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Several recently proposed randomized testing tools for concurrent and distributed systems come with theoret-

ical guarantees on their success. The key to these guarantees is a notion of bug depthÐthe minimum length of

a sequence of events sufficient to expose the bugÐand a characterization of d-hitting families of schedulesÐa

set of schedules guaranteed to cover every bug of given depth d . Previous results show that in certain cases

the size of a d-hitting family can be significantly smaller than the total number of possible schedules. However,

these results either assume shared-memory multithreading, or that the underlying partial ordering of events

is known statically and has special structure. These assumptions are not met by distributed message-passing

applications.

In this paper, we present a randomized scheduling algorithm for testing distributed systems. In contrast

to previous approaches, our algorithm works for arbitrary partially ordered sets of events revealed online

as the program is being executed. We show that for partial orders of width at most w and size at most n

(both statically unknown), our algorithm is guaranteed to sample from at mostw2nd−1 schedules, for every

fixed bug depth d . Thus, our algorithm discovers a bug of depth d with probability at least 1/(w2nd−1). As a

special case, our algorithm recovers a previous randomized testing algorithm for multithreaded programs. Our

algorithm is simple to implement, but the correctness arguments depend on difficult combinatorial results

about online dimension and online chain partitioning of partially ordered sets.

We have implemented our algorithm in a randomized testing tool for distributed message-passing programs.

We show that our algorithm can find bugs in distributed systems such as Zookeeper and Cassandra, and

empirically outperforms naive random exploration while providing theoretical guarantees.
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1 INTRODUCTION

Concurrent programming is error-prone because the programmer has to reason about a large
number of possible interleavings of events, any one of which may cause the program to fail.
Systematic testing procedures for concurrent systems aim at finding errors by exploring the space
of interleavings. Each interleaving is called a schedule. An arbitrary program of bounded execution
length can have exponentially many schedules and thus, systematic testing is exponential in the
worst case. However, empirically, many bugs in concurrent systems are exposed by considering the
sequencing of a small number of eventsÐthe “bug depthžÐindependent of the ordering of the rest
of the events. This observation is the basis for several systematic testing procedures [Burckhardt
et al. 2010; Chistikov et al. 2016; Majumdar and Niksic 2018]: instead of exploring all possible
schedules, the goal is to cover a sufficient family of schedules that guarantees that every execution
of a certain depth is covered.
Formally, a concurrent system can be modeled as the generator of partially ordered events. An

event can be a message send or receipt (in message-passing applications), a read from or write
to a shared memory (in shared-memory applications), or a crash or reboot of a process. The
partial ordering tracks the happens-before relation among the events. A schedule then is a specific
linearization of the partial order. For a fixed d , a schedule hits an ordered sequence of d events if
the schedule orders these events according to the sequence, and a set of schedules is said to be
d-hitting if for every possible ordering of d events allowed by the partial order, there is a schedule
that hits it. Clearly, the set of all schedules is d-hitting for any d . In practice, one would like to
construct a small family of d-hitting schedules. Moreover, one can use a d-hitting family to derive
a randomized testing procedure, which samples uniformly from the space of d-hitting families and
which can provide exponentially better guarantees on the probability of finding an error of depth d
than naive random search.
When the partial order is given explicitly and has a known structure, such as an antichain or a

tree, one can provide explicit combinatorial constructions of d-hitting schedules [Chistikov et al.
2016]; for antichains and trees, the size of a d-hitting family can be exponentially smaller than the
number of events. Unfortunately, when testing a concurrent system implementation, it is unrealistic
or impossible to know the partial ordering up front, e.g., if the events are exposed incrementally
as the program executes, or to assume a specific “nicež structure. Thus, a challenge in systematic
testing is to come up with small d-hitting family online (i.e., along with the execution) and for an
arbitrary partial ordering.
An online construction for d-hitting families was demonstrated by Burckhardt et al. [2010] for

multithreaded, shared-memory programs. Their algorithm, called PCT (Probabilistic Concurrency
Testing), instruments a program with randomized schedule points such that the resulting program
is guaranteed to uniformly sample a d-hitting family of schedules. In fact, PCT guarantees its
schedules are sampled from a stronger variant of d-hitting family, which we call a strong d-hitting
family. The key idea underlying the PCT construction is to represent the underlying partial ordering
of events as a decomposition of k chains, one per thread. The events are then cleverly scheduled
from these chains so that each d-tuple of events is hit with probability at least 1/(knd−1), where n
is the total number of instructions. Unfortunately, it was not known how this construction could
be generalized for concurrency models in which the decomposition cannot be computed based
on syntactic structures like threads. For example, an efficient PCT procedure was not known for

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 160. Publication date: November 2018.

https://doi.org/10.1145/3276530


Randomized Testing of Distributed Systems with Probabilistic Guarantees 160:3

distributed programs communicating via asynchronous message passing, where a naive mapping
of each asynchronous task to a thread would lead to a very pessimistic procedure.
In this paper, we provide a general construction for online construction of d-hitting families

for arbitrary partial orders. In the general case, proving guarantees is significantly harder and
requires combinatorial insights from recent results in the theory of posets. Our construction uses
the combinatorial notion of adaptive chain covering [Felsner 1997]; we connect this notion with
strong hitting families. In adaptive chain covering, the partial ordering is provided one element at
a time, in an “upgrowingž manner. That is, the new element is guaranteed to be maximal among
the elements seen so far. The adaptive chain covering algorithm must incrementally maintain a set
of chains that form a chain coveringÐa decomposition of the partial order into a (not necessarily
disjoint) union of chains. A sequence of deep results show that the optimal number of chains in an
adaptive chain covering algorithm is exactly the size of an optimal strong 1-hitting family [Felsner
1997; Kloch 2007]. We generalize this result to show that the size of an optimal strong d-hitting
family is bounded above by the optimal number of chains times nd−1, where n is the number of
elements in the partial order. In particular, we re-derive the PCT result in this very general setting,
since the size of the chain covering is k for k threads. The best known adaptive chain covering
algorithms are in fact online chain partitioning algorithmsÐthey decompose the partial order into a
disjoint union of chains. It is not known how to effectively exploit the fact that we do not need
partitions, but merely coverings [Bosek et al. 2012]. Optimal online chain partitioning algorithms
use at mostw2 chains, wherew is the width of the partial order [Agarwal and Garg 2007]. (Recall,
by Dilworth’s theorem, thatw is a lower bound.) Thus, we get online hitting families of sizew2nd−1

for partial orders of widthw and n elements. Using a general instrumentation technique, we get
a randomized testing algorithm, named PCTCP (Probabilistic Concurrency Testing with Chain
Partitioning), with a 1/(w2nd−1) probability of hitting each d-tuple for arbitrary partial orders,
presented online, with (unknown) widthw .

While the proof of correctness is involved, the final algorithm is surprisingly simple: it involves
maintaining prioritized chains of events, where the priorities are assigned randomly, picking the
highest priority events at all times, and reducing the priorities of chains at d − 1 randomly chosen
points in the execution.
We have implemented this algorithm for distributed protocol implementations written in P#

[Deligiannis et al. 2016], as well as for distributed applications such as Zookeeper and Cassandra,
on top of the SAMC model checker [Leesatapornwongsa et al. 2014]. We show empirically that
PCTCP is effective in finding bugs in these applications and usually outperforms naive random
exploration.
Our contributions are summarized as follows.

• We develop an algorithm for the online construction of hitting families of schedules for
arbitrary partial orders. The construction incorporates online partitioning of a partially
ordered set into a number of disjoint linearizations and enables generalizing the PCT algorithm
and its probabilistic guarantees to work with arbitrary partially ordered sets. The algorithm
is the basis for a simple randomized testing procedure with guaranteed lower bounds on the
probability of finding depth-d bugs.
• We implement PCT with chain partitioning (PCTCP) for programs written in the P# frame-
work, as well as the real word distributed systems Zookeeper and Cassandra. We provide our
practical design choices such as modeling node crashes as events in the system or handling
livelocks that are likely to occur in some distributed systems.
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2 OVERVIEW OF THE APPROACH

In this section, we informally introduce some of the notions used in the rest of the paper, and we
present the PCTCP algorithm and demonstrate it on a simple example.

Example 1. Consider a distributed system with three nodes1: a Handler which processes client
requests, a Logger which logs transaction information, and a Terminator which terminates the
system. When the Handler processes a request message from the client, it sends a log message to
the Logger and a terminate message to the Terminator. When the Terminator receives a terminate

message, it sends a flushmessage to the Logger. On receiving a flush, the Logger flushes the logs (i.e.,
writes the logs into the database and deallocates the file descriptors) and sends an acknowledgement
flushed message back to the Terminator. The messages by the Handler are sent concurrently to
Logger and Terminator. Hence, the flush message sent by Terminator and the log message sent by
Handler arrive concurrently at the Logger. If the log message is processed before the terminate

message, the system behaves as expected. However, if the log message is delayed and the terminate

message is processed before the log message, the Logger accesses an invalid descriptor and crashes.

Partially Ordered Set of Events and Online Chain Partitioning. PCTCP abstracts messages in the
system as partially ordered events. The partial order relation corresponds to the causality relation on
the events in the execution. Note that the causality relation between the events of a system depends
on the semantics and the guarantees of the system. In our example, the log and terminate messages
depend on the request message, as they are created in response to request. They are concurrent to
each other since they are sent to different receivers and they will be processed concurrently.

PCTCP intercepts all events in a running system andmaintains the poset of events in an execution
online as well as the current schedule. In each step, PCTCP selects an unexecuted event and schedules
it. The execution of this event can cause further events in the system. These are intercepted and
added to the partial order. The partial order of events is maintained as a chain decomposition. That is,
the elements of the partial order are partitioned into a set of chains. Each chain is a linear ordering
of events according to the partial order. When a new event is intercepted, it is added to one of these
chains (or put in a new chain by itself) by an online chain partitioning algorithm.
The key to the theoretical properties of PCTCP is that the chain decomposition has a small

number of chains, bounded by a function of the width of the partial order. PCTCP forms chains of
events based on the causal dependency relation between them. It inserts the concurrently executable
events into different chains, which bounds the number of chains to a function of the number of
concurrently executable events. Therefore, the theoretical bug detection guarantee of PCTCP is
not tied to the number of nodes in a system (some of which may be inactive in some parts of
the execution) but to the width of the partial order, i.e., the maximum number of simultaneously
executable events. (Note that since the partial order is revealed one element at a time, the chain
partition is constructed online. Thus, while there always exists a chain partition whose size is the
width of the ordering, we may not achieve this bound.) PCTCP uses an online chain partitioning
algorithm [Agarwal and Garg 2007] that guarantees that we use at most O (w2) chains, wherew is
the (unknown) width of the partial order.

