
Abstraction and Mining of Traces
to Explain Concurrency Bugs

Mitra Tabaei Befrouei1∗, Chao Wang2†, and Georg Weissenbacher1?

1 Vienna University of Technology
2 Virginia Tech

Abstract. We propose an automated mining-based method for explain-
ing concurrency bugs. We use a data mining technique called sequential
pattern mining to identify problematic sequences of concurrent read and
write accesses to the shared memory of a multi-threaded program. Our
technique does not rely on any characteristics specific to one type of con-
currency bug, thus providing a general framework for concurrency bug
explanation. In our method, given a set of concurrent execution traces,
we first mine sequences that frequently occur in failing traces and then
rank them based on the number of their occurrences in passing traces.
We consider the highly ranked sequences of events that occur frequently
only in failing traces an explanation of the system failure, as they can re-
veal its causes in the execution traces. Since the scalability of sequential
pattern mining is limited by the length of the traces, we present an ab-
straction technique which shortens the traces at the cost of introducing
spurious explanations. Spurious as well as misleading explanations are
then eliminated by a subsequent filtering step, helping the programmer
to focus on likely causes of the failure. We validate our approach using
a number of case studies, including synthetic as well as real-world bugs.

1 Introduction

While Moore’s law is still upheld by increasing the number of cores of proces-
sors, the construction of parallel programs that exploit the added computational
capacity has become significantly more complicated. This holds particularly true
for debugging multi-threaded shared-memory software: unexpected interactions
between threads may result in erroneous and seemingly non-deterministic pro-
gram behavior whose root cause is difficult to analyze.

To detect concurrency bugs, researchers have focused on a number of prob-
lematic program behaviors such as data races (concurrent conflicting accesses
to the same memory location) and atomicity/serializability violations (an inter-
ference between supposedly indivisible critical regions). The detection of data
races requires no knowledge of the program semantics and has therefore received

∗ Supported by the Austrian National Research Network S11403-N23 (RiSE) and the
LogiCS doctoral program W1255-N23 of the Austrian Science Fund (FWF) and by
the Vienna Science and Technology Fund (WWTF) through grant VRG11-005.
† Supported in part by the NSF CAREER award CCF-1149454.

2

ample attention (see Section 5). Freedom from data races, however, is neither a
necessary nor a sufficient property to establish the correctness of a concurrent
program. In particular, it does not guarantee the absence of atomicity violations,
which constitute the predominant class of non-deadlock concurrency bugs [12].
Atomicity violations are inherently tied to the intended granularity of code seg-
ments (or operations) of a program. Automated atomicity checking therefore
depends on heuristics [25] or atomicity annotations [6] to obtain the boundaries
of operations and data objects.

The past two decades have seen numerous tools for the exposure and detec-
tion of race conditions [22, 16, 4, 5, 3], atomicity or serializability violations [6,
11, 25, 20], or more general order violations [13, 18]. These techniques have in
common that they are geared towards common bug characteristics [12].

We propose a technique to explain concurrency bugs that is oblivious to the
nature of the specific bug. We assume that we are given a set of concurrent
execution traces, each of which is classified as successful or failed. This is a
reasonable assumption, as this is a prerequisite for systematic software testing.

Although the traces of concurrent programs are lengthy sequences of events,
only a small subset of these events is typically sufficient to explain an erroneous
behavior. In general, these events do not occur consecutively in the execution
trace, but rather at an arbitrary distance from each other. Therefore, we use
data mining algorithms to isolate ordered sequences of non-contiguous events
which occur frequently in the traces. Subsequently, we examine the differences
between the common behavioral patterns of failing and passing traces (motivated
by Lewis’ theory of causality and counterfactual reasoning [10]).

Our approach combines ideas from the fields of runtime monitoring [2], ab-
straction and refinement [1], and sequential pattern mining [14]. It comprises the
following three phases:

– We systematically generate execution traces with different interleavings, and
record all global operations but not thread-local operations [27], thus requir-
ing only limited observability. We justify our decision to consider only shared
accesses in Section 2. The resulting data is partitioned into successful and
failed executions.

– Since the resulting traces may contain thousands of operations and events,
we present a novel abstraction technique which reduces the length of the
traces as well as the number of events by mapping sequences of concrete
events to single abstract events. We show in Section 3 that this abstraction
step preserves all original behaviors while reducing the number of patterns
to consider.

– We use a sequential pattern mining algorithm [26, 23] to identify sequences
of events that frequently occur in failing execution traces. In a subsequent
filtering step, we eliminate from the resulting sequences spurious patterns
that are an artifact of the abstraction and misleading patterns that do not
reflect problematic behaviors. The remaining patterns are then ranked ac-
cording to their frequency in the passing traces, where patterns occurring in
failing traces exclusively are ranked highest.

3

In Section 4, we use a number of case studies to demonstrate that our ap-
proach yields a small number of relevant patterns which can serve as an expla-
nation of the erroneous program behavior.

2 Executions, Failures, and Bug Explanation Patterns

In this section, we define basic notions such as program semantics, execution
traces, and faults. We introduce the notion of bug explanation patterns and
provide a theoretical rationale as well as an example of their usage. We recap
the terminology of sequential pattern mining and explain how we apply this
technique to extract bug explanation patterns from sets of execution traces.

