than k of these literals evaluate to 1 (here,
∑

denotes the arithmetic
sum and not the logical “or” operator). This constraint can technically be encoded by
constructing a circuit that computes k − (

∑
i `i) (using a tree of adder-subtractors de-

picted in Figure 13) and checking for arithmetic underflow. Such an encoding, however,
introduces chains of exclusive-or gates. Note that exclusive-or is a non-monotonic oper-
ator (c.f. Table 1): a change of the value of a single variable occurring in a long chain
of exclusive-or gates may propagate and necessitate an alteration of the values of a large
number of subsequent variables in the chain (forced by unit-propagation), thus posing a
challenge to contemporary satisfiability checkers.

Figure 14 shows a sorting network for two literals, an alternative way of encoding
the constraint ((

∑
i `i) ≤ k) (where i = 2 in Figure 14). Intuitively, a sorting network

shuffles all input values that are 1 “to the left”, i.e., if m of the inputs of an n-bit sort-

S

`1 `2

o1 o2

`1 `2 o1 o2
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

o1
def
= `1 + `2

o2
def
= `1 · `2

Figure 14. A sorting network for two literals

ing network (where m ≤ n) are 1, then the output is a sequence of m ones followed by
n−m trailing zeroes. To encode an “at most k” constraint it is therefore sufficient to con-
strain the (k + 1)th output signal to 0. The advantage of this construction over the previ-
ously discussed encoding is that sorting networks can be built entirely from (monotone)
and-gates and or-gates (by cascading the circuit shown in Figure 14), thus avoiding the
exclusive-or gates (and the associated snowball effect caused by unit-propagation, as de-
scribed above) that retard the performance of the SAT solver. Sorting networks for n bits
can be implemented using O(n · (log n)2) (see, for instance, [Par92]) or even O(n · log n)
gates [AKS83].

4.3. Maximum Satisfiability Problem (MAX-SAT)

Even if a formula F is unsatisfiable, there might still be assignments which satisfy a large
number of its clauses. The maximum satisfiability problem (MAX-SAT) is concerned
with finding the largest number of clauses that can be satisfied by some assignment.

Definition 4.1 (Maximum Satisfiability Problem) Given a formula F in conjunctive
normal form, determine the maximum number of clauses of F that can be satisfied by
some assignment.

If (and only if) the formula F is satisfiable, then there is an assignment that satisfies
all of its clauses. Accordingly, the MAX-SAT problem is NP-hard. If, however, F is
unsatisfiable, one needs to determine the largest subset of the clauses of F which, if
conjoined, are still satisfiable. Equivalently, one can compute the smallest set of clauses
that need to be dropped from the original instance to make it satisfiable.

Example 4.1 Consider the unsatisfiable formula

(r + s + t) · (r + s) · (r) · (t) · (s) . (3)

Dropping the clause (t) makes the instance satisfiable. Note that the largest set of satis-
fiable clauses is not unique: dropping the clause (r) also results in a satisfiable formula
with four clauses as well.

The partial MAX-SAT problem is a generalisation of the MAX-SAT problem, in
which some of the clauses are tagged as hard and must not be dropped.

Definition 4.2 (Partial Maximum Satisfiability Problem) Given a formula F and a
set {C1, . . . , Cm} ⊆ F of hard clauses, determine the maximum number of clauses of F
that can be satisfied by some assignment A |H C1 · C2 · · ·Cm .

We refer to clauses of a partial MAX-SAT instance that are not hard as soft clauses.

Example 4.2 We revisit Example 4.1, but require that the clauses (r) and (t) of Formula
(3) must not be dropped this time. In this scenario, dropping (r+s+t) makes the formula
satisfiable. Note that dropping either (r + s) or (s) does not yield a satisfiable instance.

4.3.1. Relaxation Literals

The satisfiability checking techniques covered in Section 3 lack the ability to drop
clauses. Contemporary satisfiability solvers such as MINISAT [ES04a], however, do at
least provide the option to specify a partial assignment, which can be reverted in a sub-
sequent call to the solver without sacrificing the learnt clauses that do not depend on this
assignment.

As it turns out, this mechanism is sufficient to exclude clauses from the search pro-
cess if we augment these clauses with so called relaxation literals. A relaxation literal is a
literal over a variable v that does not occur in the original formula. If we replace a clause
Ci that is part of the original formula with the relaxed clause (vi +Ci), the literal vi acts
as a switch which enables us to activate the clause Ci by setting vi to 0. Conversely, the
solver will ignore (vi + Ci) if vi is set to 1 (by virtue of the affirmative-negative rule
introduced in Section 3.3).

Example 4.3 We continue working in the setting of Example 4.2. The following formula
resembles Formula 3, except for the fact that the soft clauses have been augmented with
the relaxation literals u, v, and w, respectively:

(u + r + s + t) · (v + r + s) · (r) · (t) · (w + s) . (4)

Now, any satisfiability solver can be used to determine that Formula 4 is satisfiable. The
resulting satisfying assignment to u, v, and w determines which clauses were “dropped”
by the solver.

Unfortunately, the technique outlined in Example 4.3 gives us no control over which,
and more importantly, how many clauses the solver drops. Unless we modify the decision
procedure, minimality is not guaranteed.

We can, however, restrict the number of dropped clauses by adding cardinality con-
straints (Section 4.2) to the relaxed formula. The corresponding constraint for the for-
mula in Example 4.3, (u + v + w) ≤ 1, instructs the SAT solver to drop at most one
clause. Moreover, we already know that the solver has to drop at least one clause, since
the original formula is unsatisfiable [MPLMS08]. In the case of Example 4.3, the SAT
solver will find a satisfying solution. The rather restrictive cardinality constraint, how-
ever, does not account for (partial) MAX-SAT solutions that require the relaxation of
more than one clause.

Example 4.4 Consider the unsatisfiable formula

(s) · (s) · (t) · (t) .

Note that this formula has two disjoint unsatisfiable cores (c.f. Section 3.8). Accordingly,
the formula

(u + s) · (v + s) · (w + t) · (x + t) · (
∑
{u, v, w, x} ≤ 1)

is still unsatisfiable.

The formula in Example 4.4 requires the solver drop at least two clauses. This can
be achieved by replacing the cardinality constraint with the slightly modified constraint∑
{u, v, w, x} ≤ 2. As outlined in Section 4.2, this can be easily achieved by modifying a

single unit clause as long as we use sorting networks to encode the constraint. Moreover,
such a modification does not necessarily require us to restart the search from scratch, as
mentioned in the first paragraph of Section 4.3.1. Incremental satisfiability solvers (see
Section 3.9) are able to retain at least some of the clauses learnt from the first instance.

Accordingly, it is possible to successively relax the cardinality constraint in an ef-
ficient manner. If we follow this scheme, we obtain an algorithm to solve the partial
MAX-SAT problem. If we successively increase the numeric parameter of the cardinality
constraint (by forcing one single assignment of a literal of the sorting network), starting
with one, we have a solution of the partial MAX-SAT problem readily at hand as soon
as the SAT solver finds a satisfying assignment.

4.3.2. Core-Guided MAX-SAT

Example 4.5 Consider the unsatisfiable formula

(r + t) · (r + s) · (s) · (s) · (t) · (t) ,

which resembles the formula in Example 4.4, except for the two clauses (r + t) and
(r + s). Neither of these clauses influences the satisfiability of the formula. Accordingly,
instrumenting these clauses with relaxation literals unnecessarily introduces additional
variables and increases the size of the sorting network.

It is possible to avoid this unnecessary overhead in Example 4.5 by excluding the
clauses (r + t) and (r + s) from the set of clauses the solver considers for removal
(relaxation, respectively). However, how can we know that this is sound? The exclusion
of a random clause may result in an invalid answer to the MAX-SAT problem.

The answer lies in the minimal unsatisfiable cores (Definition 3.8 in Section 3.8) of
the formula. A clause C that is not contained in any (minimal) unsatisfiable core of F
has no impact on the satisfiability of F . Accordingly, it is not necessary to instrument
C with a relaxation literal. It is therefore possible to use cores to guide the selection of
clauses to be relaxed [FM06] as demonstrated in the following example.

Example 4.6 We continue working in the setting of Example 4.5. Following the method
presented in Example 3.10, we obtain an initial core {(s), (s)}. Similar to Example 4.4,
we instrument the clauses occurring this core with fresh relaxation literals and impose a
cardinality constraint on these literals:

(r + t) · (r + s) · (u + s) · (v + s) · (t) · (t) · (
∑
{u, v} ≤ 1) (5)

This relaxation “deactivates” the core (and also overlapping non-minimal cores, which
demonstrates that the core guiding our instrumentation is not required to be minimal).