PCTCP Algorithm. PCTCP is a randomized scheduling algorithm for distributed programs. It
takes as input the maximum number n of messages to be scheduled and a parameter d which
determines the bug depth to be explored. It guarantees a lower bound on the probability of covering
every execution of depth d based on n, d , and the width of the underlying partial order. PCTCP
maintains a priority list of chains partitioning the partial order of events, where lower numbers

1The example is adapted from Tasharofi et al. [2013], and it shows a simplified version of a bug found in a performance

testing tool called Gatling [2018].
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Input: number of events n, depth bound d

Data: chains // chain partition of events, the first d − 1 positions are initialized to null

Data: eventsAdded // number of events already added, initially 0

Data: priorityChangePt // vector of d − 1 distinct integers, initialized randomly between 1 and n

Data: schedule // the current execution

Procedure addNewEvent(e)

1 insert e into the poset using online chain partitioning (Alg. 2)

2 if a new chain is created then

3 insert the new chain into a random position between d and |chains | in chains

4 increment eventsAdded

5 if ∃j : eventsAdded = priorityChangePt[j] then

6 // assign a label to the event

7 e .label ← j

Procedure scheduleNextEvent()

8 while ∃j : chains[j] = α · e · α ′ ∧ e .isEnabled ∧ e .hasLabel ∧ e .label , j do

9 // we are at a priority change point

10 // note that chains[e .label] = null due to the labels being distinct

11 swap chains[j] and chains[e .label]

12 // select an enabled event from the chain with the highest priority

13 if ∃j : chains[j] = α · e · α ′ ∧ e .isEnabled then

14 e ← the event e corresponding to the highest index j s.t. chains[j] = α · e · α ′ ∧ e .isEnabled

15 schedule.append (e )

16 return e

Algorithm 1: PCTCP algorithm: adding new events and scheduling the next event from the poset

indicate lower priorities. During execution, the scheduler schedules an event from a low priority
chain only when all higher priority events are blocked (e.g., waiting on a synchronization action).
In addition, the algorithm can change the priority of a chain during execution when the execution
meets one of d − 1 randomly chosen priority change points in the execution. When the execution
reaches a change point, the scheduler changes the priority of the current chain to the priority value
associated with the change point.

The algorithm is given in Algorithm 1. It maintains three main data structures. The first is a list
of chains of events (called chains), which maintains a chain decomposition of events seen so far,
where each chain in the list is assigned a priority. The chain decomposition data structure has two
logical parts. The first d − 1 indices in the list are reserved for chains with reduced priority and are
all initialized to null. These positions are populated later during execution when a priority change
point is encountered. The rest of the list maintains a prioritized list of chains, and higher indices in
the list denote higher priority.

The second data structure, the priority change points priorityChangePt, is a list of d − 1 distinct
integers picked randomly from the range [1,n] at the beginning of the algorithm and used to
randomly change the priority of certain chains at run time. The third data structure, schedule, is a
schedule of events executed so far.
The algorithm has two main procedures. Procedure addNewEvent inserts a new event into the

chain decomposition by either inserting it at the end of an existing chain or creating a new chain,
according to the online chain decomposition algorithm. If a new chain is created, the new chain is
assigned a random priority by inserting it into the chain decomposition at a random position at or
after the dth position. Additionally, this procedure uses the variable eventsAdded to keep track of
the number of events added to the poset. Once eventsAdded becomes equal to priorityChangePt[j]
for some j , the procedure assigns a label j to the event that is being added to the poset. The label is
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(i) Initial poset:

request

Chains:

C1 = [request]

(ii) After processing request:

log

request

terminate

Chains:

C1 = [request, log]

C2 = [terminate]

(iii) After processing log:

log

request

terminate

Chains:

C1 = [request, log]

C2 = [terminate]

(iv) After processing terminate:

log

request

terminate flush

Chains:

C1 = [request, log]

C2 = [terminate,flush]

(v-vi) After processing flush and flushed:

log

request

terminate flush flushed

Chains:

C1 = [request, log]

C2 = [terminate,flush,flushed]

Fig. 1. The poset of events in an execution and its decomposition into chains

used to adjust the priority of the chain containing the event once the event becomes ready to be
scheduled.
Procedure scheduleNextEvent selects an enabled event and schedules it by appending it to

schedule. We say an event e is enabled (denoted by e .isEnabled in the pseudocode) if it is not yet
scheduled, but all of its predecessors have been scheduled. To select an enabled event, the procedure
first adjusts the priorities of chains: if there is an enabled event e carrying a label i (the predicate
e .hasLabel is true in this case) that is placed in chain c currently in position j , i in chains, the
procedure moves c to position i in chains. Once the priorities are adjusted, the procedure picks the
highest priority chain containing an enabled event, appends this event to schedule, and returns it
to be executed. All new events resulting from the execution are added to the chain decomposition
(using addNewEvent), and scheduleNextEvent is called again until n events are scheduled.

PCTCP on the Example. Figure 1 shows the online construction of the poset in our example for
the bug depth parameter d = 1. In each step, the event that is executed is crossed out. (i) Initially,
the poset contains only the request event in a single chain. The event is scheduled since it is the
only event in the system. (ii) Executing request causes two new events: log and terminate. PCTCP
extends the chain decomposition with these new events. Since the events are concurrent, the width
of the partial order at this point is 2, and the chain partitioning algorithm needs to allocate a new
chain. Say that in this example the chain partitioning algorithm inserts log into the same chain
with request and terminate into a fresh chain. PCTCP now has two chains to select the next event
from: C1 = [request, log] and C2 = [terminate], and randomly decides the priority between them.
We follow the algorithm first with the ordering that prioritizes C1 over C2. In this case, PCTCP
schedules the log event. (iii) Processing log does not lead to more events, so we do not insert any
events into the poset. Since all the events in the highest priority chain C1 are executed, the PCTCP
scheduler schedules the next event in C2, i.e., the terminate event. (iv) Processing this event creates
a flush even sent from the Terminator to the Handler. Since flush depends on terminate, PCTCP
extends the chain C2 with flush. (v) Since C1 still does not have any events to schedule, PCTCP
continues with C2 and schedules flush. Similar to the previous step, the flushed message is inserted
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into the same chain. (vi) PCTCP schedules the flushed event and processes it. No more events are
created and the execution ends.

Now assumeC2 was given a priority higher thanC1. In this case, PCTCP schedules the terminate,
flush, and flushed events in this order, before the log event. This hits the buggy execution. Since
each possible ordering between C1 and C2 is picked with probability 1/2, we hit the bug with
probability 1/2.
On the other hand, a naive random strategy that uniformly picks one of the enabled events at

each step would detect the same bug with probability 1/4. The random scheduler would have to
select terminate among the two concurrent events log and terminate, and then select flush among
log and flush to be able to hit the bug. As the length of the chain in which flush is inserted increases,
the probability of naive random testing to hit the bug decreases exponentially. On the other hand,
the probabilities of detecting a bug with PCTCP and naive random testing intuitively get closer to
each other as the width of the poset approaches the number of events in the system, i.e., when most
of the newly added events are concurrent to each other. In our experimental evaluation in Section
4, we compare the performance of PCTCP and naive random testing on real-world benchmarks.

Priority Change Points. So far, we have ignored the priority change points, because exposing
the bug in this example requires a single ordering constraint between two events. Hence, this bug
can be detected without changing the initially assigned priorities of the chains. In a more complex
setting, the priorities of chains may need to change in order to hit a bug, and this is handled by the
priority change points.

Consider a modified version of our example, where the bug is exposed not just with the relative
ordering of flush→ log events, but also the ordering flush→ log → flushed. Since two additional
constraints trigger the bug, the PCTCP scheduler needs to be called with the bug depth parameter
d = 2, causing it to change chain priorities at one randomly chosen priority change point. If initially
C2 has a higher priority than C1 and the priority change point is picked to be 5, then the fifth
event added to the poset, i.e. flushed, is assigned a label, and after terminate and flush events are
executed, the priority of the chain C2 is reduced. At this point, the log event from the currently
higher priority chain C1 is scheduled. There are no more events in C1 and PCTCP continues with
scheduling flushed from C2, hitting the buggy ordering of events. The probability of hitting the
bug in this case is 1/10: the probability that C2 initially has higher priority than C1 is 1/2, and the
desired priority change point is picked with probability 1/5.

Guarantees. Having generated a d-tuple of event labels (x0, . . . ,xd−1), the PCTCP algorithm
produces a schedule which “strongly hitsž this d-tuple. In other words, PCTCP schedules an event
labeled xi at the last possible point in the execution, before the events labeled xi+1, ...xd−1. Briefly,
the PCTCP algorithm guarantees this by keeping a list of reduced-priority chains which are ordered
based on the order of event labels in the d-tuple, e.g., the chain which has x0 as the first unexecuted
event is inserted as the first chain in the list of reduced-priority chains. When all the chains with
initial priorities either finished or were reduced to a lower priority, the reduced-priority chains are
executed in an order which preserves the relative order of event labels in the tuple. The crucial
theoretical property we can ensure is that every possible d-tuple of events is hit with probability at
least 1/(w2nd−1). The proof of this result appears in the next section.

3 ONLINE STRONG HITTING SCHEDULERS

3.1 Preliminaries

A partially ordered set (poset) is a pair P = (X ,≤) where X is a set and ≤ is a partial order (i.e.,
reflexive, anti-symmetric, and transitive binary relation) on X . With slight abuse of notation, we

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 160. Publication date: November 2018.



160:8 B. Kulahcioglu Ozkan, R. Majumdar, F. Niksic, M. Tabaei Befrouei, and G. Weissenbacher

write x ∈ P to denote x ∈ X . We write P1 ⊆ P2 ifX1 ⊆ X2 and ≤1 is a restriction of ≤2; then P1 is a
subposet of P2. We write P2 \P1 for the partial order on the set {x | x ∈ P2 \ P1} and the restriction
of ≤2 onto this set. A poset P1 is a prefix of a poset P2 if P1 ⊆ P2 and for every x ∈ P2 \ P1 and
y ∈ P1, we have x ≰ y.

Given a poset P, an element x ∈ P is said to be minimal if no other element is smaller than x ,
that is, ∀y ∈ P .y ≤ x =⇒ y = x . Analogously, x is maximal if no other element is greater than
x , that is ∀y ∈ P .y ≥ x =⇒ y = x . We write minP and maxP to denote the set of minimal and
maximal elements of P.
A linearization (or schedule) of a poset P = (X ,≤) is a total order ≤α for X , such that for all

x ,y ∈ X , we have x ≤ y implies x ≤α y. We often identify schedules with a linear sequence of the
elements in X . For a schedule α , we write ≤α for the total order induced by α . We denote an empty
schedule by ϵ .

A poset P2 = P1∪ {z} is an extension of P1 with an element z if P1 is a subposet of P2. We denote
the linear extension of a schedule α with an element z as α · z, where z is the greatest element in
the linear extension.
Let P = (X ,≤) be a poset and let Y ⊆ X ; then Y is a chain if ∀x0,x1 ∈ Y .(x0 ≤ x1) ∨ (x1 ≤ x0)

and an antichain if ∀x0,x1 ∈ Y .(x0 ≰ x1) ∧ (x1 ≰ x0). The greatest possible size of an antichain in a
poset P is the width of P. Dilworth’s theorem [Dilworth 1950] states that the widthw of a finite
poset P is equal to the minimal number of chains that cover P (i.e., P can be partitioned intow
chains).