2.1 Programs and Failing Executions

A multi-threaded program comprises a set V of memory locations or variables
and k threads with thread indices {1, . . . , k}. Each thread is represented by a
control flow graph whose edges are annotated with atomic instructions. We use
guarded statements ϕ.τ to represent atomic instructions, where ϕ is a predicate
over the program variables and τ is an (optional) assignment v := φ (where v ∈ V
and φ is an expression over V). An atomic instruction ϕ . τ is executable in a
given state (which is a mapping from V to the values of a domain) if ϕ evaluates
to true in that state. The execution of the assignment v := φ results in a new
state in which v is assigned the value of φ in the original state. Since an atomic
instruction is indivisible, acquiring and releasing a lock l in a thread with index
i is modeled as (l = 0). l := i and (l = i). l := 0, respectively. Fork and join can
be modeled in a similar manner using auxiliary synchronization variables.

Each thread executes a sequence of atomic instructions in program order
(determined by the control flow graph). During the execution, the scheduler picks
a thread and executes the next atomic instruction in the program order of the
thread. The execution halts if there are no more executable atomic instructions.

The sequence of states visited during an execution constitutes a program
behavior. A fault or bug is a defect in a program, which if triggered leads to
an error, which in turn is a discrepancy between the intended and the actual
behavior. If an error propagates, it may eventually lead to a failure, a behavior
contradicting the specification. We call executions leading to a failure failing or
bad, and all other executions passing or good executions.

Errors and failures are manifestations of bugs. Our goal is to explain why a
bug results in a failure.

2.2 Events, Transactions, and Traces

Each execution of an atomic instruction ϕ . v := φ generates read events for the
memory locations referenced in ϕ and φ, followed by a write event for v.

4

Definition 1 (Events). An event is a tuple 〈id#n, tid, `, type, addr〉, where id
is an identifier and n is an instance number, tid ∈ {1, . . . , k} and ` are the
thread identifier and the program location of the corresponding instruction, type ∈
{R,W} is the type (or direction) of the memory access, and addr ∈ V is the
memory location or variable accessed.

Two events have the same identifier id if they are issued by the same thread
and agree on the program location, the type, and the address. The instance num-
ber enables us to distinguish these events. We use Rtid(addr)−` and Wtid(addr)−`
to refer to read and write events to the object with address addr issued by thread
tid at location `, respectively. The program order of a thread induces a partial
order po on the set of events E with equivalent tids issued by a program exe-
cution. For each i ∈ {1, . . . , k} the set of events in E with tid = i (denoted by
E�(tid=i)) is totally ordered by po.

Two events conflict if they are issued by different threads, access the same
memory address, and at least one of them is a write. Given two conflicting
events e1 and e2 such that e1 is issued before e2, we distinguish three cases
of data dependency: (a) flow-dependence: e2 reads a value written by e1, (b)
anti-dependence: e1 reads a value before it is overwritten by e2, and (c) output-
dependence: e1 and e2 both write the same memory location.

We use dep to denote the partial order over E representing the data depen-
dencies that arise from the order in which the instructions of a program are
executed. Thus, 〈E, po ∪ dep〉 is a partially ordered set. This poset induces a
schedule. In the terminology of databases [17], a schedule is a sequence of in-
terleaving transactions, where each transaction comprises a set of atomic read
events followed by a set of corresponding atomic write events of the same thread
which record the result of a local computation on the read values. A transaction
in a schedule is live if it is either the final transaction writing to a certain loca-
tion, or if it writes a value read by a subsequent live transaction. Two schedules
are view-equivalent if their sets of live transactions coincide, and if a live trans-
action i reads the value of variable v written by transaction j in one schedule
then so does transaction i in the other [17, Proposition 1].

Two equivalent schedules, if executed from the same initial state, yield the
same final state. Failing executions necessarily deviate from passing executions in
at least one state. Consequently, the schedules of good and bad program execu-
tions started in the same initial state either (a) differ in their flow-dependencies
dep over the shared variables, and/or (b) contain different live transactions. The
latter case may arise if the local computations differ or if two variables are output
dependent in one schedule but not in the other.

Our method aims at identifying sequences of events that explain this discrep-
ancy. We focus on concurrency bugs that manifest themselves in a deviation of
the accesses to and the data dependencies between shared variables, thus ignor-
ing failures caused purely by a difference of the local computations. As per the
argument above, this criterion covers a large class of concurrency bugs, including
data races, atomicity and order violations.

5

1. R2(o14)− 213
2. R2(o15)− 216
3. R2(o13)− 218
4. R1(o14)− 115
5. R1(o15)− 118
6. R1(o13)− 120
7. R1(o2)− 127
8. R1(o3)− 130
9. R1(o2)− 138
10. R1(o3)− 141
11. R1(o13)− 146
12. R2(o2)− 225
13. R2(o5)− 228
14. R2(o13)− 244
15. W2(o15)− 247
16. R2(o14)− 250
17. R2(o14)− 257
18. R2(o14)− 259
19. R2(o13)− 261
20. W1(o15)− 149
21. R1(o14)− 152

Failing execution

a
n

ti
-d

ep
en

d
en

cy
o

u
tp

u
t-

d
ep

.
1. R1(o14)− 115
2. R1(o15)− 118
3. R1(o13)− 120
4. R1(o2)− 127
5 R1(o3)− 141
6. R1(o13)− 146
7. W1(o15)− 149
8. R1(o14)− 159
9. R1(o14)− 161
10. R1(o1)− 96
11. R2(o1)− 194
12. R2(o6)− 205
13. R2(o13)− 209
14. R2(o14)− 213
15. R2(o15)− 216
16. R2(o13)− 218
17. R2(o2)− 225
18. R2(o5)− 228
19. R2(o13)− 244
20. W2(o15)− 247
21. R2(o14)− 250

Passing execution

fl
ow

-d
ep

en
d

en
cy

. . .
`1: bal = balance;

pthread mutex unlock(balance lock);
if (bal+t array[i].amount≤MAX)

bal = bal+t array[i].amount;
pthread mutex lock(balance lock);

`2: balance = bal;
. . .