À While instance unsatisfiable, repeat:

Ê Obtain unsatisfiable core UC
Ë If UC contains no soft clauses, return UNSAT
Ì For all soft clauses {C1, . . . , Cn} ⊆ UC

∗ introduce fresh relaxation variable vi
∗ Ci = Ci ∪ {vi }

Í Add constraint
(∑n

i=1 vi
)
≤ 1

Á Obtain satisfying assignment A
Â Return number of relaxation literals vi with A(vi) = 1

Figure 15. A core-guided MAX-SAT algorithm

The modified formula (5), however, is still not satisfiable. It contains a second core,
namely {(t), (t)}. Defusing this core in a similar manner as the previous one yields

(r+t) · (r+s) · (u+s) · (v+s) · (w+t) · (x+t) · (
∑
{u, v} ≤ 1) · (

∑
{w, x} ≤ 1)

A final run of the satisfiability solver yields a satisfying assignment which indicates that
we need to relax two clauses. Note that it was not necessary to instrument the clauses
(r+ t) and (r+s) – this is a crucial advantage when it comes to large problem instances.

Figure 15 shows the pseudo-code of the core-guided MAX-SAT algorithm outlined
in Example 4.6. Note that the introduction of relaxation literals complicates the use of
incremental SAT algorithms (c.f. Section 3.9). At least the clauses learnt from hard con-
straints, however, can be retained across all instances.

4.4. Minimal Correction Sets (MCS)

In the previous section, the focus gradually shifted from clauses that can be satisfied
simultaneously to clauses that need to be dropped to obtain a satisfiable formula. A set
of clauses that has the latter property is also known as minimal correction set (MCS).
The complement of each maximal set of satisfiable clauses is an MCS. Accordingly,
minimal correction sets are a generalisation of the MAX-SAT problem [LS09] – as the
name indicates, we merely require minimality, i.e., in general, an MCS is not minimum.

Given this close relationship between the MAX-SAT problem and MCSes, it seems
natural to extend the algorithm from Figure 15 to compute correction sets. Indeed, the
algorithm readily provides one MCS (whose size, in fact, is minimum). But what if we
desire to compute more than one, or even all MCSes? The technique presented in [LS09]
is based on the algorithm in Section 4.3.2 and relies on blocking clauses (see Section 4.1)
to exhaustively enumerate all minimal correction sets.

The algorithm in Figure 16 uses several auxiliary helper functions which implement
techniques we have encountered in the previous sections.

• The procedure INSTRUMENT adds relaxation literals to clauses of the formula
provided as parameter. If no second parameter is provided, the procedure instru-
ments all clauses. Otherwise, the procedure only instruments clauses contained

À k = 1
Á MCSes = ∅
Â UCk = unsatisfiable core of F
Ã While (INSTRUMENT(F) · (BLOCK(MCSes)) is satisfiable

Ê Instrument clauses in UCk with relaxation literal:
Fk = INSTRUMENT(F , UCk) ·ATMOST(k, UCk)

Ë Enumerate satisfying assignments to relaxation variables:
MCSes = MCSes ∪ ALLSAT(Fk · BLOCK(MC Ses))

Ì UCk+1 = UCk ∪ core of Fk · BLOCK(MC Ses)
(projected to clauses of F)

Í k = k + 1

Ä return MCSes

Figure 16. A core-guided algorithm to compute MCSes

in the set of clauses provided as second parameter. This process is outlined in
Example 4.3.
• The procedure BLOCK adds blocking clauses that rule out the minimal correction

sets provided as parameter. To this end, BLOCK adds one blocking clause for each
MCS and assures thus that at least one clause of each MCS provided as parameter
is not dropped.
• ATMOST generates a cardinality constraint which states that at most k clauses

are dropped from the set of clauses provided as second parameter. (Cardinality
constraints are discussed in Section 4.2.) Note that, unlike in the algorithm in
Figure 15, which introduces one cardinality constraint per core, the algorithm in
Figure 16 introduces only a single constraint. This improvement over [FM06] was
first presented in [MSP08] and subsequently used in [LS09].
• ALLSAT enumerates all satisfying assignments to the relaxation literals con-

tained in the formula provided as parameter. In our context, each of these assign-
ments represents a minimal correction set. The respective techniques are covered
in Section 4.1.

At the core of the algorithm in Figure 16 lies the MAX-SAT algorithm from Fig-
ure 15. In particular, the first intermediate result of the algorithm in Figure 16 is the
set of all minimum correction sets, obtained by means of computing all solutions to the
MAX-SAT problem. Subsequently, the algorithm gradually relaxes the cardinality con-
straint, allowing for correction sets of a larger cardinality while blocking MCSes found
in previous iterations. In each iteration, the algorithm enumerates all correction sets of
cardinality k. By induction, this guarantees the completeness of the algorithm; a formal
argument is given in [LS09].

Example 4.7 We recall the Formula 3 presented in Example 4.1:

(r + s + t) · (r + s) · (r) · (t) · (s)

We simulate the algorithm in Figure 16 on this example. Since MCSes = ∅ in the initial
iteration of the algorithm, the relaxed formula in line Ã is satisfiable. If we follow the

algorithm presented in Section 3.8, the satisfiability solver returns the unsatisfiable core{
(r + s + t) , (r), (t), (s)

}
. Accordingly, the algorithm constructs the formula

(u + r + s + t) · (r + s) · (v + r) · (w + t) · (x + s) · (
∑
{u, v, w, x} ≤ 1)

Then, it incrementally constructs all satisfying assignments to {u, v, w, x} that are con-
sistent with this formula. We obtain the partial assignments

{u 7→ 1, v 7→ 0, w 7→ 0, x 7→ 0},

{u 7→ 0, v 7→ 1, w 7→ 0, x 7→ 0}, and

{u 7→ 0, v 7→ 0, w 7→ 1, x 7→ 0} .

and the corresponding blocking clauses (u), (v), and (w). The respective MCSes of car-
dinality one are {(r+s+ t)}, {r}, and {t}. Note that the partial assignment {u 7→ 0, v 7→
0, w 7→ 0, x 7→ 1} is not a satisfying assignment, since dropping the clause (s) does not
make the formula satisfiable – the unit clause (s) can be inferred from (r + s) and (r).
After blocking all MCSes (controlled by the variables {u, v, w, x}), we end up with the
formula

(u + r + s + t) · (r + s) · (v + r) · (w + t) · (x + s)

· (
∑
{u, v, w, x} ≤ 1) · (u) · (v) · (w) .

In step Ì, the algorithm constructs the core of this formula, replaces the instrumented
clauses with their original counterparts, and drops the cardinality constraint and the
blocking clauses from the core. We obtain the new core

{(r + s + t) , (r + s) , (r), (t)} .

Note that, since the blocking clauses do not prevent (s) from being dropped, the clause
(r + s) must be contained in this core.

In the next step, the algorithm increases k. Now, all clauses have to be instrumented
(since the union of both cores computed so far happens to be the set of all clauses of the
original formula), and all MCSes computed so far need to be blocked. In combination
with the new cardinality constraint, we obtain

(u + r + s + t) · (y + r + s) · (v + r) · (w + t) · (x + s) · (u) · (v) · (w)

·(
∑
{u, v, w, x, y} ≤ 2) .

Since neither dropping (s) nor dropping (r + s) from the original instance makes the
formula satisfiable, the algorithm determines the satisfying assignment {u 7→ 0, y 7→
1, v 7→ 0, w 7→ 0, x 7→ 1}. This assignment is in fact the only satisfying partial assign-
ment to the variables {u, v, w, x, y} for the given formula. The corresponding blocking
clause is (x + y).

We leave it to the reader to verify that INSTRUMENT(F) · (u) · (v) · (w) · (x + y)
in line Ã is now unsatisfiable, and that the algorithm therefore terminates reporting the
MCSes

{(r + s + t)}, {(r)}, {(t)}, and {(s), (r + s)} .