3.2 Scheduling Games

To formalize our scheduling task, we treat it as a scheduling game played by two players: Program,
who reveals a poset of elements in the upgrowing fashionÐeach element being maximal when it
appearsÐand Scheduler, who schedules the elements while adhering to the partial order.

We describe and analyze two versions of the scheduling game. In the first version, called online

hitting for upgrowing posets, Scheduler maintains a family of schedules. In each step Program
introduces a single new element, maximal among the old elements, and Scheduler responds by
inserting the element into existing schedules without changing the order of the old elements.
Scheduler is allowed to duplicate schedules before inserting the element. In this version of the
game, Program has full freedom to select the relation between the new and old elements, as long as
the new element is maximal at the moment it is introduced.
In the second version of the game we will introduce a structure called scheduling poset. Thus,

we call the game online hitting for scheduling posets. In this version, Scheduler maintains a single
partial schedule, which it extends by appending elements at its end. Each time Scheduler schedules
an additional element x , Program may extend the poset with one or more new elements, again in
the upgrowing fashion, but with an additional restriction that each new element must be greater
than x . This is to prevent Program in adding an element that could have been scheduled earlier in
the partial schedule.
In both versions of the game, Scheduler’s objective is to construct a strong d-hitting family

of schedules for a fixed parameter d ≥ 1, containing as few schedules as possible. The strong
d-hitting property roughly says that for every d-tuple of elements (x0, . . . ,xd−1) in the poset there
is a schedule constructed by Scheduler in which xi appears at the last possible moment before
xi+1, . . . ,xd−1, that is, if an element y is scheduled after some xi , then it is scheduled there only
because y ≥ x j for some j ≥ i . As we shall see, defining the property rigorously for scheduling
posets is rather tricky.
Online hitting for scheduling posets closely corresponds to the execution model of distributed

message passing programs. Scheduling an element corresponds to executing a receive event, that
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is, choosing a message that can be received and executing its receive handler. As a response, the
handler may send new messages, inducing new receive events that can only be executed later, and
never before the current receive event. This version of the game also straightforwardly generalizes
the execution model of multithreaded programs and the PCT scheduler from Burckhardt et al.
[2010]. In this setting, scheduling an element corresponds to executing an instruction, to which the
program responds by “making availablež the next instruction from the same thread.

Online hitting for upgrowing posets extends the results about (weak) hitting families [Chistikov
et al. 2016], as well as the results about online dimension of upgrowing posets [Bosek et al. 2012; Fel-
sner 1997; Kloch 2007]. The (weak) d-hitting property requires that for every d-tuple (x0, . . . ,xd−1),
if there exists a schedule α that schedules the elements in the order x0 <α . . . <α xd−1, then such
a schedule also exists in a d-hitting family of schedules. As we shall see, every strong d-hitting
family is a (d + 1)-hitting family. In the context of online dimension of upgrowing posets, online
dimension can be defined as the smallest size of a 2-hitting family achievable by Scheduler.

3.3 Online Hitting for Upgrowing Posets

In the first version of the scheduling game, Program is arbitrarily extending a poset with new
elements, and Scheduler is maintaining a strong d-hitting family of schedules for the poset in
each step, while trying to keep the number of schedules as small as possible. We start by precisely
defining the objects constructed by each player.

Definition 2 (Upgrowing Poset). An upgrowing poset of size n is a sequence of posets P =
(Pk )0≤k≤n that satisfies the following conditions: (1) P0 = ∅, (2) Pk+1 = Pk ∪ {x } for k < n, where
x is a new elements such that x < Pk , and (3) x is maximal in Pk+1, that is, for every y ∈ Pk+1,
y ≯ x .

Definition 3 (Strong Hitting Family). Let d ≥ 1 be a fixed integer.

• Given a poset P, we say a schedule α for P strongly hits a d-tuple of elements (x0, . . . ,xd−1)
if for every y ∈ P, y ≥α xi in α for some i ∈ {0, . . . ,d − 1} implies y ≥ x j in P for some j ≥ i .
• We call a set of schedules F a strong d-hitting family for P if for every d-tuple of elements
in P there is a schedule in F that strongly hits it.
• Given an upgrowing poset P = (Pk )0≤k≤n of size n, we call a sequence of sets of schedules
F = (Fk )0≤k≤n an online strong d-hitting family for P if each Fk is a strong d-hitting family
for Pk , and each schedule in Fk+1 is an extension of a schedule in Fk .

Remark 4. Strong hitting families are a stronger version of hitting families defined by Chistikov
et al. [2016], hence the name. Given a poset P and d ≥ 1, a d-hitting family F is a set of schedules
such that every admissible tuple (x0, . . . ,xd−1) in P is hit by a schedule α ∈ F , that is, ordered by
α as xo <α . . . <α xd−1. A tuple is admissible if it is hit by at least one schedule (not necessarily
from F ).

Every strong d-hitting family is a (d + 1)-hitting family. To show this, let F be a strong d-hitting
family, and let (x0, . . . ,xd ) be an admissible (d + 1)-tuple. There is a schedule α ∈ F that strongly
hits (x1, . . . ,xd ). We show that α hits (x0, . . . ,xd ). Suppose it does not, and let i, j be indices such
that 0 ≤ i < j ≤ d and xi ≥α x j . Since α strongly hits (x1, . . . ,xd ) and j ≥ 1, there exists j ′ ≥ j

such that xi ≥ x j′ . But then, since i < j ′, the tuple cannot be hit by any schedule, contradicting the
admissibility.

The results of Felsner [1997] and Kloch [2007] (see also the survey by Bosek et al. [2012]) show
that there is a close connection between constructing a strong 1-hitting family and an adaptive

chain covering of an upgrowing poset. In the adaptive chain covering game, Scheduler constructs
a decomposition of the poset into a (not necessarily disjoint) union of chains. That is, whenever
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Program adds a new element, Scheduler places it into several chains. Later on, the element may be
removed from some chains to better accommodate new elements, but it must always remain in at
least one chain. We formalize these requirements in the following definition.

Definition 5 (Adaptive Chain Covering). Let P = (Pk )0≤k≤n be an upgrowing poset of size n
and Λ a set of chain colors. A sequence of functions C = (Ck )0≤k≤n , where Ck : Pk → 2Λ, is called
an adaptive chain covering for P if the following conditions hold for all 0 ≤ k ≤ n and x ∈ Pk :
(1) Ck+1 (x ) ⊆ Ck (x ) for k < n, (2) Ck (x ) , ∅, and (3) the set {x ∈ Pk | λ ∈ Ck (x )} is a chain for
every λ ∈ Λ.

The result of Felsner and Kloch can be stated as follows. Let hit(w ) be the least integerm such
that Scheduler has a strategy for strong 1-hitting that uses at mostm schedules, and let adapt(w )

be the least integerm such that Scheduler has a strategy for adaptive chain covering that uses at
mostm chain colors, both on upgrowing posets of width at mostw .

Theorem 6 (Felsner, Kloch). hit(w ) = adapt(w ).

Theorem 6 was never explicitly stated by Felsner and Kloch. In fact, they prove a stronger result
that dim(w ) = adapt(w ), where dim(w ) is the maximal online dimension of upgrowing posets of
width at mostw . Felsner’s proof of the stronger claim [Felsner 1997] originally had a flaw that was
later corrected by Kloch [2007]. In his correction, Kloch isolates strong 1-hitting under the name
“property (⋆)ž as the key property, and essentially shows dim(w ) = hit(w ) and hit(w ) = adapt(w ).
We emphasize the latter in Theorem 6 because Felsner and Kloch prove this claim by showing
that a strategy for adaptive chain covering can be straightforwardly converted into a strategy for
strong 1-hitting and vice versa. Thus, strong 1-hitting and adaptive chain covering are essentially
the same problems.
In this paper, we want to bound the number of schedules Scheduler needs to use to achieve

strong d-hitting for arbitrary d ≥ 1. Let hitd (w ,n) be the least integerm such that Scheduler has a
strategy for strong d-hitting that uses at mostm schedules on upgrowing posets of width at mostw
and size at most n. Our main result on online hitting for upgrowing posets is the following theorem.

Theorem 7. hitd (w ,n) ≤ adapt(w ) ·
(

n
d−1

)

(d − 1)! .

Proof sketch. Given an upgrowing poset P of sizen and width at mostw , and an adaptive chain
covering C for P with at mostm colors, the idea is to transform C step by step into an online strong
d-hitting family F . The schedules in F are indexed by d-tuples of the form (λ,n1, . . . ,nd−1), where
λ is a chain color, and n1, . . . ,nd−1 ∈ {1, . . . ,n} are distinct numbers. The construction ensures that
in every step k , for every d-tuple (x0, . . . ,xd−1) in Pk there is a schedule index (λ,n1, . . . ,nd−1) such
that αλ,n1, ...,nd−1 ∈ Fk strongly hits the tuple. In the index, λ is a chain color such that λ ∈ Ck (x0),
and n1, . . . ,nd−1 are steps in which the elements x1, . . . ,xd−1 were added to the poset. The number

of schedule indices ism ·
(

n
d−1

)

(d − 1)!, hence the bound on the size of Fk .

A detailed proof can be found in Sect. A.1. □

3.4 Online Hitting for Scheduling Posets

In the second version of the scheduling game, Scheduler maintains a single partial schedule of the
upgrowing poset presented by Program. Scheduler takes a turn by scheduling an element x that
is minimal among the non-scheduled elements. Program responds by introducing zero or more
elements y such that x < y. New elements are introduced in the upgrowing fashion, that is, each
element y is maximal in the step it is introduced.

There are two key complications in this version of the game. First, there is a mutual dependency
of the upgrowing poset constructed by Program and the schedule constructed by Scheduler. And
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second, since only one schedule is constructed, it is unclear how to define strong hitting families.
We deal with the first complication first: we upgrade the upgrowing poset to a new structure called
scheduling poset that encodes all possible ways Scheduler can extend the schedule and Program
can extend the poset.

Definition 8 (Scheduling Poset). A scheduling poset is a pairSP = (S,P), whereS is a set of sched-
ules, each schedule α ∈ S has an associated number nα ≥ 0, and P = {Pα ,k | α ∈ S,0 ≤ k ≤ nα }

is a set of posets satisfying the following conditions.