Code fragment

Fig. 1. Conflicting update of bank account balance

To this end, we log the order of read and write events (for shared variables)
in a number of passing and failing executions. We assume that the addresses of
variables are consistent across executions, which is enforced by our logging tool.
Let tot be a linear extension of po∪ dep reflecting the total ordering introduced
during event logging. An execution trace is then defined as follows:

Definition 2. An execution trace σ = 〈e1, e2, ..., en〉 is a finite sequence of
events ei ∈ E, i ∈ {1, ..., n} ordered by tot.

2.3 Bug Explanation Patterns

We illustrate the notion of bug explanation patterns or sequences using a well-
understood example of an atomicity violation. Figure 1 shows a code fragment
that non-atomically updates the balance of a bank account (stored in the shared
variable balance) at locations `1 and `2. The example does not contain a data
race, since balance is protected by the lock balance lock. The array t array con-
tains the sequence of amounts to be transferred. At the left of Figure 1, we see
a failing and a passing execution of our example. The identifiers on (where n is
a number) represent the addresses of the accessed shared objects, and o15 cor-
responds to the variable balance. The events R1(o15) − 118 and W1(o15) − 149
correspond to the read and write instructions at `1 and `2, respectively.

The execution at the very left of Figure 1 fails because its final state is incon-
sistent with the expected value of balance. The reason is that o15 is overwritten
with a stale value at position 20 in the trace, “killing” the transaction of thread
2 that writes o15 at position 15. This is reflected by the output dependency of
the events W1(o15)−149 and W2(o15)−247 and the anti-dependencies between
the highlighted write-after-read couples in the failing trace.

6

This combination of events and the corresponding dependencies do not arise
in any passing trace, since no context switch occurs between the events R1(o15)−
118 and W1(o15) − 149. Accordingly, the sequence of events highlighted in the
left trace in Figure 1 in combination with the dependencies reveals the prob-
lematic memory accesses to balance. We refer to this sequence as a bug ex-
planation pattern. We emphasize that the events belonging to this pattern do
not occur consecutively inside the trace, but are interspersed with other un-
related events. In general, events belonging to a bug explanation pattern can
occur at an arbitrary distance from each other due to scheduling. Our expla-
nations are therefore, in general, subsequences of execution traces. Formally,
π = 〈e0, e1, e2, ..., em〉 is a subsequence of σ = 〈E0, E1, E2, ..., En〉, denoted as
π v σ, if and only if there exist integers 0 ≤ i0 < i1 < i2 < i3... < im ≤ n such
that e0 = Ei0 , e1 = Ei1 , ..., em = Eim . We also call σ a super-sequence of π.

2.4 Mining Bug Explanation Patterns

In this section, we recap the terminology of sequential pattern mining and adapt
it to our setting. For a more detailed treatment, we refer the interested reader
to [14]. Sequential pattern mining is a technique to extract frequent subsequences
from a dataset. In our setting, we are interested in subsequences occurring fre-
quently in the sets ΣG and ΣB of passing (good) and failing (bad) execution
traces, respectively. Intuitively, bug explanation patterns occur more frequently
in the bad dataset ΣB . While the bug pattern in question may occur in passing
executions (since a fault does not necessarily result in a failure), our approach
is based on the assumption that it is less frequent in ΣG.

In a sequence dataset Σ = {σ1, σ2, ..., σn}, the support of a sequence π is de-
fined as supportΣ(π) = |{σ |σ ∈ Σ ∧ π v σ}|. Given a minimum support thresh-
old min supp, the sequence π is considered a sequential pattern or a frequent
subsequence if supportΣ(π) ≥ min supp. FSΣ,min supp denotes the set of all se-
quential patterns mined from Σ with the given support threshold min supp and
is defined as FSΣ,min supp = {π | supportΣ(π) ≥ min supp}. As an example, for
Σ = {〈a, b, c, e, d〉, 〈a, b, e, a, c, f〉, 〈a, g, b, c, h〉, 〈a, b, i, j, c〉, 〈a, k, l, c〉} we obtain
FSΣ,4 = {〈a〉 : 5, 〈b〉 : 4, 〈c〉 : 5, 〈a, b〉 : 4, 〈a, c〉 : 5, 〈b, c〉 : 4, 〈a, b, c〉 : 4}, where the
numbers following the patterns denote the respective supports of the patterns. In
FSΣ,4, patterns 〈a, b, c〉 : 4 and 〈a, c〉 : 5 which do not have any super-sequences
with the same support value are called closed patterns. A closed pattern en-
compasses all the frequent patterns with the same support value which are all
subsequences of it. For example, in FSΣ,4 〈a, b, c〉 : 4 encompasses 〈b〉 : 4, 〈a, b〉 : 4,
〈b, c〉 : 4 and similarly 〈a, c〉 : 5 encompasses 〈a〉 : 5 and 〈c〉 : 5. Closed patterns
are the lossless compression of all the sequential patterns. Therefore, we apply
algorithms [26, 23] that mine closed patterns only in order to avoid a combi-
natorial explosion. CSΣ,min supp denotes the set of all closed sequential patterns
mined from Σ with the support threshold min supp and is defined as

{π |π ∈ FSΣ,min supp ∧ @π′ ∈ FSΣ,min supp . π @ π
′ ∧ support(π) = support(π′)}.