MCS (s) (r + s) (r) (s)

{(s)}
�� ��X

{(r), (s)} X
�� ��X

{(s), (r + s)} X
�� ��X

Minimal unsatisfiable cores:
�� ��{(s), (s)} {(r), (s), (r + s)}

Figure 17. MCSes are hitting sets of minimal unsatisfiable cores, and vice versa

4.5. Minimal Unsatisfiable Cores

We observed in Section 4.4 that a minimal correction set comprises clauses that need to
be dropped to “defuse” all unsatisfiable cores of a formula. Conversely, choosing at least
one clause from each minimal correction set of a formula yields an unsatisfiable core.
The following definition enables us to formalise this observation.

Definition 4.3 (Hitting Set) Given a set of sets S, a hitting set of S is a set H such that

∀S ∈ S . H ∩ S 6= ∅

Minimal correction sets and unsatisfiable cores are dual [LS08] in the following
sense:

• Let S be the set of all MCSes of an unsatisfiable formula F . Then each (minimal)
hitting set of S is a (minimal) unsatisfiable core (see Section 3.8).
• Let S be the set of all minimal unsatisfiable cores of an unsatisfiable formula F .

Then each (minimal) hitting set of S is a (minimal) correction set for F .

The following example illustrates this duality.

Example 4.8 The leftmost column in Figure 17 shows the set of all minimal correction
sets {{(s)}, {(r), (s)}, {(s), (r + s)}} for the unsatisfiable formula

F ≡ (s) · (r + s) · (r) · (s) .

The check-marks in the table indicate the occurrences of the clauses of F in the respec-
tive MCS. By choosing a subset of clauses of F which “hit” all MCSes, we obtain a
minimal unsatisfiable core. The formula F has two minimal unsatisfiable cores, namely
{(s), (s)} and {(r), (s), (r + s)}. The choice of appropriate “hitting” clauses is indicated
in Figure 17 by oval and rectangular boxes, respectively.

The problem of deciding whether a given set of sets has a hitting set of size k (or
smaller) is NP-complete ([Kar72] in [LS08]). An algorithm optimised for the purpose of
extracting cores from sets of MCSes can be found in [LS08].

Instead of presenting the algorithm suggested in [LS08], we draw the readers at-
tention to the fact that after the final iteration of the algorithm in Figure 16, the set of
clauses (BLOCK(MCSes)) in step Â is a symbolic representation of all minimal cor-

rection sets. Essentially, we are looking for assignments that satisfy the CNF formula
(BLOCK(MCSes)). Note that the phase of all literals in (BLOCK(MCSes)) is negative,
since the respective clauses block assignments of 1 to relaxation variables. Accordingly,
in order to find minimal unsatisfiable cores, we need to minimise the number of variables
set to 0 in the satisfying assignment to (BLOCK(MCSes)). Again, this can be achieved
by means of gradually relaxed cardinality constraints.

Example 4.9 In Example 4.7, we ended up with the blocking clause

(u) · (v) · (w) · (x + y) ,

where the relaxation literals u, v, w, x, and y correspond to the clauses (r+s+t), (r), (t),
(s), and (r + s), respectively. Each of the clauses is satisfied if at least one of its literals
evaluates to 1 (and the corresponding variable evaluates to 0, respectively). In order to
find a minimal hitting set, we constrain the literals using a cardinality constraint:

(u) · (v) · (w) · (x + y) ·
(∑
{u, v, w, x, y} ≤ k

)
Note that k has to be at least four, since there are four clauses which do not share

any literals. This threshold can be obtained using a syntactical analysis of the formula
or simply by incrementally increasing k until it is sufficiently large.

If we generate all minimal satisfying assignments to the constrained formula (using
blocking clauses in a way similar to Example 4.7) we obtain the following assignments
for k = 4:

{u 7→ 1, v 7→ 1, w 7→ 1, x 7→ 1, y 7→ 0} and

{u 7→ 1, v 7→ 1, w 7→ 1, x 7→ 0, y 7→ 1}

These assignments correspond to the minimal unsatisfiable cores

{(r + s + t), (r), (t), (s)}

{(r + s + t), (r), (t), (r + s)} .

The hitting set problem is equivalent to the set cover problem, an NP-complete prob-
lem that has been extensively studied in complexity theory. We do not claim that the
technique in Example 4.9 is competitive compared to other algorithms such as the one
presented in [LS08] – the purpose of the example is to gain a deeper understanding of
hitting sets.

The following section discusses examples of applications of the techniques pre-
sented in Sections 3 and 4.

5. Applications in Automated Verification

Contemporary SAT solvers are the enabling technology for a number of successful veri-
fication techniques. Bounded Model Checking, for instance, owes its existence to a large

extent to the impressive advances of satisfiability solvers. This section presents – with-
out claiming completeness in any way – a number of examples of how SAT solvers are
applied in contemporary verification tools. After discussing how propositional logic can
be used to represent circuits and software programs (Section 5.1), we discuss automated
test-case generation (Section 5.2), Bounded Model Checking (Section 5.3), and fault lo-
calisation (Section 5.4).

5.1. Encoding Circuits and Programs

There is a natural correspondence between combinational circuits, such as the full-adder
in Figure 13(b), and propositional logic formulae. Accordingly, the encoding of the cir-
cuit in Figure 13(b) is straight forward:

(o1 ↔ (a · b)) · (o2 ↔ (a ⊕ b)) · (o3 ↔ (o2 · ci)) ·

(s ↔ (o2 ⊕ ci)) · (co ↔ (o1 + o3))
(6)

As described in the first step of Tseitin’s encoding (presented in Section 2.1.2), the
encoding introduces fresh variables o1, o2, o3 that represent the inner signals and wires
of the circuit that do not correspond to inputs or outputs. Based on Formula 6, we can
construct a relation R which maps valuations to the input signals to the corresponding
output signals:

R(a, b︸︷︷︸
inputs

, s, co︸︷︷︸
outputs

)
def
= ∃o1 o2 o3 .

(
(o1 ↔ (a · b)) · (o2 ↔ (a ⊕ b)) · (o3 ↔ (o2 · ci))·

(s ↔ (o2 ⊕ ci)) · (co ↔ (o1 + o3))

)
(7)

Any satisfying assignment to this relation R (or to Formula 6, respectively) repre-
sents a possible combination of input/output signals, e.g.,

a 7→ 0, b 7→ 1, ci 7→ 1, s 7→ 0, co 7→ 1

corresponds to the case in which the full-adder yields a sum of zero and a set carry-out
bit for an input of 0 and 1 and a carry-in bit of value 1. The transition relation R (7) is a
symbolic encoding of all possible input/output pairs of the full-adder.

In a sequential circuit (see Figure 18(a)), the relation R encodes one execution cycle
of the circuit. It is possible to extend this representation to a fixed number of k execution
cycles by replicating (or unfolding) the combinational part of the circuit k times. The
unfolding yields an iterative logic array [ABF90] (as illustrated in Figure 18(b) for two
cycles). For each time-frame t , we introduce a fresh set of variables (as indicated by
the super-script t). The initial state of the circuit imposes no constraints on the internal
signals: their value can be either 1 or 0 (indicated by ? in Figure 18(b)).

Figure 18 shows a simple example of such an unfolding. The sequential circuit in
Figure 19(a) has two input signals i1 and i2 and one output signal o. In the corresponding
2-cycle unfolding in Figure 19(b) we introduce a fresh variable for each of these signals
in each execution cycle (e.g., i1

1 , i2
1 , . . .).

By means of Tseitin’s transformation (Section 2.1.2) we obtain the propositional
representation in Figure 20 of the unfolded circuit in Figure 19(b) in conjunctive normal

i

R

o

D Q

(a) Schema of a sequential circuit

i0

R

o0 i1

R

o1

?
l1

(b) Unwinding of the circuit in Figure 18(a)

Figure 18. Unwinding circuits

DQ

R

oi2

i1

(a) A sequential circuit

l1

i2
2

o1i1
2

i1
1

s

i2
1 t

o2

À Á

(b) A 2-cycle unfolding

Figure 19. A simple example of an unfolded circuit

cycle À (l1 i1
1) (l1 s) (i1

1 s l1) (i1
2 o1) (s o1) (o1 i1

2 s)
cycle Á (t i2

1) (t l1) (i2
1 l1 t) (i2

2 o2) (l1 o2) (o2 i2
2 l1)

Figure 20. Propositional encoding of the unwound circuit in Figure 19(b)

form. The clauses in Figure 20 are grouped with respect to the gates and cycles by which
they are contributed.