Initial conditions:

(1) ϵ ∈ S
(2) Pϵ,0 = ∅

Extending the schedule:

(3) α · x ∈ S if and only if α ∈ S and x ∈ min(Pα ,nα\ α )
(4) Pα ·x,0 = Pα ,nα

Extending the poset:

(5) Pα ,k+1 = Pα ,k ∪ {x }, where k < nα and x < Pα ,k
(6) x is maximal in Pα ,k+1, that is, for every y ∈ Pα ,k+1, y ≯ x

(7) x is greater than the last scheduled element, that is, if α = α ′ · y, then y < x

The numbers nα in Definition 8 represent the number of new elements Program adds into the
poset after the Scheduler extends the schedule to α . The poset Pα ,k for 0 ≤ k ≤ nα is the poset in
the k-th step after scheduling α . We will also be referring to the cumulative step for α and k : Let l
be the length of α , and let αi for 0 ≤ i ≤ l denote the prefix of α of length i . The cumulative step
for α and k is the number t = nα0 + . . . + nαl−1 + k . It is not difficult to see that a scheduling poset
in cumulative step t has precisely t elements.
As with online hitting for upgrowing posets, our result for scheduling posets will be to show

how to convert a strategy for adaptive chain covering to a strategy for online hitting for scheduling
posets. Therefore, we need to extend the definition of adaptive chain covering to scheduling posets.

Definition 9 (Adaptive Chain Covering for Scheduling Posets). Let Λ be a set of chain colors, and
SP = (S,P) a scheduling poset. A set of functions C = {Cα ,k : Pα ,k → 2Λ | α ∈ S,0 ≤ k ≤ nα } is
called an adaptive chain covering for SP if the following conditions hold for all α ∈ S, 0 ≤ k ≤ nα ,
and x ∈ Pα ,k : (1) Cα ,k+1 (x ) ⊆ Cα ,k (x ) if k < nα , (2) Cα ·y,0 (x ) = Cα ,nα (x ), (3) Cα ,k (x ) , ∅, and
(4) the set {x ∈ Pα ,k | λ ∈ Cα ,k (x )} is a chain for every λ ∈ Λ.

By defining scheduling posets, we have solved the first of the two complications mentioned
earlier. We have also solved part of the second complication: given a scheduling poset SP = (S,P),
a strong d-hitting family will be some subset F ⊆ S. But how do we define the strong d-hitting
property? Note that we cannot quantify over d-tuples (x0, . . . ,xd−1), because as soon as we fix
a domain for some d-tuple, say Pα ,k , we have fixed the schedule α , and this schedule does not
necessarily hit the tuple. We deal with this complication by employing a trick from Burckhardt
et al. [2010]: instead of tuples, we quantify over auxiliary functions called labelings that indirectly
select the tuples for us.

Definition 10 (Labeling). Let SP = (S,P) be a scheduling poset, d ≥ 1 a fixed integer, and
L = {x0, . . . ,xd−1} an ordered set of labels. A d-labeling for SP is a set of partial functions L =
{Lα ,k : L ↛ Pα ,k | α ∈ S,0 ≤ k ≤ nα } satisfying the following conditions for every α ∈ S and
0 ≤ k ≤ nα :

(1) Lα ,k is injective.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 160. Publication date: November 2018.



160:12 B. Kulahcioglu Ozkan, R. Majumdar, F. Niksic, M. Tabaei Befrouei, and G. Weissenbacher

(2) Lα ·x,0 = Lα ,nα for x ∈ min(Pα ,nα\ α ), and if k < nα , then dom(Lα ,k ) ⊆ dom(Lα ,k+1) and
Lα ,k+1 (xi ) = Lα ,k (xi ) for every xi ∈ dom(Lα ,k ).

(3) If k < nα and Pα ,k+1 = Pα ,k ∪ {x }, then dom(Lα ,k+1) \ dom(Lα ,k ) contains at most one
label xi , for which Lα ,k+1 (xi ) = x .

(4) For every adaptive chain covering C for SP, there exists a chain color λ such that λ ∈
Cα ,k (Lα ,k (x0)) for every schedule α and step 0 ≤ k ≤ nα in which x0 ∈ dom(Lα ,k ).

When α and k are clear from the context, we usually write xi instead of Lα ,k (xi ).

Intuitively, the conditions in Definition 10 require the labels to be assigned to distinct elements;
they require them to be stable, and only assigned to newly added elements. Condition 4 requires
that for every adaptive chain covering there is a chain that contains x0 irrespective of the way we
schedule the elements.

Definition 11 (Strong Hitting Family for Scheduling Posets). Let SP = (S,P) be a scheduling
poset, d ≥ 1 a fixed integer, L a d-labeling for SP, and α ∈ S a schedule.

• We say α partially hits Lα ,k for 0 ≤ k ≤ nα if for every xi ∈ dom(Lα ,k ) scheduled by α and
every x ∈ Pα ,k such that either x ≥α xi or x is not scheduled, there exists x j ∈ dom(Lα ,k )

with j ≥ i such that x ≥ x j in Pα ,k . We say α partially hits L if it partially hits Lα ,k for every
0 ≤ k ≤ nα .
• If α is complete, that is, it schedules the whole Pα ,nα , and it partially hits L, we say it strongly
hits L.
• We say L is complete if for each of its strongly hitting schedules α all labels are assigned in
Pα ,nα , that is, Lα ,nα is a total function.
• A set of complete schedules F ⊆ S is a strong d-hitting family for SP if for every complete
d-labeling L for SP there is a schedule α ∈ F that strongly hits L.

The following lemma shows that in order to maintain partial hitting, it suffices for Scheduler
to preserve the property on their move. In other words, Program cannot break the property by
cleverly introducing a new element.

Lemma 12. Let SP = (S,P) be a scheduling poset, d ≥ 1 a fixed integer, L a d-labeling for SP,

and α ∈ S a schedule. The following statements are equivalent:

(1) α partially hits L,

(2) α partially hits Lα ,k for some 0 ≤ k ≤ nα ,

(3) α partially hits Lα ,0.

Proof. Clearly (1) implies (2). In order to show that (2) implies (3), assume α partially hits Lα ,k

for some k > 0. We show α partially hits Lα ,k−1 and conclude by downward induction on k . Let
Pα ,k = Pα ,k−1 ∪ {x }, let xi ∈ dom(Lα ,k−1) be an element scheduled by α , and let y ∈ Pα ,k−1 be
an element such that either y ≥α xi or y is not scheduled. Since α partially hits Lα ,k , there exists
x j ∈ dom(Lα ,k ) with j ≥ i such that y ≥ x j . If x j ∈ Pα ,k−1, we are done. Suppose x j < Pα ,k−1; then
x j = x . But then x < y in Pα ,k , contradicting the maximality of x .

We show that (3) implies (1) by (upward) induction on k . The statement (3) is the base case.
Assume α partially hits Lα ,k for some k < nα , let Pα ,k+1 = Pα ,k ∪ {x }, let xi ∈ dom(Lα ,k+1) be
an element scheduled by α , and let y ∈ Pα ,k+1 be an element such that either y ≥α xi or y is not
scheduled. Note that xi ∈ Pα ,k . If y ∈ Pα ,k , we are done; otherwise y = x . Since α schedules xi ,
we know that α = α ′ · z for some z ∈ Pα ,k , and moreover z ≥α xi . By the induction hypothesis,
there exists x j ∈ dom(Lα ,k ) with j ≥ i such that z ≥ x j . Since y = x > z, by transitivity we have
y ≥ x j . □
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In contrast to Theorem 7, which states the result for online hitting for upgrowing posets using
quantities hitd (w ,n) and adapt(w ), we state the result in this subsection in a more operational way.
To that end, we define an auxiliary notion of schedule indices: Given a scheduling posetSP = (S,P)

of size at most n, a fixed integer d ≥ 1, and an adaptive chain covering C for SP with the set of
chain colors Λ, we say a schedule index is a d-tuple of the form (λ,n1, . . . ,nd−1), where λ ∈ Λ is a
chain color, and ni ∈ {1, . . . ,n} for 1 ≤ i ≤ n are distinct numbers. Intuitively, given a labeling L
and a schedule α , the numbers ni represent the cumulative steps in which L assigns xi to new
elements in the poset, and λ represents the color of a chain containing x0. If L assigns labels in this
way by following α , we say L conforms to (λ,n1, . . . ,nd−1) on α .

Lemma 13. Let SP = (S,P) be a scheduling poset of size at most n, d ≥ 1 a fixed integer, and

C an adaptive chain covering for SP. For every schedule index (λ,n1, . . . ,nd−1) there is a schedule

α = αλ,n1, ...,nd−1 such that α strongly hits every complete d-labeling that conforms to (λ,n1, . . . ,nd−1)

on α .

Proof. Let (λ,n1, . . . ,nd−1) be a schedule index. We construct the schedule α = αλ,n1, ...,nd−1

inductively. The invariant maintained during the construction is that α partially hits every labeling
that conforms to (λ,n1, . . . ,nd−1) on α .

Base case: α = ϵ . Since Pϵ,0 = ∅, ϵ trivially hits Lϵ,0 for any labeling L. By Lemma 12, ϵ partially
hits every labeling L.

Induction step. Assume we have constructed some α = αλ,n1, ...,nd−1 that satisfies the invariant. If
all elements have been scheduled, we are done. Otherwise, we show how to select x ∈ min(Pα ,nα\α )
to extend α into α ′ = α · x without breaking the invariant. There are three cases:

(1) There exists x ∈ min(Pα ,nα\ α ) such that λ < Cα ,nα (x ) and x was not added in cumulative
step ni for any 1 ≤ i < d . We extend α with any such x .

(2) Otherwise, there exists x ∈ min(Pα ,nα\ α ) such that λ ∈ Cα ,nα (x ) and x was not added in
cumulative step ni for any 1 ≤ i < d . We extend α with any such x .

(3) Otherwise, every x ∈ min(Pα ,nα\ α ) was added in cumulative step ni for some 1 ≤ i < d . We
extend α with x added in step ni for the least index i .

Let L be a labeling conforming to (λ,n1, . . . ,nd−1) on α ′. Since it also conforms to (λ,n1, . . . ,nd−1)

on α , it is partially hit by α . We may have broken the partial hitting property if we have extended
the schedule with x0 in the second case, or with xi for 1 ≤ i < d in the third case.
In the second case, let y be some element that is not yet scheduled, and let y ′ ∈ min(Pα ,nα\ α )

be an element such that y ′ ≤ y (such y ′ always exists). Since we are in the second case, either
λ ∈ Cα ,nα (y

′), implying y ≥ y ′ ≥ x0, or y
′
= x j for some 1 ≤ j < d . In either case, y ≥ x j for some

0 ≤ j < d .
In the third case, lety be some element that is not yet scheduled, and again, lety ′ ∈ min(Pα ,nα\α )

be an element such that y ′ ≤ y. Since we are in the third case, y ′ = x j for some 1 ≤ j < d . Since we
have extended α with xi having the least index i , we have j ≥ i .