7

To extract bug explanation patterns from ΣG and ΣB , we first mine closed
sequential patterns with a given minimum support threshold min supp from ΣB .
At this point, we ignore the instance number which corresponds to the index
of events in a totally ordered trace and identify events using their id. This is
because in mining we do not distinguish between the events according to where
they occurred inside an execution trace. The event R1(o15) − 118 in Figure 1,
for instance, has the same id in the failing and passing traces, even though the
instances numbers (5 and 2) differ. After mining the closed patterns from ΣB , we
determine which patterns are only frequent in ΣB but not in ΣG by computing
their value of relative support:

rel supp(π) =
supportΣB

(π)

supportΣB
(π) + supportΣG

(π)
.

Patterns occur more frequently in the bad dataset are thus ranked higher, and
those that occur in ΣB exclusively have the maximum relative support of 1.

We argue that the patterns with the highest relative support are indicative
of one or several faults inside the program of interest. These patterns can hence
be used as clues for the exact location of the faults inside the program code.

Support Thresholds and Datasets. Which threshold is adequate depends on the
number and the nature of the bugs. Given a single fault involving only one vari-
able, every trace in ΣB presumably contains only few patterns reflecting that
fault. Since the bugs are not known up-front, and lower thresholds result in a
larger number of patterns, we gradually decrease the threshold until useful expla-
nations emerge. Moreover, the quality of the explanations is better if the traces
in ΣG and ΣB are similar. Our experiments in Section 4 show that the sets of
execution traces need not necessarily be exhaustive to enable good explanations.

3 Mining Abstract Execution Traces

With increasing length of the execution traces and number of events, sequen-
tial pattern mining quickly becomes intractable [8]. To alleviate this problem,
we introduce macro-events that represent events of the same thread occurring
consecutively inside an execution trace, and obtain abstract events by grouping
these macros into equivalence classes according to the events they replace. Our
abstraction reduces the length of the traces as well as the number of the events
at the cost of introducing spurious traces. Accordingly, patterns mined from the
abstract traces may not reflect actual faults. Therefore, we eliminate spurious
patterns using a subsequent feasibility check.

3.1 Abstracting Execution Traces

In order to obtain a more compact representation of a set Σ of execution traces,
we introduce macros representing substrings of the traces in Σ. A substring of
a trace σ is a sequence of events that occur consecutively in σ.

8

Definition 3 (Macros). Let Σ be a set of execution traces. A macro-event (or

macro, for short) is a sequence of events m
def
= 〈e1, e2, ..., ek〉 in which all the

events ei (1 ≤ i ≤ k) have the same thread identifier, and there exists σ ∈ Σ
such that m is a substring of σ.

We use events(m) to denote the set of events in a macro m. The concatenation
of two macros m1 = 〈ei, ei+1, . . . ei+k〉 and m2 = 〈ej , ej+1, . . . ej+l〉 is defined as
m1 ·m2 = 〈ei, ei+1, . . . ei+k, ej , ej+1, . . . ej+l〉.

Definition 4 (Macro trace). Let Σ be a set of execution traces and M be a
set of macros. Given a σ ∈ Σ, a corresponding macro trace 〈m1,m2, . . . ,mn〉
is a sequence of macros mi ∈ M (1 ≤ i ≤ n) such that m1 · m2 · · ·mn = σ.
We say that M covers Σ if there exists a corresponding macro trace (denoted by
macro(σ)) for each σ ∈ Σ.

Note that the mapping macro : E+ → M+ is not necessarily unique. Given a
mapping macro, every macro trace can be mapped to an execution trace and vice

versa. For example, for M = {m0
def
= 〈e0, e2〉,m1

def
= 〈e1, e2〉,m2

def
= 〈e3〉,m3

def
=

〈e4, e5, e6〉,m4
def
= 〈e8, e9〉,m5

def
= 〈e5, e6, e7〉} and the traces σ1 and σ2 as defined

below, we obtain

σ1 = 〈
tid=1︷ ︸︸ ︷

e0, e2, e3,

tid=2︷ ︸︸ ︷
e4, e5, e6,

tid=1︷ ︸︸ ︷
e8, e9〉

σ2 = 〈e1, e2︸ ︷︷ ︸
tid=1

, e5, e6, e7︸ ︷︷ ︸
tid=2

, e3, e8, e9︸ ︷︷ ︸
tid=1

〉
macro(σ1) = 〈

tid=1︷ ︸︸ ︷
m0,m2,

tid=2︷︸︸︷
m3 ,

tid=1︷︸︸︷
m4 〉

macro(σ2) = 〈m1︸︷︷︸
tid=1

, m5︸︷︷︸
tid=2

,m2,m4︸ ︷︷ ︸
tid=1

〉 (1)

This transformation reduces the number of events as well as the length of
the traces while preserving the context switches, but hides information about
the frequency of the original events. A mining algorithm applied to the macro
traces will determine a support of one for m3 and m5, even though the events
{e5, e6} = events(m3) ∩ events(m5) have a support of 2 in the original traces.
While this problem can be amended by refining M by adding m6 = 〈e5, e6〉,
m7 = 〈e4〉, and m8 = 〈e6〉, for instance, this increases the length of the trace
and the number of events, countering our original intention.

Instead, we introduce an abstraction function α : M→ A which maps macros
to a set of abstract events A according to the events they share. The abstraction
guarantees that if m1 and m2 share events, then α(m1) = α(m2).

Definition 5 (Abstract events and traces). Let R be the relation defined

as R(m1,m2)
def
= (events(m1) ∩ events(m2) 6= ∅) and R+ its transitive closure.