Each satisfying assignment of this formula represents a feasible execution of two
cycles of the sequential circuit in Figure 19(a). In general, k cycles are encoded by k
instances of the relation R:

R(Ei1, Eo1) · R(Ei2, Eo2) · · · R(Eik, Eok) (8)

(where Ei t , Eot represents the input and output variables of time-frame t).
Software programs can be encoded in a similar manner. The semantics of each in-

struction of a program is determined by the hardware implementation of the operators
that occur in the instruction. The addition of two 4-bit variables a and b, for instance, can
be encoded using the ripple-carry adder in Figure 13(a). Accordingly, each n-bit variable
a in the program is encoded using n propositional variables representing the n bits of a;

[x%2 = 0] [x%2 = 1]

x = x*2 x = x− 1

(a) Conditional instruction

[x0%2 = 0] [x0%2 = 1]

x1 = x0*2 x2 = x0 − 1

x3 = φ(x1, x2)
(b) Static Single Assignment Form

Figure 21. Encoding the control flow of software programs

this technique is known as bit-flattening or bit-blasting. We refer the reader to [KS08] for
a detailed treatment of various operators of common imperative programming languages
such as ANSI-C or Java.

Accordingly, an instruction at the program location ` of the given program can be
represented using a propositional relation R`(Ev

i , Ev j), where Evi refers to the propositional
variables representing the program state before the execution of the instruction and Ev j

refers to the variables representing the state after the execution. To avoid notational clut-
ter, we refrain from using the bit-level representation of program instructions and will de-
ploy a more abstract notation for transition relations (such as R`(x i , x j)

def
= (x j

= x i
+1)

for the instruction x++ at location `).
Unlike circuits, which are executed in a synchronous manner, software programs

typically have a control flow structure which determines which instruction is executed at
which point in time. Figure 21(a), for instance, illustrates the control flow graph (CFG)
of the conditional instruction if(x%2) { x=x*2; }else { x--; }. Accordingly, it is
not sufficient to simply encode all instructions as propositional relations; one also has to
take the control flow of the program into account.

In Figure 21(a), the variable x is assigned in two different branches of the conditional
statement. We cannot simply use the same propositional variables to represent the value
of x in each branch, since this would result in an unsatisfiable formula (x cannot take
two values at the same time). Therefore, we need to guarantee, that different versions of
the variables are used in each branch. This can be achieved by transforming the program
into the static single assignment (SSA) form [CFR+91]. The SSA form of a program
is an intermediate representation used in compiler construction which guarantees that
each variable is assigned exactly once. This property is achieved by replacing existing
variables in the original program with fresh variables such that the right-hand side of
each assignment in the program gets its own version of the assigned variable. The SSA
form of the program fragment in Figure 21(a) is shown in Figure 21(b). In the SSA
form, the assignment x3

= φ(x1, x2) indicates a join of two branches of the program.
At this point the variable x3 needs to be assigned the value of either x1 or x2, depending
on which branch was executed. It is, however, impossible to determine statically which
branch modifies x . Therefore, we encode the control flow dependency into the transition
relation as follows:

(x1
= x0
∗2) · (x2

= x0
− 1) ·

(
(x0%2 = 0) · (x3

= x1)+ (x0%2 = 1) · (x3
= x2)

)

L1

L2

L3

L4

L5
(a) A CFG with a loop

#6

#5

#4

#3

#2

#1

#0 L1

L2

L3

L2

L3

L4

L5

(b) An unrolled CFG

Figure 22. Unwinding loops in software programs

whi le (x)
BODY;

−→

i f (x) {
BODY;
i f (x)

BODY;
e l s e

e x i t () ;
}

Figure 23. An unrolling of a while loop. The exit statement terminates paths of depth greater than 2 .

In this formula, the value of x3 depends on the value of x0, the version of the variable
x representing the value of x before the execution of the conditional statement.

Repetitive constructs (such as loops) can be treated similar to the encoding of exe-
cution cycles of a hardware circuit. However, instead of unwinding the entire transition
relation of the program, each loop is unwound separately up to a pre-determined bound.
Syntactically, this corresponds to a replication the loop body and the appropriate guard
(Figure 23). The unwinding is illustrated in Figure 22. The CFG on the left side (Fig-
ure 22(a)) represents a simple program with a single loop. The graph on the right side
(Figure 22(b)) illustrates the structure resulting from unwinding the loop body between
the program locations L3 and L4 twice. The size of the resulting unwound program is
linear in the size of the original program and the depth of the unwinding. Alternative un-
winding techniques are discussed in the survey [DKW08]. After transforming the result-
ing unwound program into SSA, the bounded instance can be encoded as a propositional
formula as before. The resulting formula effectively simulates all possible executions up
to the pre-determined unwinding depth of the loops in the program. Accordingly, this
technique is also known as symbolic simulation [Kin70].

5.2. Test-Case Generation

The fact that a bounded unwinding of a circuit design or a program symbolically encodes
all possible executions up to a certain depth k makes it an ideal tool for automated test-
case generation: each satisfying assignment generated by a SAT solver corresponds to
a test scenario. In this setting, the circuit design or program takes the role of a specifi-
cation; the resulting test-cases are used to verify the actual integrated circuit or a com-
piled version of the program. There is one subtle pitfall: a test-case extracted from the
source code of the actual program (or chip design) under test must necessarily succeed
if the compiler (or synthesis tool) is correct. It is therefore common practice to extract
test-cases for the implementation from a model or abstract specification of the artifact
under test. With the rise of model-based development (MBD) methodologies such mod-
els are available increasingly often. In [BHM+10], for instance, test-cases are extracted
from Simulink models. In combination with an incremental SAT solver it is possible to
generate an entire suite of test-cases which satisfies certain coverage criteria such as path
coverage or modified condition/decision coverage (MC/DC): the coverage criteria are
simply encoded as constraints, and previously generated test-cases are barred by means
of blocking clauses [HSTV08,HSTV09].

The test-case generator described in [BHM+10], for instance, deploys mutations as
a coverage criterion. A mutation is a small modification – such as using a wrong operator
or variable name – to the original design or source code. A test suite which does not de-
tect the injected fault is considered insufficient. Instead of using mutations to evaluate a
given test-suite, however, [BHM+10] uses mutations as a catalyst to generate a test-suite
which, by construction, covers all injected faults. To this end, the test-generation algo-
rithm contrasts the unwound transition relation of the mutated source code with the orig-
inal unwound transition relation. Let Rk

m (Rk , respectively) denote the relation encod-
ing k unwindings of the mutated (original) transition relation, respectively. The test-case
generator then constructs the following formula:

Rk(Ei1, Eok) · Rk
m(Ei1, Emk) ·

(
(ok

1 ⊕ mk
1)+ (ok

2 ⊕ mk
2)+ · · · + (ok

n ⊕ mk
n)
)

︸ ︷︷ ︸
miter

. (9)

Observe that the input variables for both the original as well as the mutated transition
relations are the same. A so called miter enforces that Formula 9 is only satisfiable if
the valuation to the input variables yields output values Eok and Emk for the two different
transition relations which disagree on at least one value. This approach (which is based
on equivalence checking) guarantees that the resulting test case detects the faults injected
in Rk

m .

Example 5.1 Consider the mutated version (depicted in Figure 24) of the circuit in Fig-
ure 19(b). Note that the “and”-gate in the first cycle has been replaced with an “or”-
gate, and that all output and internal signals were renamed. The input signals i1

1 , i1
2 , i2

1 ,
i2
2 , and the signal s representing the initial state of the latch remain unchanged.

We obtain the following encoding in conjunctive normal form:

cycle À (r1 i1
1) (r1 s) (i1

1 s r1) (i1
2 m1) (s m1) (m1 i1

2 s)
cycle Á (u i2

1) (u r1) (i2
1 r1 t) (i2

2 m2) (l1 m2) (m2 i2
2 r1)

r1

i2
2

m1i1
2

i1
1

s

i2
1 u

m2

À Á

Figure 24. A mutated version of the circuit in Figure 19(b)

The miter (o1
⊕m1)+ (o2

⊕m2) enforces that any assignment satisfying the conjunction
of the formula representing the original circuit and the formula representing the mutated
circuit yields different values for at least one output. The reader may verify that o2 and
m2 must take different values in any extension of the partial assignment

s 7→ 0 i1
1 7→ 1 i1

2 7→ 0 i2
1 7→ 0 i2

2 7→ 0

to a total assignment. Accordingly, the corresponding test-case detects the incorrect
“or”-gate.