This shows that α ′ partially hits Lα ′,0. By Lemma 12, α ′ partially hits L. □

Lemma 14. Let SP = (S,P) be a scheduling poset of size at most n, d ≥ 1 a fixed integer, and

C an adaptive chain covering for SP. For every complete d-labeling L there is a schedule index

(λ,n1, . . . ,nd−1) such that L conforms to (λ,n1, . . . ,nd−1) on αλ,n1, ...,nd−1 .

Proof. Let L be a complete d-labeling, and let λ be a chain color such that λ ∈ Cα ,k (x0) for every
schedule α and step 0 ≤ k ≤ nα in which x0 is defined. Note that we can repeat the construction
from the proof of Lemma 13 with the knowledge of λ and the actual elements x1, . . . ,xd−1 selected
by L instead of the knowledge of the schedule index. During the construction, we take note of
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Input: A new element y

Data: Sets of chains B1, . . . , Bw
Invariant: ∀i : 1 ≤ i ≤ w =⇒ |Bi | ≤ i ,

Invariant: ∀i : 1 ≤ i ≤ w =⇒ Last(Bi ) := {x | α · x ∈ Bi } is an antichain

Procedure addNewElement(y)

1 for i = 1 to w do

2 if (∃α ′ · x ∈ Bi : x < y ) or |Bi | < i then

3 α ← α ′ · x if it exists, or a new empty chain otherwise

4 α ← α · y

5 if i > 1 then

6 (Bi−1, Bi ) ← (Bi \ {α }, Bi−1 ∪ {α })

7 return

Algorithm 2: Chain partitioning algorithm: adding a new element into a chain

cumulative steps ni in which L assigns labels xi . By the invariant, the schedule α obtained at the
end strongly hits L. Since L is complete, all labels have been assigned at the end, hence Cα ,nα (x0)
is a well-defined set of chain colors containing λ, and ni are well-defined numbers for all 1 ≤ i < d .
By construction, α = αλ,n1, ...,nd−1 and L conforms to (λ,n1, . . . ,nd−1) on α . □

Theorem 15. Let SP = (S,P) be a scheduling poset of size at most n, d ≥ 1 a fixed integer, and
C an adaptive chain covering for SP. The set

F = {αλ,n1, ...,nd−1 | (λ,n1, . . . ,nd−1) is a schedule index for SP}

is a strong d-hitting family for SP. If C usesm chain colors, then F has size at mostm
(

n
d−1

)

(d − 1)! .

Proof. Let L be a complete d-labeling for SP. By Lemma 14, there exists a schedule index
(λ,n1, . . . ,nd−1) such that L conforms to (λ,n1, . . . ,nd−1) on α = αλ,n1, ...,nd−1 . By Lemma 13, α
strongly hits L, and by definition, α ∈ F . Finally, the size of F is bounded by the total number of
schedule indices. □

3.5 Online Chain Partitioning

Our two main results, Theorem 7 and Theorem 15, show that Scheduler can construct strong
hitting families of bounded size provided they have a strategy for adaptive chain covering. Adaptive
chain covering is essentially an online decomposition of an upgrowing poset into a (not necessarily
disjoint) union of chains. In particular, any strategy for online chain partitioning, which decomposes
the poset into a disjoint union of chains, is a strategy for adaptive chain covering.
By Dilworth’s theorem, the optimal chain partition of a poset of width w uses w chains. In

the online setting, the optimal partition may not be achievable. As shown by Felsner [1997], for
upgrowing posets of width at most w , Scheduler always has a strategy for chain partitioning

that uses at most
(

w+1
2

)

chains, and Program can force Scheduler to use
(

w+1
2

)

chains. This bound

translates into an upper bound for adapt(w ), the minimal number of chains needed for adaptive
chain covering over all upgrowing posets of width at mostw . By plugging the bound into our main
theorems, we can bound the size of strong hitting families.

Corollary 16. Given d ≥ 1, for any upgrowing or scheduling poset of width at mostw and size at

most n, there is a strong d-hitting family of schedules of size at most
(

w+1
2

) (

n
d−1

)

(d − 1)! ≤ w2nd−1.

There is a surprisingly elegant algorithm for online chain partitioning given by Agarwal and
Garg [2007], given in Algorithm 2. The algorithm is optimal in the sense that it uses at most
(

w+1
2

)

chains for upgrowing posets of width at mostw . The algorithm maintainsw sets of chains
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B1, . . . ,Bw such that each Bi contains at most i chains. Moreover, define Last(Bi ) := {x | α · x ∈ Bi }.
The algorithm maintains the invariant that Last(Bi ) is an antichain for every 1 ≤ i ≤ w . Let y
be the new maximal element added to the poset. The algorithm finds the least index i such that
y is comparable with some x ∈ Last(Bi ) or Bi has less than i chains. (Such i exists, otherwise
Last(Bw ) ∪ {y} is an antichain of sizew + 1.) Let α = α ′ · x if y is comparable with x for α ′ · x ∈ Bi ,
otherwise let α = ϵ . The algorithm extends α to α · y in Bi . If i > 1, the algorithm swaps the chains
in Bi−1 and Bi so that in the next step B′i−1 = Bi \ {α · y} and B′i = Bi−1 ∪ {α · y}. It is not difficult
to see that the invariant of the algorithm is preserved [Agarwal and Garg 2007]. Notice that the
width of the posetw need not be known upfront. As the algorithm inserts elements to the poset, it
creates new chains as needed. By means of the invariant enforcing each Last(Bi ) to be an antichain,
the largest set of chains Bw is at most of size as the width of the poset,w .
Note that since adaptive chain covering allows decompositions of the poset into non-disjoint

chains, it is possible that there exist strategies which use fewer than
(

w+1
2

)

chains. Unfortunately, no

better strategies than online chain partitioning are currently known [Bosek et al. 2012]. However, in
case of future progress on adaptive chain covering, any new bounds on adapt(w ) will automatically
translate into new bounds on the size of online strong hitting families.

3.6 PCTCPÐPCT with Chain Partitioning

We now relate our algorithm PCTCPÐProbabilistic Concurrency Testing with Chain Partitioning,
introduced as Algorithm 1 and described informally in Sec. 2, to the results discussed in Sec. 3.4
and Sec 3.5. PCTCP incorporates Agarwal and Garg’s online chain partitioning algorithm into the
construction of strong hitting families for scheduling posets. However, instead of constructing the
whole strong hitting family, it selects a scheduling index uniformly at random and constructs only
the corresponding schedule. Therefore, it provides a bound on the probability of hitting a bug of
depth d :

Corollary 17. Given a scheduling poset SP of size at most n and width at most w , a schedule

constructed by PCTCP strongly hits a d-complete labeling for SP with probability at least 1/(w2nd−1).

To pick a scheduling index uniformly at random, PCTCP uses a priority-based randomized
scheduler similar to PCTÐthe randomized scheduler for multithreaded programs by Burckhardt
et al. [2010]. The PCTCP scheduler assigns a priority uniformly at random to each chain as it is
constructed and added to the partition on-the-fly. It then, at each step of computation, schedules
an enabled event from a chain with the highest priority. An event is enabled if it is not scheduled
and all of its predecessors have been scheduled. The priority of a chain may change during the
execution when it passes a priority change point. These points are steps in an execution with
associated priorities which are lower than the priorities assigned to chains initially. When the
execution reaches a priority change point, the scheduler adjusts the priority of the corresponding
chain to the priority associated with the change point. More specifically, given inputs d and n,
PCTCP assigns priority values d,d + 1, . . . ,d +w2 − 1 to chains which are constructed dynamically
(we can have up tow2 chains). It also picks initially d−1 random priority change points n1, . . . ,nd−1
in the range [1,n], where each ni has an associated priority value of i . Combining the initial priority
assignments and the priority change points, PCTCP generates a schedule index (λ,n1, . . . ,nd−1),
where λ is the chain with the lowest initial priority.

We argue that PCTCP is a natural generalization of PCT for multithreaded programs [Burckhardt
et al. 2010]. The main difference is that PCTCP uses a chain partition constructed on-the-fly, and
PCT uses a chain partition provided by threads. Hence the difference in the probabilistic guarantee
is 1/(w2nd−1) for PCTCP versus 1/(knd−1) for PCT on a program with k threads.
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Another difference between the two is in the phrasing of the objective of the generated schedule.
PCTCP’s objective is to “strongly hit a labeling,ž whereas PCT’s objective is to “satisfy a directive
that guarantees a bug.ž PCT’s directive for a given d ≥ 1 is a tuple D = (L,A0,x0, . . . ,Ad−1,xd−1),
where L is a labeling whose set of labels L can contain labels other than x0, . . . ,xd−1, and each
Ai ⊆ L is a set of labels. A schedule α satisfies a directive if it schedules all a ∈ Ai before xi , for
every 0 ≤ i < d , and schedules x0, . . . ,xd−1 in the order x0 <α . . . <α xd−1. Thus, a directive
represents a set of additional ordering constraints a schedule should satisfy in order to expose a
bug. The constraints are implicitly assumed to be consistent with the program’s partial order.
It is not difficult to see that the strong hitting property subsumes PCT’s directives. Let D =

(L,A0,x0, . . . ,Ad−1,xd−1) be a directive, and assume a schedule α strongly hits (x0, . . . ,xd−1). We
first show that the elements x0, . . . ,xd−1 are ordered as x0 <α . . . <α xd−1. Suppose they are not,
that is, suppose x j ≥α xi for some j < i . By the strong hitting property, there exists j ′ ≥ i such that
x j ≥ x j′ . But then, since j < j ′, the directive is inconsistent with the partial order. We conclude that
α correctly schedules x0 <α . . . <α xd−1. Suppose now that a ≥α xi for some 0 ≤ i < d and a ∈ Ai .
By the strong hitting property, there exists j ≥ i such that a ≥ x j . Again, since i ≤ j, according to
the directive the element a should be scheduled before x j , which is inconsistent with the partial
order. We conclude all a ∈ Ai are scheduled before xi for every 0 ≤ i < d . Thus, α satisfies the
directive D.

4 EXPERIMENTAL EVALUATION

4.1 P# Benchmarks

We implemented PCTCP2 to randomly test distributed applications written in Microsoft’s P#
framework3 for building asynchronous message passing systems [Deligiannis et al. 2015, 2016;
Mudduluru et al. 2017]. A P# program consists of a number of state machines that communicate by
sending and receiving messages. Each P# machine executes a message handling loop and runs in
parallel with other machines. Handling of a message can result in a state transition, creating new
machines, sending messages to other machines, or updating local fields. The systematic testing
engine of P# instruments a program at synchronization points, which are send, create-machine, and
receive events. Upon execution of one of these events, the P# runtime calls the scheduler, which
blocks the current machine and releases a possibly different machine for execution. Therefore, a
machine may be interrupted in the middle of handling an incoming message in case the handling
causes sending a new message or creating a new machine.
The original P# runtime does not keep track of causal dependencies between events, and thus

does not have an explicit notion of chains. At synchronization points, the scheduler only knows
the set of currently executing machines, and chooses one of them as the next one to schedule. The
choice is determined by the scheduling strategy; among others, the implemented strategies include
the “random walk,ž which selects the next machine uniformly at random, and “prioritized strategy,ž
which randomly selects d scheduling points during execution order and prioritizes them to make
sure they are ordered in a particular way. The latter strategy is similar to PCT, and it is called PCT
in the P# source code, but without the notion of chains it does not provide the same probabilistic
guarantee. Therefore we call it “prioritized strategyž to avoid confusion.