We define α(mi) to be {mj |mj ∈ M ∧ R+(mi,mj)}, and the set of abstract
events A to be {α(m) |m ∈ M}. The abstraction of a macro trace macro(σ) =
〈m1,m2, . . . ,mn〉 is α(macro(σ)) = 〈α(m1), α(m2), . . . , α(mn)〉.

The concretization of an abstract trace 〈a1, a2, . . . , an〉 is the set of macro

traces γ(〈a1, a2, . . . , an〉)
def
= {〈m1, . . . ,mn〉 |mi ∈ ai, 1 ≤ i ≤ n}. Therefore,

we have macro(σ) ∈ γ(α(macro(σ))). Further, since for any m1,m2 ∈ M with

9

e ∈ events(m1) and e ∈ events(m2) it holds that α(m1) = α(m2) = a with
a ∈ A, it is guaranteed that supportΣ(e) ≤ supportα(Σ)(a), where α(Σ) =
{α(macro(σ)) |σ ∈ Σ}. For the example above (1), we obtain α(mi) = {mi}
for i ∈ {2, 4}, α(m0) = α(m1) = {m0,m1}, and α(m3) = α(m5) = {m3,m5}
(with supportα(Σ)({m3,m5}) = supportΣ(e5) = 2).

3.2 Mining Patterns from Abstract Traces

As we will demonstrate in Section 4, abstraction significantly reduces the length
of traces, thus facilitating sequential pattern mining. We argue that the patterns
mined from abstract traces over-approximate the patterns of the corresponding
original execution traces:

Lemma 1. Let Σ be a set of execution traces, and let π = 〈e0, e1 . . . ek〉 be
a frequent pattern with supportΣ(π) = n. Then there exists a frequent pattern
〈a0, . . . , al〉 (where l ≤ k) with support at least n in α(Σ) such that for each
j ∈ {0..k}, we have ∃m. ej ∈ m ∧ α(m) = aij for 0 = i0 ≤ i1 ≤ . . . ≤ ik = l.

Lemma 1 follows from the fact that each ej must be contained in some macro
m and that supportΣ(ej) ≤ supportα(Σ)(α(m)). The pattern 〈e2, e5, e6, e8, e9〉
in the example above (1), for instance, corresponds to the abstract pattern
〈{m0,m1}, {m3,m5}, {m4}〉 with support 2. Note that even though the abstract
pattern is significantly shorter, the number of context switches is the same.

While our abstraction preserves the original patterns in the sense of Lemma 1,
it may introduce spurious patterns. If we apply γ to concretize the abstract
pattern from our example, we obtain four patterns 〈m0,m3,m4〉, 〈m0,m5,m4〉,
〈m1,m3,m4〉, and 〈m1,m5,m4〉. The patterns 〈m0,m5,m4〉 and 〈m1,m3,m4〉
are spurious, as the concatenations of their macros do not translate into valid
subsequences of the traces σ1 and σ2. We filter spurious patterns and determine
the support of the macro patterns by mapping them to the original traces in Σ
(aided by the information about which traces the macros derive from).

3.3 Filtering Misleading Patterns

Sequential pattern mining ignores the underlying semantics of the events and
macros. This has the undesirable consequences that we obtain numerous patterns
that are not explanations in the sense of Section 2.3, since they do not contain
context switches or data-dependencies.

Accordingly, we define a set of constraints to eliminate misleading patterns:

1. Patterns must contain events of at least two different threads. The rationale
for this constraint is that we are exclusively interested in concurrency bugs.

2. We lift the data-dependencies introduced in Section 2.2 to macros as follows:
Two macros m1 and m2 are data-dependent iff there exist e1 ∈ events(m1)
and e2 ∈ events(m2) such that e1 and e2 are related by dep. We require that
for each macro in a pattern there is a data-dependency with at least one
other macro in the pattern.

10

3. We restrict our search to patterns with a limited number (at most 4) of
context switches, since there is empirical evidence that real world concur-
rency bugs involve only a small number of threads, context switches, and
variables [12, 15]. This heuristic limits the length of patterns and increases
the scalability of our analysis significantly.

These criteria are applied during sequential pattern mining as well as in a
post-processing step.

3.4 Deriving Macros from Traces

The precision of the approximation as well as the length of the trace is inherently
tied to the choice of macros M for Σ. There is a tradeoff between precision and
length: choosing longer subsequences as macros leads to shorter traces but also
more intersections between macros.

In our algorithm, we start with macros of maximal length, splitting the traces
in Σ into subsequences at the context switches. Subsequently, we iteratively
refine the resulting set of macros by selecting the shortest macro m and splitting
all macros that contain m as a substring. In the example in Section 3.1, we

start with M0 = {m0
def
= 〈e0, e2, e3〉,m1

def
= 〈e4, e5, e6〉,m2

def
= 〈e8, e9〉,m3

def
=

〈e1, e2〉,m4
def
= 〈e5, e6, e7〉,m5

def
= 〈e3, e8, e9〉}. As m2 is contained in m5, we split

m5 into m2 and m6
def
= 〈e3〉 and replace it with m6. The new macro is in turn

contained in m0, which gives rise to the macro m7 = 〈e0, e2〉. At this point, we
have reached a fixed point, and the resulting set of macros corresponds to the
choice of macros in our example.

For a fixed initial state, the execution traces frequently share a prefix (repre-
senting the initialization) and a suffix (the finalization). These are mapped to the
same macro events by our heuristic. Since these macros occur at the beginning
and the end of all good as well as bad traces, we prune the traces accordingly
and focus on the deviating substrings of the traces.