5.3. Bounded Model Checking

Model checking [CGP99] is a technique that explores all reachable states of a model to
check whether a given property is satisfied. Unlike testing, model checking performs an
exhaustive search of the state space and provides a correctness guarantee that is rarely
achieved by means of testing. Moreover, if the specification is violated, model checking
tools are able to provide a counterexample, i.e., a witness demonstrating how the property
in question can be violated.

Bounded model checking (BMC) [BCCZ99] is a variation of model checking which
restricts the exploration to execution traces up to a certain (user-defined) length k. BMC
either provides a guarantee that the first k execution steps of the model satisfy the prop-
erty P or a counterexample of length at most k. This setting should sound familiar to the
reader: Section 5.1 describes how all execution traces up to depth k can be encoded in a
propositional formula. Given such an encoding, it is sufficient to augment each execution
cycle with a formula encoding the negation of the property P . This is indicated in the
following diagram (here, I denotes a constraint encoding the valid initial states of the
model):

-I

P +

R· -
P +

R·
. . .

P +

· -
P +

R·

P

Any assignment satisfying the resulting formula represents a counterexample to the
claim that P holds. If the formula is unsatisfiable, on the other hand, then the claim
holds in the first k execution steps. An example for a bounded model checking tool for
programs written in the ANSI-C language is CBMC [CKL04].

5.4. Fault Localisation

The techniques discussed in Section 5.2 and Section 5.3 are aimed at discovering bugs in
software and hardware designs. Finding a bug, however, is just the first step. Localising
and understanding the underlying fault is often a much more daunting task.

Accordingly, automated support for fault localisation is highly desirable. In this sec-
tion, we discuss how MAX-SAT and minimal correction sets can be applied to localise
bugs. This approach, also known as consistency-based diagnosis, has been successfully
applied to localise faults in hardware designs (see, for instance, [SMV+07,SFBD08,
FSBD08,CSVMS09,CSMSV10,ZWM11]) as well as in software [JM11].

Consistency-based diagnoses aims at identifying the fractions of the hardware de-
sign or the source code of the software that are inconsistent with an observed (or ex-
pected) behaviour. We distinguish two scenarios:

1. The transition relation R (obtained from the source code or hardware de-
sign) represents the implementation of the artifact under test and an observed
behaviour of this implementation contradicts the specification (e.g., the re-
quirements document or a use case scenario). This setting is addressed in
[SMV+07,SFBD08,FSBD08,CSVMS09,CSMSV10,JM11], for instance.

2. The transition relation R represents the specification of the artifact under test.
The observed behaviour (e.g., a test run of a manufactured integrated circuit) is
inconsistent with R. This scenario is addressed in [ZWM11].

In the first case we assume that the specification is given as a set of constraints
or an assignment to the input and output variables of the transition relation R. In the
second case we assume that the observed test scenario is provided as an assignment to
the variables of R. While the two scenarios are in a sense dual, the objective in both
cases is to identify the “elements” of the transition relation R that are inconsistent with
the observed (or expected) behaviour. In both cases, we have to specify what we mean
by “elements” – this is determined by the underlying fault model. The notion of a fault
model is similar to the concept of a mutation, discussed in Section 5.2. A fault model
determines which and how components of the transition relation can possibly fail. A gate
in an integrated circuit, for instance, may malfunction and constantly yield an output
value of 1 – this fault is known as stuck-at-constant. In a program, the developer may
accidentally use the instruction y=x++ instead of y=++x, which results in an incorrect
value of the variable y. The faulty element is the respective gate in the first case and the
respective line of code in the second case. In both cases, we would like to automatically
pinpoint the location of the fault.

In the following, we consider only a rather simplistic fault model for hardware as
well as for software: we assume that the output of a gate or the result of an assignment
may be an arbitrary value. The motivation is that this fault model can be easily encoded
in the transition relation R by means of relaxation literals (c.f. Section 4.3.1). By relaxing
the set of clauses that encode the output value oi of a gate or an assignment of an SSA
variable xi we effectively cut the signal or variable loose. The following two examples
illustrate how minimal correction sets enable us to locate faults in this setting.

Example 5.2 We work in scenario 1 described above. The code fragment in SSA in Fig-
ure 25 represents the implementation of a program. We assume that the specification of
the software states that the value of y must be even after the execution of the conditional
statement. This requirement is represented by the constraint (y3%2 = 0) and obviously
violated if x0 is odd. Assume that the test engineer reports that the requirement does not
hold for x0

= 1. By combining the constraint and the assignment with the encoding of
the program we obtain the formula

[x0%2 = 0] [x0%2 = 1]

y1 = x0*2 y2 = x0

x1 = x0 + 1

y3 = φ(y1, y2)
x2 = φ(x0, x1)

Figure 25. A conditional statement with a faulty branch

(y1
= x0
∗2) · (y2

= x0) · (x1
= x0

+ 1)

·

(
(x0%2 = 0) · (x2

= x0) · (y3
= y1)+ (x0%2 = 1) · (x2

= x1) · (y3
= y2)

)
· (x0
= 1) · (y3%2 = 0) .

Notably, this formula is unsatisfiable; for the given input the transition relation does
not satisfy the requirement. In order to fix the bug, the developer needs to locate the fault.
In accordance with the simplistic fault model suggested above, we assume that one of
the assignments y = x ∗ 2 or y = x++ (represented by the expressions (y1

= x0
∗ 2)

and (y2
= x0) · (x1

= x0
+ 1)) are at fault. In order to locate the fault, we mark

the propositional clauses encoding these expressions as soft clauses and compute all
minimal correction sets for the resulting formula. Note that, in accordance with our fault
model, the conditions (x0%2 = 0) and (x0%2 = 1) are represented by hard clauses
and may not be dropped. Moreover, the constraints (x0

= 1) · (y3%2 = 0) representing
the test scenario and the requirement must not be relaxed, either, since changing the test
scenario or the requirements is an undesired solution to the problem.

Using the algorithm described in Section 4.4, we can now compute the minimal
correction sets for the problem instance described above. The (y2

= x0) is identified as
the culprit and helps the developer to narrow down the fault location to the instruction
y = x++.

Example 5.3 In Scenario 2, the behaviour of the test artifact does not comply with the
specification represented by R. This situation may arise in the context of post-silicon
validation, for instance: the manufacturing process may introduce a fault in the prototype
of a chip, resulting in a discrepancy of the behaviour of the integrated circuit and its de-
sign. Debugging an integrated circuit is non-trivial, since unlike in software debugging,
its internal signals can not be easily observed.

Consider the sequential circuit in Figure 19(a). After resetting the latch, we expect
the output o to remain 0 as long as the input signal i2 is constantly 0. Assume, however,
that we observe an output value of 1 after two cycles when executing the described sce-
nario on the chip. Figure 19(b) depicts a two-cycle unfolding of the circuit. Figure 20
shows the corresponding CNF encoding. Assume that we observe and record the val-
ues o1

7→ 0 and o2
7→ 1 during a test-run with the initial state s 7→ 0 and the stimuli

i1
2 7→ 0, and i2

2 7→ 0. Note that we have no information about the signal l1. These ob-

servations contribute the hard constraint o1 · o2
· s · i1

2 · i
2
2 , which is not satisfiable in

conjunction with the formula in 20. Using a MAX-SAT solver, we can derive that the
conjunction becomes satisfiable if we drop either (l1 s) or (o2 i2

2 l1) (both of which are
an MCS) from 20. Accordingly, either the “and”-gate in cycle one or the “or”-gate in
cycle two must have defaulted. Notably, our fault localisation technique managed to nar-
row down the set of possibly faulty gates without knowledge about the internal signals
of the physical circuit. Fault localisation in silicon debug is addressed in more detail
in [ZWM11].

6. Conclusion

The advances of contemporary SAT solvers have transformed the way we think about NP
complete problems. They have shown that, while these problems are still unmanageable
in the worst case, many instances can be successfully tackled. In Section 3, we discussed
the main contributions and techniques that made this paradigm shift possible. Section 4
covers a number of natural extensions to the SAT problem, such as the enumeration all
satisfying assignments (ALL-SAT) and determining the maximum number of clauses
that can be satisfied by an assignment (MAX-SAT). SAT solvers and their extensions
have immediate applications in domains such as automated verification, as discussed
in Section 5. In fact, many successful verification techniques such as Bounded Model
Checking owe their existence to the impressive advances of modern SAT solvers. While
SAT solvers can easily be used as a black box, the realisation of many of these applica-
tions relies on internal features of SAT solvers and requires an in-dept understanding of
the underlying algorithms.