In order to keep track of causal dependencies, we implemented our own version of the P# runtime
called “PCTCP runtimež. Additionally, we simplified the scheduler to only schedule the receive
events. In fact, the underlying concurrencymodel of PCTCP runtime is coarser as it introduces fewer
synchronization points. Therefore, it may miss behaviors arising from interleavings of different

2The source code is available at https://gitlab.mpi-sws.org/fniksic/PSharp/tree/PCTCP.
3https://github.com/p-org/PSharp
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Table 1. Characteristics of benchmarks (LOC includes comments and blank lines, łType of bugž refers to
known bugs)

Benchmark #LOC #Machine type #Message type Type of bug

BoundedAsync 288 2 7 safety
ChainReplication 1,562 5 46 safety
Raft 1,302 5 29 safety

Chord 917 3 22 liveness
ReplicatingStorage 978 7 37 liveness
FailureDetector 674 4 19 both

TwoPhaseCommit 725 5 29 -
MultiPaxos 1,095 5 26 -
CacheCoherence 420 3 17 -

Table 2. Results of applying PCTCP to P# benchmarks including number of buggy schedules, average number
of computed chains, maximum number of produced messages and the running time.

Benchmark #Event labels #Runs %Buggy Avg #chains Max #msgs Time(s)

(d) (n)

BoundedAsync 1 10,000 98.97 12 128 71.48

ChainReplication 5 1,000 12.60 18 362 635.18

Raft 1 1,000 0.20 37 590 210.53

Chord 1 1,000 6.10 5 62 6.62

ReplicatingStorage 1 100 11.00 24 899 504.73

FailureDetector 1 5,000 0.36 27 172 360.87

TwoPhaseCommit 1 10,000 0.00 9 42 50.63

MultiPaxos 1 10,000 0.00 32 754 552.82

CacheCoherence 1 10,000 0.00 6 465 988.96

message handlers. However, it considers all possible reorderings between concurrent events which
may lead to a concurrency bug. On top of this simplified concurrency model, we implemented the
PCTCP and the random walk scheduling strategies. The random walk strategy selects the next
event uniformly at random among the enabled chains.
We evaluate our method on 9 sample implementations of distributed algorithms in the P#

framework, which were also used in previous work [Deligiannis et al. 2015; Mudduluru et al. 2017].
Table 1 shows the characteristics of the P# benchmarks including lines of code (LOC), number of
machines and message types, and the type (safety or liveness) of the underlying (known) bug(s).
Table 2 shows the result of applying PCTCP on P# benchmarks. For each benchmark we ran

PCTCP for a number of times (#Runs) with a given value of parameter d (#Event labels), and
measured the average number of computed chains (Avg #chains), the maximum number of
messages in the partial order (Max #msgs), the number of buggy schedules (%Buggy), and the
execution time in seconds (Time(s)).
To choose the value of parameter d , we start with the minimum value of 1 and increment it

only if it is not sufficient to catch at least one bug in 10,000 runs. As we can see in Table 2, for
ChainReplication we increased the value of d up to 5 to catch the two underlying safety bugs. For
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Table 3. Comparison of effectiveness of PCTCP in bug detection with three other methods.

Benchmark PCTCP runtime Original P# runtime

PCTCP Random walk Prioritized strategy Random walk

%Buggy Time(s) %Buggy Time(s) %Buggy Time(s) %Buggy Time(s)

BoundedAsync 98.97 71.48 99.04 71.35 0 88.60 0 76.98

ChainReplication 12.60 635.18 17.50 325.09 0 34.98 0 25.42

Raft 0.2 210.53 1.1 124.17 0 29.11 1.3 27.82

Chord 6.1 6.62 5.9 4.35 5.5 8.09 4.8 7.03

ReplicatingStorage 11.0 504.73 23.0 112.47 0 9.28 24.0 24.21

FailureDetector 0.36 360.87 0.08 146.32 0 2267.71 0 3012.57

TwoPhaseCommit 0 50.63 0 35.97 0 27.21 0 26.57

MultiPaxos 0 552.82 0 398.86 0 129.59 0 106.19

CacheCoherence 0 988.96 0 758.06 0 197.52 0 197.34

the last three benchmarks in this table, we only experimented with d = 1. These examples do not
have bugs discoverable by our reference methods from the P# framework as we will see in the
following. Note that the bugs found with some specific value of d do not necessarily have the bug
depth of d .
From Table 2, it can be inferred that the measured probability of catching a bug of depth d

is higher than the guaranteed probability of PCTCP. This is mainly due to the fact that some
benchmarks had more than one bug (assertion violation). For example, we observed two different
assertion violations in ChainReplication and FailureDetector. Moreover, due to symmetry in these
protocols various d-tuples can result in the same assertion violation.
Table 3 reports the result of comparing the effectiveness of PCTCP in detecting bugs (column

2) with other three reference methods: the random walk strategy in the PCTCP runtime (column
3), the prioritized strategy (column 4) and the random walk (column 5) in the original P# runtime.
Recall that the two runtimes differ in the underlying concurrency modelÐthe PCTCP runtime only
schedules message receive events. The number of runs and the parameter d for each benchmark
are the same as in Table 2.
Table 3 shows that both PCTCP and its random walk version are more effective in detecting

bugs than the original random walk and prioritized strategies of P#. The assertion violation in
the Process machine of BoundedAsync was caught by the PCTCP runtime in nearly all runs (using
either strategy). However, both the prioritized and the random walk strategies under the original P#
runtime failed to reveal this bug by exploring up to 10,000 schedules. PCTCP found two assertion
violations in ChainReplication. The one in ChainReplicationMaster machine was detected with
d = 1; however for detecting the violation in InvariantMonitor we had to increase the value of d to
5 (Table 2). Both the prioritized (with d ≤ 5) and the random walk strategies of the P# framework
did not find these assertion violations by exploring up to 10,000 schedules (the running times given
in Table 3 for this benchmark are for 1,000 runs for the sake of comparison). Only for some specific
random seed values, the prioritized scheduler of P# runtime could find the assertion violation in
InvariantMonitor in 1 out of 10,000 runs (0.01% buggy schedules). PCTCP also performed more
effectively than any strategy under the original P# runtime by detecting one liveness and one safety
bug in FailureDetector. Both strategies of the P# runtime failed to detect these bugs in 5,000 runs.
The prioritized strategy could find this bug in 70 out of 5,000 when applying d = 2 and the specific
random seed value given in the test suite of P# for this benchmark.
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Note that, for ReplicatingStorage, we also compared the P# prioritized scheduler and the PCTCP
scheduler based on similar time budgets. However, no bugwas caught by the P# prioritized scheduler
after exploring 100,000 schedules in 698.65 sec. We did the same comparison for Raft.

As Table 3 shows, PCTCP is effective in detecting bugs in practice. It may not necessarily always
outperform random walk, but in contrast it provides theoretical guarantees on finding bugs.

Livelocks. Because the PCTCP scheduler always schedules events from the chain with highest
priority, it lacks fairness. This can result in livelocks in message-passing systems. For example,
the Raft benchmark may livelock under the PCTCP scheduler due to new messages always being
placed in the chain with the highest priority.
To avoid livelocks while searching for safety bugs, PCTCP identifies the chain which causes a

livelock by detecting a cycle and using heuristics such as comparing the number of times a chain is
consecutively scheduled with a given threshold. It then temporarily disables the identified chain
and enables it again as soon as a new message is added to it.

The livelock problem also affects the original PCT algorithm and is discussed in Burckhardt et al.
[2010]. A more formal treatment of the issue is left for future work.

4.2 Case Study: Cassandra

In this and the next subsection we evaluate the effectiveness of PCTCP algorithm on two complex
real-world systems. The bugs in real-world distributed systems are known to be hard to detect
since in addition to message reorderings they often involve other kinds of faults, like node crashes
and reboots [Leesatapornwongsa et al. 2016]. We demonstrate that PCTCP can effectively find bugs
even in such realistic scenarios.

We start with Cassandra [Lakshman andMalik 2010]Ða distributed NoSQL database management
system, which provides lightweight transactions based on the Paxos consensus protocol.4 Cassan-
dra’s Paxos protocol implementation in version 2.0.0 [Apache 2012] has a bug CASSANDRA-60235

which exposes in some subtle reorderings on the synchronization messages exchanged between
the nodes. The bug is detected in a scenario where the nodes process different client transactions
concurrently. In an execution where some commit messages of some transactions arrive at some
nodes after the synchronization messages of other transactions, it is possible to commit a transac-
tion more than once. This results in corrupting data and propagating it to the other nodes. The bug
is deep and hard to detect as it requires several message reorderings in several transactions and
nodes.

We tested Cassandra on our PCTCP implementation6 which we build on top of the SAMC/DMCK
[Leesatapornwongsa et al. 2014] model checker. Our PCTCP scheduler collects the distributed
system events intercepted by SAMC and partitions them into chains. It selects the next event to
be scheduled based on the chain priorities and sends this selected event to SAMC to enforce its
execution in the distributed system.
We tested different schedules of a use case scenario with three concurrent client transactions

using both PCTCP and a naive random scheduler which randomly selects one of the enabled events
in the system. Table 4 shows the parameters and the results of our tests. The first row shows the
results for the random walk and each of the next rows shows the PCTCP results for different values
of d , the number of event labels. The columns list the maximum number of events produced by
the benchmark (Max #events), the size of the tuple of event labels (#Event labels), the number
of runs (#Runs), the number of buggy schedules (#Buggy) and the total running time of the tests

4http://cassandra.apache.org
5https://issues.apache.org/jira/browse/CASSANDRA-6023
6The source code is available at https://gitlab.mpi-sws.org/burcu/pctcp-cass/tree/PCTCP.
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Table 4. Test parameters and results for the Cassandra system.

Max #

events

#Event

labels

Avg of

max #chains
#Runs #Buggy

Total time

(mins)

Random walk 54 - 6.97 1000 0 481.95
PCTCP 54 4 5.65 1000 0 505.73
PCTCP 54 5 5.73 1000 1 503.81
PCTCP 54 6 5.80 1000 1 512.00

in minutes (Time(min)). The column Avg of max #chains shows the average of the maximum
number of concurrently enabled chains for PCTCP and the average of the maximum number of
concurrently enabled events in the naive random tests.