4 Experimental Evaluation

To evaluate our approach, we present 7 case studies which are listed in Table 1
(6 of them are taken from [13]). The programs are bug kernels capturing the
essence of bugs reported in Mozilla and Apache, or synthetic examples created
to cover a specific bug category.

We generate execution traces using the concurrency testing tool Inspect [27],
which systematically explores all possible interleavings for a fixed program input.
The generated traces are then classified as bad and good traces with respect to
the violation of a property of interest. We implemented our mining algorithm
in C#. All experiments were performed on a 2.93 GHz PC with 3.5 GB RAM
running 32-bit Windows XP 32-bit.

In Table 1, the last column shows the length reduction (up to 95%) achieved
by means of abstraction. This amount is computed by comparing the mini-
mum length of the original traces with the maximum length of abstracted traces

11

Table 1. Length reduction results by abstracting the traces

Prog. Category Name |ΣB | |ΣG| Min. Trace
Len.

Max. Abst.
Trace Len

Len Red.

Synthetic
BankAccount 40 5 178 13 93%
CircularListRace 64 6 184 9 95%
WrongAccessOrder 100 100 48 20 58%

Bug Kernel

Apache-25520(Log) 100 100 114 16 86%
Moz-jsStr 70 66 404 18 95%
Moz-jsInterp 610 251 430 101 76%
Moz-txtFrame 99 91 410 57 86%

Table 2. Mining results

Program min supp #α #γ #feas #filt #rs = 1#grp

BankAccount 100% 65 13054 19 10 10 3

CircularListRace 95% 12 336 234 18 14 12

WrongAccessOrder 100% 5 8 11 1 1 1

WrongAccessOrderrand 100% 41 62 88 1 1 1

Apache-25520(Log) 100% 160 1650 667 16 12 12

Apache-25520(Log)rand 100% 76 968 51 15 13 6

Apache-25520(Log)rand 95% 105 1318 598 61 39 28

Moz-jsStr 100% 83 615056 486 90 76 4

Moz-jsInterp 100% 83 279882 49 23 23 4

Moz-txtFrame 90% 1192 5137 2314 200 32 11

given in the preceding columns. The number of traces inside the bad and good
datasets are given in columns 2 and 3, respectively. State-of-the-art sequential
pattern mining algorithms are typically applicable to sequences of length less
than 100 [26, 14]. Therefore, the reduction of the original traces is crucial. For
all benchmarks except two of them, we used an exhaustive set of interleavings.
For the remaining benchmarks, we took the first 100 bad and 100 good traces
from the sets of 32930 and 1427 traces we were able to generate. Moreover, for
these two benchmarks, evaluation has also been done on the datasets generated
by randomly choosing 100 bad and 100 good traces from the set of available
traces.

The results of mining for the given programs and traces are provided in Ta-
ble 2. For the randomly generated datasets, namely WrongAccessOrderrand and
Apache-25520(Log)rand, the average results of 5 experiments are given. The col-
umn labeled min supp shows the support threshold required to obtain at least one
bug explanation pattern (lower thresholds yield more patterns). For the given
value of min supp, the table shows the number of resulting abstract patterns
(#α), the number of patterns after concretization (#γ), the number of patterns
remaining after removing spurious patterns (#feas), and the patterns remain-
ing after filtering misleading sequences (#filt). Mining, concretization, and the
elimination of spurious patterns takes only 263ms on average. With an aver-

12

age runtime of 100s, filtering misleading patterns is the computationally most
expensive step, but is very effective in eliminating irrelevant patterns.

The number of patterns with a relative support 1 (which only occur in the bad
dataset) is given in column 7. Finally, we group the resulting patterns according
to the set of data-dependencies they contain; column #grp shows the resulting
number of groups. Since we may get multiple groups with the same relative
support as the column #grp shows, we sort descendingly groups with the same
relative support according to the number of data-dependencies they contain.
Therefore, in the final result set a group of patterns with the highest value of
relative support and maximum number of data-dependencies appears at the top.
The patterns at the top of the list in the final result are inspected first by the user
for understanding a bug. We verified manually that all groups with the relative
support of 1 are an adequate explanation of at least one concurrency bug in the
corresponding program. In the following, we explain for each case study how the
inspection of only a single pattern from these groups can expose the bug. These
patterns are given in Figure 2. For each case study, the given pattern belongs
to a group of patterns which appeared at the top of the list in the final result
set, hence inspected first by the user. To save space, we only show the ids of the
events and the data-dependencies relevant for understanding the bugs. Macros
are separated by extra spaces between the corresponding events.

53 54 55 53 54 56 57 58 59 60 42 43 44 45 46 30

R2-W1 balance

34 35 36 37 49 41 61 62 63 64 65 66 67 68
R1-W2 balance

24 25 26 27 28 29 30 31 32 33 34 32...37 38 32 41 42 43 56 57 78 79 58 59 60 ... 65 66 67 ...65 74 75 76

W1-R2 list-tail

6 7 21 9 10 22 12 13 24 25 26 27 28 29 30 32 33 34 35 36 37
R1-W2 log-end

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123 124 276 277
W1-R2 totalStrings R2-W1 lengthSum

29 30 31 128 129 130 131 132 133 32 134 135 33 34 35

R2-W2 occupancy-flag W2-W1 occupancy-flag

132 133 138 143 177 145 146 147 148 139 140

W2-R1 mContentLength R1-W2 mContentOffset

BankAccount

CircularListRace

Apache-25520(Log)

Moz-txtFrame

Moz-jsInterp

Moz-jsStr

W1-W2
list[2]