SAT solvers are still improving at an impressive rate (as demonstrated by the results
of the annual SAT solver competition – http://www.satcompetition.org/)
and novel applications are conceived and published on a regular basis.

7. Acknowledgements

The authors are indebted to Matthias Schlaipfer and the attendees of the Summer School
Marktoberdorf 2011 for their comments on this tutorial. This article has been published
by IOS Press as a chapter [WM12] in [TAV12].

A. Exercises

Exercise 1 Use Tseitin’s transformation to convert x + (y · (z ⊕ x)) into CNF.

Solution By introducing the following fresh variables

w︷ ︸︸ ︷
x + (y · (

p︷ ︸︸ ︷
(z · x)+

q︷ ︸︸ ︷
(z · x))︸ ︷︷ ︸

u

)

︸ ︷︷ ︸
v

we obtain the formula

w · (q ↔ (z · x)) · (p↔ (z · x)) · (u ↔ (p + q)) · (v ↔ (y · u)) · (w↔ (x + v))

We can now apply the rules

a ↔ (b + c) ≡ (b + a) · (c + a) · (a + b + c) (10)

a ↔ (b · c) ≡ (a + b) · (a + c) · (b + c + a) (11)

and get

w · (q + z) · (q + x) · (z + x + q) · (p + z) · (p + x) · (z + x + p) ·

(p + u) · (q + u) · (u + p + q) · (y + v) · (u + v) · (v + y + u) ·

(x + w) · (v + w) · (w + x + v)

Exercise 2 Follow the scheme in Table 2 in Section 2.1.2 to derive the Tseitin clauses
that characterise the n-ary Boolean formulas (y1+ y2+· · ·+ yn) and (y1 · y2 · · · · · yn).

Solution

• Disjunction:

x ↔ (y1 + y2 + · · · + yn)
≡ (x → (y1 + y2 + · · · + yn)) · ((y1 + y2 + · · · + yn)→ x)
≡ (x + y1 + y2 + · · · + yn) · ((y1 → x) · (y2 → x) · · · (yn → x))
≡ (x + y1 + y2 + · · · + yn) · (y1 + x) · (y2 + x) · · · (yn + x)

• Conjunction:

x ↔ (y1 · y2 · · · · · +yn)
≡ (x → (y1 · y2 · · · · · yn)) · ((y1 · y2 · · · · · yn)→ x)

≡ ((x + y1) · (x + y2) · · · · · (x + yn)) ·
(
(y1 · y2 · · · · · yn)+ x

)
≡ ((x + y1) · (x + y2) · · · · · (x + yn)) ·

(
y1 + y2 + · · · + yn + x

)

Exercise 3 Which of the Boolean formulae below are satisfiable, and which ones are
unsatisfiable?

1. x + x · y
2. (x · (x → y))→ y
3. x · ((x → y)→ y)

Convert the formulae that are unsatisfiable into conjunctive normal form (either using
Tseitin’s transformation or the propositional calculus) and construct a resolution refu-
tation proof.

Solution

• satisfiable: 1, 3
• unsatisfiable: 2

(x · (x → y))→ y ≡ (x · (x + y))+ y
≡ (x) · (x + y) · (y)

Resolution proof:

Res((y), Res((x), (x + y), x), y) ≡ �

Exercise 4 Construct a resolution refutation graph for the following unsatisfiable for-
mula:

y1 · y2 · y3 · (y1 + x) · (y2 + x + z) · (y3 + z)

Solution The resolution graph for Exercise 4 is shown in Figure 26.

�

xx

y1 x y1x zz

y2 x z

y2

y3 zy3

Figure 26. Resolution graph for Exercise 4

Exercise 5 Apply the rules of the Davis-Putnam procedure (outlined in Section 3.3) to
the following formula until you obtain an equi-satisfiable formula that cannot be reduced
any further:

y1 · y2 · (y1 + x + z) · (y2 + x + z) · (y3 + z) · y4

Solution We perform the following steps:

Step Rule Formula
1 1-literal-rule on y1 y2 · (x + z) · (y2 + x + z) · (y3 + z) · y4
2 1-literal-rule on y2 (x + z) · (x + z) · (y3 + z) · y4
3 Affirmative-negative (x + z) · (x + z)
4 Resolution on x (z + z)

The resulting formula (z + z) is a tautology and cannot be eliminated by any of the
Davis-Putnam rules. Accordingly, the original formula must be satisfiable.

Exercise 6 Apply the Davis-Putnam-Logeman-Loveland (DPLL) procedure (described
in Section 3.4) to the following formula:

y1 · y2 · (y1 + x + z) · (y2 + x + z) · (y3 + z) · (y3 + z)

Solution Table 4 shows one possible scenario. Note that there is no value of x that
satisfies the formula. The reader may verify that choosing a decision variable other than
x in the third step also yields a contradiction.

Partial Assignment Clauses
{y1 7→ 1} (y2) (x z) (y2 x z) (y3 z) (y3 z)

{y1 7→ 1, y2 7→ 1} (x z) (x z) (y3 z) (y3 z)

No more implications, we guess x 7→ 1
{y1 7→ 1, y2 7→ 1, x 7→ 1} (z) (y3 z) (y3 z)

{y1 7→ 1, y2 7→ 1, x 7→ 1, z 7→ 1} (y3) (y3)

{y1 7→ 1, y2 7→ 1, x 7→ 1, z 7→ 1, y3 7→ 1} 0
Contradiction, we have to revert x 7→ 1

{y1 7→ 1, y2 7→ 1, x 7→ 0} (z) (y3 z) (y3 z)

{y1 7→ 1, y2 7→ 1, x 7→ 0, z 7→ 1} (y3) (y3)

{y1 7→ 1, y2 7→ 1, x 7→ 0, z 7→ 1, y3 7→ 1} 0
Contradiction, no more decisions to undo
Table 4. Assignment trail for Exercise 6

Exercise 7 Simulate the conflict-driven clause learning algorithm presented in Sec-
tion 3.5 on the following formula:

C0︷ ︸︸ ︷
(x + y + z) ·

C1︷ ︸︸ ︷
(x + y + z) ·

C2︷ ︸︸ ︷
(x + y + z) ·

C3︷ ︸︸ ︷
(x + y + z) ·

C4︷ ︸︸ ︷
(x + y + z) ·

C5︷ ︸︸ ︷
(x + y + z) ·

C6︷ ︸︸ ︷
(x + y + z) ·

C7︷ ︸︸ ︷
(x + y + z)

x@1

y@2

z@2
C0

C0

C1
�

Figure 27. First implication graph arising in Exercise 7

Solution It is obvious that one has to make at least two decisions before one of the
clauses becomes unit. If we start with the decisions x@1 and y@2, we obtain the impli-
cation graph in Figure 27.

By means of resolution (c.f. Section 3.6) we obtain the conflict clause C8 ≡

Res(C0, C1, z) ≡ (x + y). We revert all decisions up to (but excluding) level 1, which
is the second-highest decision level occurring in C8. The clause C8 is unit under the as-
signment x@1, thus implying the assignment y@1. We obtain the implication graph in
Figure 28. Again, there is a conflict.

x@1 y@1 z@1C8 C2 C3
�

Figure 28. Second implication graph arising in Exercise 7

The resulting conflict clause is C9 ≡ Res(C8, Res(C2, C3, z), y) ≡ (x), forcing
us to revert to decision level zero and set x to 0. Under this assignment, none of the
clauses is unit and we have to make a choice for either y or z. If we choose y@1, the
clause C4 becomes assertive and forces us to assign 0 to z. This assignment, however,
is in conflict with C5, and by means of resolution we obtain the conflict clause C10 ≡

Res(C4, C5, z) ≡ (x + y).
C10 in combination with the unit clause C9 yields y@0. Under this assignment, the

clause C6 is unit, forcing us to assign 0 to z, which conflicts with clause C7. Note that we
obtained this conflict without making any decisions, i.e., we found a conflict at decision
level zero. Accordingly, the formula is unsatisfiable.

Exercise 8 Use the approach described in Section 3.6 to construct a resolution refutation
proof for the formula presented in Exercise 7.

Solution The solution to this exercise follows the steps of the solution to Exercise 7 and
is left to the reader.

Exercise 9 Find an unsatisfiable core of the formula

(y) · (x + y + z) · (x + z) · (x + y) · (z + y) .