The PCTCP algorithm hits the bug in one of the schedules determined by 5 and 6-tuples of events
over 54 events. PCTCP detects the bug with a higher probability (0.1% in this evaluation) than
its theoretical guarantee (1/(w2nd−1)). This can be explained by several facts: (i) Considering the
poset width parameterw , we can say that the number of concurrently enabled events (around 7 on
average in our benchmark) is lower than the width of the poset (around 10 in our benchmark) in
general. During the execution of PCTCP, it is typical to have several chains in which all the events
are already executed and the algorithm selects from a smaller number of chains than the poset
width. As an example consider a distributed system execution where the highest priority chain
has some events pertaining to some protocol communication between a sender and receiver. The
PCTCP scheduler moves to another chain (without a reduction in priorities) when all the events of
this chain are executed. The first chain gets enabled only after some events in the other chains, e.g.,
when processing other receivers’ responses in other chains cause the sender to send an event that
is inserted into the first chain. (ii) Now let us consider the generation of a d − 1 tuple of events
from n events to characterize a bug. In practice, a bug is not only hit by a specific tuple of events
but several tuples lead to the buggy schedule. First, more than one ordering of events in the tuple
can expose the same bug, since some events in the tuple might be commutative. For example, a bug
hit by a tuple of three events (a,b,c ) might require only the relative ordering of a − b and a − c ,
hence hit also by the tuple (a,c,b). In our experiment, the detected 4-tuple of events which leads
to a buggy execution of Cassandra has two commutative events. Second, the problematic relative
ordering of the events can be generated by tuples of different events. A distributed system bug
which is exposed by scheduling an event at a later point of execution can be exposed by reducing
the priority of a chain at this event as well as at an earlier event that creates that event. As an
example, reducing the priority of a chain at an event pertaining to a certain part of the protocol
communication between two nodes delays the execution of the next events of the communication
protocol as well.

The naive random approach cannot detect the bug in a total of 1000 schedules which takes around
eight hours to run. As shown in Table 4, the maximum number of concurrently enabled events
to select from randomly in random testing is higher than the maximum number of concurrently
enabled chains in PCTCP on average. Therefore, random testing has a lower probability of hitting
the bug by naively selecting the next event among the enabled events.
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4.3 Case Study: Zookeeper

Our next case study involves a system called Zookeeper7. Zookeeper is a distributed key-value
store used by large distributed systems for maintaining configuration and naming information,
providing distributed synchronization, and for other purposes that arise while coordinating nodes
in a distributed setting. Its intended usage requires Zookeeper to provide strong consistency
guarantees, which it does by running a distributed consensus algorithm called ZABÐZookeeper
Atomic Broadcast [Junqueira et al. 2011]. In our case study we only focus on the first phase of the
algorithmÐthe leader electionÐand show that in the presence of node crashes and reboots, PCTCP
can effectively find executions resulting in multiple node leaders.
In the experiments we are using Zookeeper v3.4.3, even though the most recent stable version

was 3.4.11 at the time of writing this text. The reason is that the older version has some known
bugs which can be detected by tools like SAMC. In fact, the authors of SAMC were kind enough to
provide us with a version of their tool specifically tailored to catching bug ZK-14198 in Zookeeper
v3.4.3. The bug in question is a liveness bugÐthe nodes fail to ever elect a leader. In a typical leader
election involving 3 nodes, the nodes elect a leader by exchanging 15 to 18 messages. Based on
this observation, the authors of SAMC set a bound of 50 events (including messages, but also node
crashes and reboots)Ðany execution that goes beyond this bound is marked as faulty. Following
the instructions for reproducing the bug, we ran SAMC in its semantic-aware exploration mode
on 3 nodes, allowing 1 node crash and 1 reboot. Out of 174 executions explored in 2,798 seconds,
7 of them were marked as faulty: 4 of them because they reached the bound, but interestingly, 3
of them failed because they resulted in multiple leaders. Note that by itself the situation when
multiple nodes believe they are leaders does not constitute a bug in the leader election protocol:
the true leader has to be supported by a quorum of followers (cf. bug report ZK-19129). However,
such situations may still indicate underlying issues, e.g. the bug ZK-97510 involves a node that
unnecessarily goes into the leading state only to restart the leader election after a delay, thus
affecting availability of the system. We set to reproduce the executions leading to multiple leaders,
as well as followers following nodes that are not leaders, using PCTCP. We refer to such situations
as inconsistencies.
We built our own scheduler called HitMC11. Like SAMC, HitMC can orchestrate Zookeeper

nodes by imposing the order of messages during leader election, and it can crash and reboot nodes.
Additionally, HitMC tracks causal dependencies among messages, allowing us to form more general
chain decompositions than simple per-node chaining of messages. Unlike SAMC, which knows
about commutativity among messages and can thus employ partial-order reduction techniques,
HitMC does not have any semantic awarenessÐit treats messages opaquely and schedules them
according to PCTCP.
We model the execution of the system with three kinds of events: node start, node crash, and

message. Fig. 2 shows an example of a scheduling poset for Zookeeper with 3 nodes. In the figure,
Start(n), Crash(n), and Msg(n, n′) designate the start event for node n, the crash event for node
n, and an event for a message from n to n′, respectively. For each run of the system we specify a
crash budget and a reboot budget. Each node’s initial start event gets a corresponding crash event
as a successor. We only effectively allow the execution of these events if they are within the crash
budget. Later, each executed crash event gets a node start event as a successor and vice versa, as
long as the corresponding budget is still positive. Nodes send messages either automatically after

7https://zookeeper.apache.org/
8https://issues.apache.org/jira/browse/ZOOKEEPER-1419
9https://issues.apache.org/jira/browse/ZOOKEEPER-1912
10https://issues.apache.org/jira/browse/ZOOKEEPER-975
11The source code is available at https://gitlab.mpi-sws.org/rupak/hitmc.
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Start(1) Start(2) Start(3)

Msg(1,1) Crash(1) Msg(2,1) Crash(2) Msg(3,1) Crash(3)

Msg(1,2) Start(2)

Msg(1,3) Msg(2,1) Crash(2)

Msg(1,1) Msg(2,2)

Fig. 2. Scheduling poset for Zookeeper with 3 nodes. Gray events are executed and black events are enabled.

they are started, or in response to received messages. In the first case, a message is ordered after
the last node start event or the last message sent from the same node, and in the second case a
message is additionally ordered after the message it is responding to.
By default, HitMC schedules events according to PCTCP. The user specifies parameters d , the

number of event labels, and n, the total number of events. If the number of events in an actual
run exceeds n, HitMC makes sure to first schedule the n events that were added to the scheduling
poset first. It then continues executing in the order specified by the chain priorities. No priority
changes happen after the n-th event, and the probabilistic guarantee of PCTCP only applies to the
first n events. In addition to PCTCP, HitMC provides the “random walkž scheduling strategy, which
selects the next event in each step uniformly at random among the enabled events.

Like with SAMC, our experiments consist of executing Zookeeper’s leader election on 3 nodes,
with the crash and reboot budget of 1 each. We experiment with the random walk strategy, as well
as PCTCP with the parameter d ranging from 1 to 5. In each case, we execute a total of 1,000 random
runs. In addition, we execute 1,000 runs of PCTCP with d = 2 and no crashes and reboots, in order
to see whether we can find inconsistent election results even without node crashes. Following the
SAMC’s bound for the number of events within which the leader should be elected, we set the
parameter n for the maximal number of events to 50. Unlike SAMC, we do not stop the execution
when the maximal number of events is reached. Instead, we let the system run for up to 1,000
events.
The results of the experiments are summarized in Table 5. With the random walk strategy we

observe inconsistent election results in 12 out of 1,000 runs. With PCTCPwe observe inconsistencies
in at least 26 runs for d = 4, and up to 42 runs for d = 5. Note that the number of inconsistent runs
for d = 5 amounts to 4.2% of all the runs. Even in the experiment without crashes and reboots,
we detect inconsistencies in 34 runs. Except for d ≥ 4, almost all runs finish within the predicted
limit of 50 events. For d ≥ 4, there are 10 runs that exceed this limit and go up to 63 and 70 events.
Additionally, for d = 4 we observe a run that failed to terminate even after 1,000 events, possibly
exhibiting the non-termination issue ZK-1419. However, it is also possible that the non-termination
occurs due to the non-fair nature of our scheduler. Finally, we note that a run takes between 2 and
7 seconds on average, which allows us to execute a set of 1,000 runs in 30 to 120 minutes.

5 DISCUSSION AND OTHER RELATED WORK

As we have already discussed in earlier sections, we extend the notion of hitting families of
schedules, formalized by Chistikov et al. [2016], to strong hitting families. Chistikov et al. show
that for certain partial orders such as antichains and trees, one can explicitly construct hitting
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Table 5. Zookeeper results. For each strategy we executed 1,000 runs. The experiment marked by ⋆ had no
crashes or reboots; in all other cases there was 1 node crash and 1 reboot per run. In the case of PCTCP with
d = 4, we observed a non-terminating run, most likely exhibiting bug ZK-1419. The run was terminated after
reaching 1,000 events. Numbers marked by † are given with the non-terminating run excluded.

Strategy

Avg max

enabled

events

Max

enabled

events

Avg

events

Max

events

Avg max

chains

Max

chains

Faulty

runs
Time (s)

Random walk 6 6 20.9 36 - - 12 7,040

PCTCP (d = 1, n = 50) 6 6 20.6 31 6.4 10 39 2,059

PCTCP (d = 2, n = 50)⋆ 3 5 18.2 52 4.5 11 34 5,107

PCTCP (d = 2, n = 50) 6 6 20.7 34 7.5 11 32 2,060

PCTCP (d = 3, n = 50) 6 6 21.0 34 8.6 12 26 2,103

PCTCP (d = 4, n = 50) 6 7 †23.4 †63 10.1 18 †40+1 6,835

PCTCP (d = 5, n = 50) 6 6 23.7 70 11.2 19 42 7,111

families exponentially smaller than the size of the partial order. However, the partial order has to
be known in advance. In this work, we provide an online construction of strong hitting families of
bounded size for arbitrary partial orders. Our algorithm PCTCP generalizes PCT, a randomized
scheduler for multithreaded programs [Burckhardt et al. 2010], to concurrency models where chain
partition of the partial order is not implicitly given by syntactic structures like threads. Instead,
PCTCP partitions the partial order on the fly using online chain partitioning.

The online chain partitioning algorithm we use is by Agarwal and Garg, and it appears in their
work on chain clocks [Agarwal and Garg 2007]: they compare vector clocks, where each component
in the clock corresponds to a thread in the program, and chain clocks, where each component in the
clock corresponds to a chain in a chain partition obtained by online chain partitioning. They show
that in many cases chain clocks are considerably more efficient than vector clocks. Similarly to this,
it would make sense to try running PCTCP side-by-side with PCT on multithreaded programs, and
see whether there are scenarios in which PCTCP would find a better chain partition than the one
induced by threads. An experiment along these lines is left for future work.
Online chain partitioning and its connection to online dimension for upgrowing posets was

studied by Felsner [1997] and Kloch [2007]. Their work is part of a larger context of studying
unrestricted posets. In the unrestricted setting, bounds on the optimal number of chains are much
worse than for upgrowing posets. While an upgrowing poset can be partitioned online into at most
(

w+1
2

)

chains, for a long time the best known upper bound for an unrestricted poset was (5w − 1)/4

[Kierstead 1981]. Bosek and Krawczyk [2010] found a subexponential upper bound of w16 log2w ,
which was recently improved tow6.5 log2w+7 [Bosek et al. 2018]. A nice survey of the results in this
setting was done by Bosek et al. [2012].