W1-R2 log

R1-W2 flush-num

16 9 17 18

W0-R1 fifo

WrongAccessOrder

Fig. 2. Bug explanation patterns-case studies

Bank Account. The update of the shared variable balance in Figure 1 in Sec-
tion 2.3 involves a read as well as a write access that are not located in the
same critical region. Accordingly, a context switch may result in writing a stale
value of balance. In Figure 2, we provide two patterns for BankAccount, each of
which contains two macro events. From the anti-dependency (R2 −W1 balance)
in the left pattern, we infer an atomicity violation in the code executed by
thread 2, since a context switch occurs after R2(balance), consequently it is not
followed by the corresponding W2(balance). Similarly, from the anti-dependency

13

R1 −W2 balance in the right pattern we infer the same problem in the code ex-
ecuted by the thread 1. In order to obtain the bug explanation pattern given in
Figure 1 for this case study, we reduced the min supp to 60%.

Circular List Race. This program removes elements from the end of a list and
adds them to the beginning using the methods getFromTail and addAtHead,
respectively. The update is expected to be atomic, but since the calls are not
located in the same critical region, two simultaneous updates can result in an in-
correctly ordered list if a context switch occurs. The first and the second macros
of the pattern in Figure 2 correspond to the events issued by the execution of ad-
dAtHead by the threads 1 and 2, respectively. From the given data-dependencies
it can be inferred that these two calls occur consecutively during the program
execution, thus revealing the atomicity violation.

Wrong Access Order. In this program, the main thread spawns two threads, con-
sumer and output, but it only joins output. After joining output, the main thread
frees the shared data-structure which may be accessed by consumer which has
not exited yet. The flow-dependency between the two macros of the pattern in
Figure 2 implies the wrong order in accessing the shared data-structure.

Apache-25520(Log). In this bug kernel, Apache modifies a data-structure log by
appending an element and subsequently updating a pointer to the log. Since
these two actions are not protected by a lock, the log can be corrupted if a
context switch occurs. The first macro of the pattern in Figure 2 reflects thread 1
appending an element to log. The second and third macros correspond to thread 2
appending an element and updating the pointer, respectively. The dependencies
imply that the modification by thread 1 is not followed by the corresponding
update of the pointer.

For this case study, evaluation on the randomly generated datasets with
min supp =100% (row 7 in Table 2) resulted in patterns revealing only one of
the two problematic data dependencies in Figure 2, namely (R1 −W2 log − end).
By reducing the min supp to 95% (row 8 in Table 2), a pattern similar to the
one in Figure 2 appeared at the top of the list in the final result set.

Moz-jsStr. In this bug kernel, the cumulative length and the total number of
strings stored in a shared cache data-structure are stored in two variables named
lengthSum and totalStrings. These variables are updated non-atomically, result-
ing in an inconsistency. The pattern and the data-dependencies in Figure 2 reveal
this atomicity violation: the values of totalStrings and lengthSum read by thread
2 are inconsistent due to a context switch that occurs between the updates of
these two variables by thread 1.

Moz-jsInterp. This bug kernel contains a non-atomic update to a shared data-
structure Cache and a corresponding occupancy flag, resulting in an inconsis-
tency between these objects. The first and last macro-events in Figure 2 of the
pattern correspond to populating Cache and updating the occupancy flag by
thread 1, respectively. The given data-dependencies suggest these two actions
are interrupted by thread 2 which reads an inconsistent flag.

14

Moz-txtFrame. The patterns and data-dependencies at the bottom of Figure 2 re-
flect a non-atomic update to the two fields mContentOffset and mContentLength,
which causes the values of these fields to be inconsistent: the values of these
variables read by thread 1 in the second and forth macros are inconsistent due
to the updates done by thread 2 in the third macro.

5 Related Work

Given the ubiquity of multithreaded software, there is a vast amount of work
on finding concurrency bugs. A comprehensive study of concurrency bugs [12]
identifies data races, atomicity violations, and ordering violations as the preva-
lent categories of non-deadlock concurrency bugs. Accordingly, most bug detec-
tion tools are tailored to identify concurrency bugs in one of these categories.
Avio [11] only detects single-variable atomicity violations by learning acceptable
memory access patterns from a sequence of passing training executions, and then
monitoring whether these patterns are violated. Svd [25] is a tool that relies on
heuristics to approximate atomic regions and uses deterministic replay to detect
serializability violations. Lockset analysis [22] and happens-before analysis [16]
are popular approaches focusing only on data race detection. In contrast to these
approaches, which rely on specific characteristics of concurrency bugs and lack
generality, our bug patterns can indicate any type of concurrency bugs. The al-
gorithms in [24] for atomicity violations detection rely on input from the user in
order to determine atomic fragments of executions. Detection of atomic-set seri-
alizability violations by the dynamic analysis method in [7] depends on a set of
given problematic data access templates. Unlike these approaches, our algorithm
does not rely on any given templates or annotations. Bugaboo [13] constructs
bounded-size context-aware communication graphs during an execution, which
encode access ordering information including the context in which the accesses
occurred. Bugaboo then ranks the recorded access patterns according to their
frequency. Unlike our approach, which analyzes entire execution traces (at the
cost of having to store and process them in full), context-aware communication
graphs may miss bug patterns if the relevant ordering information is not encoded.
Falcon [19] and the follow-up work Unicorn [18] can detect single- and multi-
variable atomicity violations as well as order violations by monitoring pairs of
memory accesses, which are then combined into problematic patterns. The sus-
piciousness of a pattern is computed by comparing the number of times the
pattern appears in a set of failing traces and in a set of passing traces. Unicorn
produces patterns based on pattern templates, while our approach does not rely
on such templates. In addition, Unicorn restricts these patterns to windows of
some specific length, which results in a local view of the traces. In contrast to
Unicorn, we abstract the execution traces without losing information.