(You are not allowed to provide the set of all clauses as a solution.)
Is your solution minimal?

Solution The set of clauses

{(y), (x + y + z), (x + z), (z + y)}

forms a core of the formula in Exercise 9. This can be verified by means of resolution:

Res((y), (x + y + z), y) ≡ (x + z)

Res((x + z), (x + z), x) ≡ (z)

Res((z), (z + y), z) =≡ (y)

Res((y), (y), y) = �

Moreover, the core is minimal, since removing any one of the clauses “breaks” the
core. Note that {(y), (x + y + z), (x + y), (z + y)} is an alternative minimal solution.

Exercise 10 Simplify the following formula using the substitution approach described in
Section 3.10:

w · (q + z) · (q + x) · (z + x + q) · (p + z) · (p + x) · (z + x + p) ·

(p + u) · (q + u) · (u + p + q) · (y + v) · (u + v) · (v + y + u) ·

(x + w) · (v + w) · (w + x + v)

Solution Note that we do not know which clauses are “definitional” (i.e., introduce
functionally dependent variables). In practice, this information is often not available and
inferring it is computationally prohibitively expensive. Therefore we will not attempt to
do so. Instead, we start by dividing the clauses into sets according to the positive and
negative occurrences of the literals as shown in Figure 29.

Then, for each pair of sets S`, S`, we derive all possible resolvents and drop the
resulting tautologies. If the resulting set of clauses Res(S`, S`, `) is smaller than S` ∪ S`,
we replace the clauses S` ∪ S` with Res(S`, S`, `). Otherwise, we retain the clauses
S` ∪ S`. The set of resolvents of Sx and Sx has five elements:

Res(Sx , Sx , x) ≡ {(q + p), (q + w), (z + p + w), (w + z + v + q), (w + p + v)}

This is one clause less than Sx ∪ Sx . Accordingly, replacing the clauses Sx ∪ Sx with the
corresponding set of resolvents reduces the size of the formula. This strategy is imple-
mented in the SAT-solver MINISAT [ES04b,EB05].

Exercise 11 Use the core-guided algorithm presented in Section 4.3.2 to determine the
solution of the partial MAX-SAT problem

(x + y) · (x + z) · (x + z) · (y + u) · (y + u) · (x) · (y) ,

where only the clauses (x) and (y) may be dropped.

Sx = {(q + x), (z + x + p), (w + x + v)}

Sx = {(z + x + q), (p + x), (x + w)}

Sy = {(v + y + u)}

Sy = {(y + v)}

Sz = {(q + z), (z + x + p)}

Sz = {(z + x + q), (p + z)}

Sp = {(z + x + p), (u + p + q)}

Sp = {(p + z), (p + x), (p + u)}

Sq = {(z + x + q), (u + p + q)}

Sq = {(q + z), (q + x), (q + u)}

Su = {(p + u), (v + y + u), (q + u)}

Su = {(u + p + q), (u + v)}

Sv = {(y + v), (u + v), (w + x + v)}

Sv = {(v + y + u), (v + w)}

Sw = {(w), (x + w), (v + w)}

Sw = {(w + x + v)}

Figure 29. Positive and negative occurrences of literals

Solution Assume that the first unsatisfiable core we obtain is {(x + y), (x), (y)}. Ac-
cordingly, we augment the clauses (x) and (y) with relaxation variables and introduce a
cardinality constraint which guarantees that at most one of these clauses is dropped:

(x + y) · (x + z) · (x + z) · (y + u) · (y + u) · (r + x) · (s + y) ·
∑

(r, s) ≤ 1

As illustrated in Figure 14, we can encode the constraint
∑

(r, s) ≤ 1 as (r + s), and
we obtain the instance

(x + y) · (x + z) · (x + z) · (y + u) · (y + u) · (r + x) · (s + y) · (r + s) ,

which is still unsatisfiable, since

Res((x + z), (x + z), z) =(x) , Res((y + u), (y + u), u) = (y) ,

Res((r + x), (r + s), r) =(s + x) , Res((s + y), (s + x), s) = (x + y) ,

Res((y), (x + y), y) =(x) , Res((x), (x), x) = �

Accordingly, we add additional relaxation variables to the clauses (r+x) and (s+ y)
in the next iteration of the algorithm in Figure 15 and obtain

(x + y) · (x + z) · (x + z) · (y + u) · (y + u) · (t + r + x) · (v+ s + y) · (r + s) · (t + v)︸ ︷︷ ︸
cardinality constraints

It is now possible for the satisfiability solver to relax both clauses (x) and (y) by
choosing the assignment {t 7→ 1, r 7→ 0, v 7→ 0, s 7→ 1}, for instance. Accordingly, the
algorithm in Figure 15 reports that two clauses need to be dropped to make the formula
satisfiable.

Exercise 12 Use the algorithm presented in Section 4.4 to derive all minimal correction
sets for the unsatisfiable formula

C1︷︸︸︷
(x) ·

C2︷︸︸︷
(x) ·

C3︷ ︸︸ ︷
(x + y) ·

C4︷︸︸︷
(y) ·

C5︷ ︸︸ ︷
(x + z) ·

C6︷︸︸︷
(z) .

Solution (This example is presented in [LS08].) Due to the prioritisation of unit clauses,
the first unsatisfiable core reported by the satisfiability checker is UC1 ≡ {(x), (x)}. By
adding relaxation variables to all clauses of this core and by constraining the respective
relaxation literals, we obtain the formula

(r1 + x) · (r2 + x) · (x + y) · (y) · (x + z) · (z) · (r1 + r2)

Since dropping the clause (x) does not yield a satisfiable instance, the ALLSAT pro-
cedure returns C1 as the only MCS of size one. Accordingly, we block the corresponding
assignment by adding the blocking clause (r1):

(r1 + x) · (r2 + x) · (x + y) · (y) · (x + z) · (z) · (r1 + r2) · (r1)

and obtain a new core {(r1), (r1 + x), (x + y), (y)}. Accordingly, UC2 = {C1, C2} ∪

{C1, C3, C4}, and we obtain the instrumented formula

(r1 + x) · (r2 + x) · (r3 + x + y) · (r4 + y) · (x + z) · (z) · (r1) ·
∑

(r1, r2, r3, r4) ≤ 2

The ALLSAT algorithm determines all minimal correction sets for this formula.
Note that the clause (r1) prevents that the algorithm rediscovers the MCS {C1} in this
step. Since Res((r), (r1 + x)) ≡ (x), blocking C1 yields the formula

(x) · (r2 + x) · (r3 + x + y) · (r4 + y) · (x + z) · (z) ·
∑

(r1, r2, r3, r4) ≤ 2 ,

which is unsatisfiable. We obtain the new core {C1, C5, C6} and execute the third itera-
tion of the algorithm with UC3 = {C1, C2, C3, C4} ∪ {C1, C5, C6}. The corresponding
instrumented and constrained version of the original formula is

(r1 + x) · (r2 + x) · (r3 + x + y) · (r4 + y) · (r5 + x + z) · (r6 + z)·∑
(r1, r2, r3, r4, r5, r6) ≤ 3

In this iteration, we obtain the MCSes {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5}, and
{C2, C3, C6}. Adding the corresponding blocking clauses to INSTRUMENT(F) results in
an unsatisfiable instance and the algorithm terminates.

Exercise 13 Derive all minimal unsatisfiable cores for the formula presented in Exer-
cise 12.

Solution The set of MCSes for the formula in Exercise 12 is

{{C1}, {C2, C3, C5}, {C2, C3, C6}, {C2, C4, C5}, {C2, C3, C6}} .

We construct the corresponding minimal hitting sets as follows:

MCSes(F) C1 C2 C3 C4 C5 C6
{C1} ×

{C2, C3, C5} × × ×

{C2, C3, C6} × × ×

{C2, C4, C5} × × ×

{C2, C3, C6} × × ×

Hitting sets: {C1, C2}, {C1, C3, C4}, {C1, C5, C6}

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 1st edition, 2009.

[ABF90] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital systems testing and
testable design. Computer Science Press, 1990.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In ACM Symposium
on Theory of Computing (STOC), pages 1–9. ACM, 1983.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1579 of Lecture Notes in Computer Science, pages 193–207. Springer, 1999.