On the application side, our work is related to a number of tools for finding bugs in concurrent
and distributed systems. We start by mentioning Bita, a testing tool for actor programs implemented
within Akka framework in Scala [Tasharofi et al. 2013]. By using an arbitrary execution of the
program as the initial schedule, Bita systematically reverses the order of pairs of concurrent
messages in a given schedule to produce new schedules, and then executes these schedules. The
exploration is guided by coverage goals similar to our 2-hitting goal. Unlike Bita, our tool randomly
samples schedules from a strong d-hitting family for arbitrary d , and does not rely on any initial
execution of the program.

Another related tool is EventRacer, a race detector for client-side web applications [Raychev et al.
2013]. Similarly to Bita, EventRacer explores schedules by pairwise reversal of concurrent events,
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but with the goal of detecting racesÐconcurrent conflicting accesses to the same memory location.
One of the key contributors to EventRacer’s efficiency is the use of chain clocks instead of vector
clocks. EventRacer’s chain clocks are based on a greedy chain decomposition. The authors report a
33-fold reduction in the average length of chain clocks compared to standard vector clocks. Even
with a highly optimized bit-vector representation of vector clocks, chain clocks are reported to
consume on average 6.6 times less memory, which significantly improves overall performance. In a
different paper on race detection, Dimitrov et al. [2015] also use insights from theoretical work on
partial orders to show that partially ordered sets of dimension two admit efficient race detection.
In Section 4 we have discussed P# [Deligiannis et al. 2016], a framework for building and

systematic testing of asynchronous programs, and SAMC [Leesatapornwongsa et al. 2014], a tool
for systematic, semantic-aware testing of distributed systems. In both P# and SAMC, as well as
our own work, the testing is done by taking control of the scheduler and imposing a particular
order of events in the program. Another approach is taken by frameworks like Jepsen [Kingsbury
2018], where a system under test is run as a black box, while the framework alters the environment
in which the system is running in order to expose abnormal behavior. In particular, Kingsbury
[2013] found a large number of bugs in many production systems by randomly introducing network
partitions while the system under test is running. Jepsen itself does not provide any guarantees on
finding bugs. However, by doing an a posteriori analysis, Majumdar and Niksic [2018] showed that
for many bugs discovered by Jepsen, one can derive guarantees on the probabilities that they are
found, and these probabilities are sufficiently high to justify Jepsen’s empirically observed success.
Different notions of bug depth are defined in the literature. These notions aim to parametrize

the search space by a depth d , so that a d-bounded exploration provides a high coverage of the
executions that are likely to be buggy. Context bounding [Qadeer and Rehof 2005] characterizes
the depth as the number of context switches between threads required to hit a bug. Preemption
bounding [Musuvathi and Qadeer 2007] bounds only the preemptive switches between the tasks.
Although this notion yields a smaller depth for the cases where tasks run to completion, it is still
not efficient for exploring schedules where the many tasks need to be preempted to hit a schedule.
Delay bounding [Emmi et al. 2011], which defines the depth as the number of deviations from a
given deterministic scheduler, and phase bounding [Bouajjani and Emmi 2012], which bounds the
number of process communication cycles, are applicable to distributed system setting, since the
bug depth parameter does not limit the number of tasks/nodes involved in the execution. The work
by Desai et al. [2015] presents a randomized algorithm for asynchronous systems based on delay
bounded exploration. Their algorithm is parametrized by a delaying scheduler where the depth
parameter does not characterize the bug but the search space. The bug depth we use in this work
(which is also used in Burckhardt et al. [2010] and Chistikov et al. [2016]) is defined only by the
ordering constraints between the events in the execution, and it is independent of the exploration
strategy.

Partial order reduction techniques [Abdulla et al. 2014; Flanagan and Godefroid 2005; Godefroid
1996] perform systematic search of behaviors of concurrent systems where only one representative
behavior among equivalent behaviors, i.e., those differing only in the ordering of independent
events, is required to be executed. In their recent work, Yuan et al. [2018] introduce a randomized
scheduling algorithm that takes partial order reduction into account. These techniques do not
restrict the search space to depth-d bugs, as we do. We do not know how partial order reduction
can be modified to efficiently explore depth-d bugs.
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A APPENDIX

A.1 Proof of Theorem 7

Proof. Let P = (Pk )0≤k≤n be an upgrowing poset of size n and width at most w , and let
C = (Ck )0≤k≤n be an adaptive chain covering for P withm chain colors. We show how to transform

C step by step into an online strong d-hitting family F = (Fk )0≤k≤n with at mostm ·
(

n
d−1

)

(d − 1)!

schedules.
The schedules in families Fk will be indexed by d-tuples (λ,n1, . . . ,nd−1), where λ ∈ Λ is a

chain color, and ni ∈ {1, . . . ,n} for 1 ≤ i < d are distinct numbers. We do not require the
indexing scheme to be injective, that is, multiple indices may denote a single schedule. Intuitively,
the numbers n1, . . . ,nd−1 serve to single out elements x1, . . . ,xd−1 added to the poset in steps
n1, . . . ,nd−1, respectively. The schedule α = αλ,n1, ...,nd−1 will be constructed so that it strongly hits
(x0,x1, . . . ,xd−1) for every element x0 with λ ∈ Ck (x0). More precisely, the construction will satisfy
the following invariant: For 0 ≤ k ≤ n, let xi1 , . . . ,xil with i1 < . . . < il be all the singled-out
elements in step k , and let x0 be an element such that λ ∈ Ck (x0). The schedule α strongly hits
(x0,xi1 , . . . ,xil ).
Clearly, a family F0 consisting of a single empty schedule satisfies the invariant. Let x be the

element added to Pk in step k > 0, and let Fk−1 be a family of schedules that satisfies the invariant
in step k − 1. We show how to extend the schedule α = αλ,n1, ...,nd−1 ∈ Fk−1 with x to obtain a
schedule α ′ = α ′

λ,n1, ...,nd−1
∈ Fk so that Fk satisfies the invariant in step k . We distinguish several

cases:

(1) If k = ni for some i ∈ {1, . . . ,d − 1}, then x needs to be singled out: we define xi := x . Let
xi1 , . . . ,xil with i1 < . . . < il be all previously singled-out elements. If l = 0 or i > il or
x ≥ xil , we schedule x as the last element in α ′. (This is possible because x is maximal in
Pk ). Otherwise, let i j be the least index such that i < i j and x is incomparable with all of
xi j ,xi j+1 , . . . ,xil . We schedule x right before xi j . (This is possible because of the invariant in
step k − 1: if x ≥ y for some y ≥α xi j , then x ≥ y ≥ xi j′ for some j ≤ j ′ ≤ l .)

To see that the invariant holds for α ′, let x0 be an element such that λ ∈ Ck (x0) and set
i0 := 0. If x ≥α ′ xi j for some j ∈ {0, . . . ,l }, then either i < i j and x ≥ xi j′ for some j ′ ≥ j by
construction, or i > i j and x ≥ xi trivially. Since x is singled out, we also need to inspect
the case when y ≥α ′ x for some y ∈ Pk−1. By construction, x immediately preceeds some
previously singled-out element xi j such that i < i j . Therefore, y ≥α ′ xi j , and by the invariant
in step k − 1, y ≥ xi j′ for some j ′ ≥ j.

(2) If x is not to be singled out and λ ∈ Ck (x ), let again xi1 , . . . ,xil with i1 < . . . < il be all
previously singled-out elements. If l = 0 or x ≥ xil , we schedule x as the last element in α ′.
Otherwise, let i j be the least index such that x is incomparable with all of xi j ,xi j+1 , . . . ,xil .
We schedule x right before xi j .

As before, to see that the invariant holds for α ′, let x0 be an element such that λ ∈ Ck (x0)
and set i0 := 0. Assume x ≥α ′ xi j for some j ∈ {0, . . . ,l }. If j = 0, then x ≥ xi0 because both
elements are in chain λ. If j > 0, by construction there exist j ′ ≥ j such that x ≥ xi j′ . Since
λ ∈ Ck (x ), we also need to inspect the case when y ≥α ′ x for some y ∈ Pk−1. By construction,
x immediately preceeds some previously singled-out element xi j . Therefore, y ≥α ′ xi j , and
by the invariant in step k − 1, y ≥ xi j′ for some j ′ ≥ j.

(3) Finally, if x is not to be singled out and λ < Ck (x ), we schedule x right after the lasty such that
y ≤ x . To show the invariant, let xi1 , . . . ,xil with i1 < . . . < il be all previously singled-out
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elements, let x0 be an element such that λ ∈ Ck (x0), and set i0 := 0. If x ≥α ′ xi j for some
j ∈ {0, . . . ,l }, then we also have y ≥α xi j . Hence x ≥ y ≥ xi j′ for some j ′ ≥ j.

Now let (x0, . . . ,xd−1) be a d-tuple in Pk . Since C is an adaptive chain covering, there exists
λ ∈ Ck (x0). Moreover, there exist steps n1, . . . ,nd−1 in which the elements x1, . . . ,xd−1 were added
to Pk . Because of the invariant, the schedule αλ,n1, ...,nd−1 ∈ Fk strongly hits the tuple. □

A.2 Schedules in Scheduling Posets

Note that Definition 8 of scheduling posets never explicitly requires a schedule α to extend a prefix
of Pα ,k . However, this fact can easily be derived from the definition.

Lemma 18. Let SP = (S,P) be a scheduling poset. For every α ∈ S and k such that 0 ≤ k ≤ nα ,

α is a schedule of a prefix of Pα ,k .

Proof. The claim clearly holds for α = ϵ and all k such that 0 ≤ k ≤ nϵ . Assume the claim holds
for some α ∈ S and all k such that 0 ≤ k ≤ nα and let x ∈ min(Pα ,nα\ α ). Since Pα ·x,0 = Pα ,nα ,
and since x is minimal in Pα ,nα\α , there exists no y ∈ Pα ·x,0 \α ·x such that y ≤ x . Therefore, α ·x
is a schedule of a prefix of Pα ·x,0. Now assume α · x is a schedule of a prefix of Pα ·x,k for some
k such that 0 ≤ k < nα ·x . Let Pα ·x,k+1 = Pα ·x,k ∪ {y}. Since y is maximal in Pα ·x,k+1, we cannot
have y ≤ x . (This also follows from x < y.) Therefore, α · x is a schedule of a prefix of Pα ·x,k+1.
The claim now follows by sub-induction on k and induction on α . □
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