Leue et al. [8, 9] have used pattern mining to explain concurrent counterex-
amples obtained by explicit-state model checking. In contrast to our approach,
[8] mines frequent substrings instead of subsequences and [9] suggests a heuris-
tic to partition the traces into shorter sub-traces. Unlike our abstraction-based

15

technique, both of these approaches may result in the loss of bug explanation
sequences. Moreover, both methods are based on contrasting the frequent pat-
terns of the bad and the good datasets rather than ranking them according to
their relative frequency. Therefore, their accuracy is contingent on the values for
the two support thresholds of the bad as well as the good datasets.

Statistical debugging techniques which are based on comparison of the char-
acteristics of a number of failing and passing traces are broadly used for localiz-
ing faults in sequential program code. For example, a recent work [21] statically
ranks the differences between a few number of similar failing and passing traces,
producing a ranked list of facts which are strongly correlated with the failure. It
then systematically generates more runs that can either further confirm or re-
fute the relevance of a fact. As opposed to this approach, our goal is to identify
problematic sequences of interleaving actions in concurrent systems.

6 Conclusion

We introduced the notion of bug explanation patterns based on well-known
ideas from concurrency theory, and argued their adequacy for understanding
concurrency bugs. We explained how sequential pattern mining algorithms can
be adapted to extract such patterns from logged execution traces. By applying a
novel abstraction technique, we reduce the length of these traces to an extent that
pattern mining becomes feasible. Our case studies demonstrate the effectiveness
of our method for a number of synthetic as well as real world bugs.

As future work we plan to apply our method for explaining other types of
concurrency bugs such as deadlocks and livelocks.

References

1. Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, volume 1855 of LNCS,
pages 154–169, 2000.

2. Nelly Delgado, Ann Q. Gates, and Steve Roach. A taxonomy and catalog of run-
time software-fault monitoring tools. IEEE Transactions on Software Engineering
(TSE), 30(12):859–872, 2004.

3. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: a race-aware Java
runtime. Communications of the ACM, 53(11):85–92, 2010.

4. Dawson R. Engler and Ken Ashcraft. RacerX: effective, static detection of race
conditions and deadlocks. In Symposium on Operating Systems Principles (SOSP),
pages 237–252. ACM, 2003.

5. Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic
race detection. Communications of the ACM, 53(11):93–101, 2010.

6. Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In
PLDI, pages 338–349. ACM, 2003.

7. Christian Hammer, Julian Dolby, Mandana Vaziri, and Frank Tip. Dynamic detec-
tion of atomic-set-serializability violations. In International Conference on Soft-
ware Engineering (ICSE), pages 231–240. ACM, 2008.

16

8. S. Leue and M. Tabaei-Befrouei. Counterexample explanation by anomaly detec-
tion. In Model Checking and Software Verification (SPIN), 2012.

9. S. Leue and M. Tabaei-Befrouei. Mining sequential patterns to explain concurrent
counterexamples. In Model Checking and Software Verification (SPIN), 2013.

10. David Lewis. Counterfactuals. Wiley-Blackwell, 2001.
11. S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity violations via

access interleaving invariants. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2006.

12. Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug characteristics. In ACM
Sigplan Notices, volume 43, pages 329–339. ACM, 2008.

13. B. Lucia and L. Ceze. Finding concurrency bugs with context-aware communica-
tion graphs. In Symposium on Microarchitecture (MICRO), pages 553–563. ACM,
2009.

14. Nizar R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM Computing Surveys, 43(1):3:1–3:41, December 2010.

15. Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI, pages 446–455. ACM, 2007.

16. Robert H. B. Netzer and Barton P. Miller. Improving the accuracy of data race
detection. SIGPLAN Notices, 26(7):133–144, April 1991.

17. Christos H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM, 26(4):631–653, October 1979.

18. Sangmin Park, Richard Vuduc, and Mary Jean Harrold. A unified approach for
localizing non-deadlock concurrency bugs. In Software Testing, Verification and
Validation (ICST), pages 51–60. IEEE, 2012.

19. Sangmin Park, Richard W. Vuduc, and Mary Jean Harrold. Falcon: fault localiza-
tion in concurrent programs. In International Conference on Software Engineering
(ICSE), pages 245–254. ACM, 2010.

20. Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: exposing atomicity violation
bugs from their hiding places. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 25–36. ACM, 2009.

21. Jeremias Rößler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. Isolating
failure causes through test case generation. In International Symposium on Soft-
ware Testing and Analysis, pages 309–319. ACM, 2012.

22. Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multithreaded programs.
Transactions on Computer Systems (TOCS), 15(4):391–411, November 1997.

23. J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In ICDE,
2004.

24. Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multi-
threaded programs. TSE, 32(2):93–110, 2006.

25. Min Xu, Rastislav Bod́ık, and Mark D. Hill. A serializability violation detector for
shared-memory server programs. In PLDI, pages 1–14. ACM, 2005.

26. X. Yan, J. Han, and R. Afshar. CloSpan: Mining closed sequential patterns in large
datasets. In Proceedings of 2003 SIAM International Conference on Data Mining
(SDM’03), 2003.

27. Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Robert M. Kirby. Dis-
tributed dynamic partial order reduction based verification of threaded software.
In Model Checking and Software Verification (SPIN), pages 58–75. LNCS, 2007.