[BHM+10] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening, Mitra Purandare, Philipp
Rümmer, and Georg Weissenbacher. Mutation-based test case generation for Simulink models.
In Formal Methods for Components and Objects (FMCO) 2009, volume 6286 of Lecture Notes
in Computer Science, pages 208–227. Springer, 2010.

[BIFH+11] Omer Bar-Ilan, Oded Fuhrmann, Shlomo Hoory, Ohad Shacham, and Ofer Strichman. Reduc-
ing the size of resolution proofs in linear time. Software Tools for Technology Transfer (STTT),
13(3):263–272, 2011.

[Bus98] Samuel R. Buss. Handbook of proof theory. Studies in logic and the foundations of mathemat-
ics. Elsevier, 1998.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Ef-
ficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems (TOPLAS), 13(4):451–490, 1991.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, December
1999.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume 2988
of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In ACM Symposium on
Theory of Computing (STOC), pages 151–158. ACM, 1971.

[CSMSV10] Yibin Chen, Sean Safarpour, Joao Marques-Silva, and Andreas Veneris. Automated design de-
bugging with maximum satisfiability. Transactions on CAD of Integrated Circuits and Systems,
29:1804–1817, 2010.

[CSVMS09] Yibin Chen, Sean Safarpour, Andreas Veneris, and Joao Marques-Silva. Spatial and temporal
design debug using partial MaxSAT. In Great Lakes Symposium on VLSI, pages 345–350.
ACM, 2009.

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated techniques
for formal software verification. Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 27(7):1165–1178, July 2008.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of
the ACM, 7:201–214, July 1960.

[EB05] Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Theory and Applications of Satisfiability Testing (SAT), volume 3569 of Lecture
Notes in Computer Science, pages 102–104. Springer, 2005.

[ES04a] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing (SAT), volume 2919, pages 502–518. Springer, 2004.

[ES04b] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing (SAT), volume 2919 of Lecture Notes in Computer Science, pages 333–
336. Springer, 2004.

[FM06] Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Theory and
Applications of Satisfiability Testing (SAT), volume 4121 of Lecture Notes in Computer Science,
pages 252–265. Springer, 2006.

[FSBD08] Görschwin Fey, Stefan Staber, Roderick Bloem, and Rolf Drechsler. Automatic fault lo-
calization for property checking. Transactions on CAD of Integrated Circuits and Systems,
27(6):1138–1149, 2008.

[GN02] E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT-solver. In Design Automation
and Test in Europe (DATE), pages 142–149. IEEE, 2002.

[GOMS04] Éric Grégoire, Richard Ostrowski, Bertrand Mazure, and Lakhdar Saı̈s. Automatic extraction
of functional dependencies. In Theory and Applications of Satisfiability Testing (SAT), volume
3542 of Lecture Notes in Computer Science. Springer, 2004.

[Har09] John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, 2009.

[HSTV08] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith. FShell: System-
atic test case generation for dynamic analysis and measurement. In Computer Aided Verifi-
cation (CAV), volume 5123 of Lecture Notes in Computer Science, pages 209–213. Springer,
2008.

[HSTV09] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith. Query-driven
program testing. In Verification, Model Checking and Abstract Interpretation (VMCAI), volume
5403 of Lecture Notes in Computer Science, pages 151–166. Springer, 2009.

[JM11] Manu Jose and Rupak Majumdar. Cause clue clauses: error localization using maximum satisfi-
ability. In Programming Language Design and Implementation (PLDI), pages 437–446. ACM,
2011.

[JS97] Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-world
SAT instances. In Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI,
pages 203–208, 1997.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer Com-
putations, pages 85–103, 1972.

[Kin70] James C. King. A program verifier. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
USA, 1970.

[Kro67] M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions
are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.

[KS08] Daniel Kroening and Ofer Strichman. Decision procedures: An algorithmic point of view. Texts
in Theoretical Computer Science (EATCS). Springer, 2008.

[KSW01] Joonyoung Kim, Karem Sakallah, and Jesse Whittemore. SATIRE: A new incremental satisfi-
ability engine. In Design Automation Conference (DAC), pages 542–545. IEEE, 2001.

[LS08] Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40(1):1–33, 2008.

[LS09] Mark H. Liffiton and Karem A. Sakallah. Generalizing core-guided MAX-SAT. In Theory
and Applications of Satisfiability Testing (SAT), volume 5584 of Lecture Notes in Computer
Science, pages 481–494. Springer, 2009.

[McM02] Kenneth L. McMillan. Applying SAT methods in unbounded symbolic model checking. In
Computer Aided Verification (CAV), volume 2404 of Lecture Notes in Computer Science, pages
250–264. Springer, 2002.

[McM03] Kenneth L. McMillan. Interpolation and SAT-based model checking. In Computer Aided
Verification (CAV), volume 2725 of Lecture Notes in Computer Science, pages 1–13. Springer,
2003.

[MPLMS08] Paulo J. Matos, Jordi Planes, Florian Letombe, and João Marques-Silva. A MAX-SAT algo-
rithm portfolio. In European Conference on Artificial Intelligence, volume 178 of Frontiers in
Artificial Intelligence and Applications, pages 911–912. IOS Press, 2008.

[MS95] João Paulo Marques-Silva. Search algorithms for satisfiability problems in combinational
switching circuits. PhD thesis, University of Michigan, 1995.

[MS99] João P. Marques-Silva. The impact of branching heuristics in propositional satisfiability algo-
rithms. In Progress in Artificial Intelligence, (EPIA), volume 1695 of Lecture Notes in Com-
puter Science, pages 62–74. Springer, 1999.

[MSP08] João Marques-Silva and Jordi Planes. Algorithms for maximum satisfiability using unsatisfiable
cores. In Design Automation and Test in Europe (DATE), pages 408–413. IEEE, 2008.

[MSS96] João Paulo Marques-Silva and Karem A. Sakallah. GRASP – a new search algorithm for
satisfiability. In International Conference on Computer-aided Design (ICCAD), pages 220–
227. IEEE, 1996.

[MZ09] Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical hardness to practical
success. Communications of the ACM, 52(8):76–82, 2009.

[MZM+01] Sharad Malik, Ying Zhao, Conor F. Madigan, Lintao Zhang, and Matthew W. Moskewicz.
Chaff: Engineering an efficient SAT solver. Design Automation Conference (DAC), pages 530–
535, 2001.

[Par92] Ian Parberry. The pairwise sorting network. Parallel Processing Letters, 2:205–211, 1992.
[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the

ACM, 12:23–41, January 1965.
[SFBD08] Andre Sülflow, Görschwin Fey, Roderick Bloem, and Rolf Drechsler. Using unsatisfiable cores

to debug multiple design errors. In Great Lakes Symposium on VLSI, pages 77–82. ACM, 2008.
[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical

Journal, 28:59–98, 1949.
[SMV+07] Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H. Liffiton, and Karem A.

Sakallah. Improved design debugging using maximum satisfiability. In Formal Methods in
Computer-Aided Design (FMCAD), pages 13–19. IEEE, 2007.

[Str01] Ofer Strichman. Pruning techniques for the SAT-based bounded model checking problem. In
Correct Hardware Design and Verification Methods (CHARME), volume 2144 of Lecture Notes
in Computer Science, pages 58–70. Springer, 2001.

[TAV12] Tools for Analysis and Verification of Software Safety and Security. NATO Science for Peace
and Security Series. IOS Press, 2012.

[Tse83] G. Tseitin. On the complexity of proofs in poropositional logics. In J. Siekmann and G. Wright-
son, editors, Automation of Reasoning: Classical Papers in Computational Logic 1967–1970,
volume 2. Springer, 1983. Originally published 1970.

[WM12] Georg Weissenbacher and Sharad Malik. Boolean Satisfiability Solvers: Techniques and Exten-
sions. In NATO Science for Peace and Security Series [TAV12], 2012.

[Zha97] Hantao Zhang. SATO: An efficient propositional prover. In Conference on Automated Deduc-
tion (CADE), volume 1249 of Lecture Notes in Computer Science, pages 272–275. Springer,
1997.

[Zha03] Lintao Zhang. Searching the Truth: Techniques for Satisfiability of Boolean Formulas. PhD
thesis, Princeton University, 2003.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient conflict
driven learning in boolean satisfiability solver. In International Conference on Computer-aided
Design (ICCAD), pages 279–285, 2001.

[ZWM11] Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. Post-silicon fault localisation
using maximum satisfiability and backbones. In Formal Methods in Computer-Aided Design
(FMCAD). IEEE, 2011.

