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Abstract. We present a new method for model-based mutation-driven test case
generation. Mutants are generated by making small syntactical modifications to
the model or source code of the system under test. A test case kills a mutant
if the behavior of the mutant deviates from the original system when running
the test. In this work, we use hyperproperties—which allow to express relations
between multiple executions—to formalize different notions of killing for both
deterministic as well as non-deterministic models. The resulting hyperproperties
are universal in the sense that they apply to arbitrary reactive models and mutants.
Moreover, an off-the-shelf model checking tool for hyperproperties can be used
to generate test cases. We evaluate our approach on a number of models expressed
in two different modeling languages by generating tests using a state-of-the-art
mutation testing tool.

1 Introduction

Mutations—small syntactic modifications of programs that mimic typical programming
errors—are used to assess the quality of existing test suites. A test kills a mutated pro-
gram (or mutant), obtained by applying a mutation operator to a program, if its outcome
for the mutant deviates from the outcome for the unmodified program. The percentage
of mutants killed by a given test suite serves as a metric for test quality. The approach
is based on two assumptions: (a) the competent programmer hypothesis [11], which
states that implementations are typically close-to-correct, and (b) the coupling effect
[27], which states that a test suites ability to detect simple errors (and mutations) is
indicative of its ability to detect complex errors.

In the context of model-based testing, mutations are also used to design tests. Model-
based test case generation is the process of deriving tests from a reference model (which
is assumed to be free of faults) in such a way that they reveal any non-conformance of
the reference model and its mutants, i.e., kill the mutants. The tests detect potential er-
rors (modeled by mutation operators) of implementations, treated as a black box in this
setting, that conform to a mutant instead of the reference model. A test strongly kills a
mutant if it triggers an observable difference in behavior [11], and weakly kills a mutant
if the deviation is merely in a difference in traversed program states [22].

The aim of our work is to automatically construct tests that strongly kill mutants
derived from a reference model. To this end, we present two main contributions:
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(1) A formalization of mutation killing in terms of hyperproperties [14], a formalism
to relate multiple execution traces of a program which has recently gained popu-
larity due to its ability to express security properties such as non-interference and
observational determinism. Notably, our formalization also takes into account po-
tential non-determinism, which significantly complicates killing of mutants due to
the unpredictability of the test outcome.

(2) An approach that enables the automated construction of tests by means of model
checking the proposed hyperproperties on a model that aggregates the reference
model and a mutant of it. To circumvent limitations of currently available model
checking tools for hyperproperties, we present a transformation that enables the
control of non-determinism via additional program inputs. We evaluate our ap-
proach using a state-of-the-art model checker on a number of models expressed
in two different modeling languages.

Running example. We illustrate the main concepts of our work in Figure 1. Figure 1a
shows the SMV [25] model of a beverage machine, which non-deterministically serves
coff (coffee) or tea after input req (request), assuming that there is still enough wtr
(water) in the tank. Water can be refilled with input fill. The symbol ε represents
absence of input and output, respectively.

The code in Figure 1a includes the variable mut (initialized non-deterministically
in line 4), which enables the activation of a mutation in line 10. The mutant refills 1 unit
of water only, whereas the original model fills 2 units.

Figure 1b states a hyperproperty over the inputs and outputs of the model formal-
izing that the mutant can be killed definitely (i.e., independently of non-deterministic
choices). The execution shown in Figure 1c is a witness for this claim: the test requests
two drinks after filling the tank. For the mutant, the second request will necessarily fail,
as indicated in Figure 1d, which shows all possible output sequences for the given test.

Outline. Section 2 introduces our system model and HyperLTL. Section 3 explains the
notions of potential and definite killing of mutants, which are then formalized in terms
of hyperproperties for deterministic and non-deterministic models in Section 4. Sec-
tion 5 introduces a transformation to control non-determinism in models, and Section 6
describes our experimental results. Related work is discussed in Section 7.

2 Preliminaries

This section introduces symbolic transition systems as our formalisms for representing
discrete reactive systems and provides the syntax and semantics of HyperLTL, a logic
for hyperproperties.

2.1 System Model

A symbolic transition system (STS) is a tuple S = 〈I,O,X , α, δ〉, where I,O,X are
finite sets of input, output, and state variables, α is a formula over X ∪ O (the initial



1 i n i t ( i n ) :=ε
2 i n i t ( o u t ) : = ε
3 i n i t ( wt r ) : = 2
4 i n i t ( mut ) : = {>,⊥}
5 next ( i n ) :={ε , req , f i l l }
6 next ( o u t ) : =
7 i f ( i n = r e q&wtr >0):{ c o f f , t e a }
8 e l s e : ε
9 next ( wt r ) : =

10 i f ( i n = f i l l ) : ( mut ? 1 : 2 )
11 e l i f ( i n = r e q&wtr >0): wtr−1
12 e l s e : w t r
13 next ( mut ) : = mut

(a) Beverage machine with cond. mutant

∃π∀π′∀π′′

2
(
¬mutπ ∧ mutπ′ ∧ ¬mutπ′′∧
([in=ε]π ↔ [in=ε]π′ ↔ [in=ε]π′′)∧
([in=req]π ↔ [in=req]π′

↔ [in=req]π′′)∧
([in=fill]π ↔ [in=fill]π′

↔ [in=fill]π′′)
)
→

♦
(
¬([o=ε]π′ ↔ [o=ε]π′′)∨
¬([o=coff]π′ ↔ [o=coff]π′′)∨
¬([o=tea]π′ ↔ [o=tea]π′′)

)
(b) Hyperproperty expressing killing
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(c) Definitely killing test

Possible
out

ε ε coff/
tea

coff/
tea

ε coff/
tea

ε

(d) Spurious test response of mutant

Fig. 1: Beverage machine running example

conditions predicate), and δ is a formula over I ∪ O ∪ X ∪ X ′ (the transition relation
predicate), where X ′ = {x′ | x ∈ X} is a set of primed variables representing the
successor states. An input I , output O, state X , and successor state X ′, respectively, is
a mapping of I,O,X , andX ′, respectively, to values in a fixed domain that includes the
elements> and⊥ (representing true and false, respectively). Y |V denotes the restriction
of the domain of mapping Y to the variables V . Given a valuation Y and a Boolean
variable v ∈ V , Y (v) denotes the value of v in Y (if defined) and Y [v] and Y [¬v]
denote Y with v set to > and ⊥, respectively.

We assume that the initial conditions- and transition relation predicate are defined
in a logic that includes standard Boolean operators ¬, ∧, ∨,→, and↔. We omit further
details, as as our results do not depend on a specific formalism. We writeX,O |= α and
I,O,X,X ′ |= δ to denote that α and δ evaluate to true under an evaluation of inputs I ,
outputs O, states X , and successor states X ′. We assume that every STS has a distinct
output Oε, representing absence of output.

A state X with output O such that X,O |= α are an initial state and initial output.
A state X has a transition with input I to its successor state X ′ with output O iff

I,O,X,X ′ |= δ, denoted by X
I,O−−→ X ′. A trace of S is a sequence of tuples of

concrete inputs, outputs, and states 〈(I0, O0, X0), (I1, O1, X1), (I2, O2, X2), . . .〉 such



that X0, O0 |= α and ∀j ≥ 0 . Xj
Ij ,Oj+1−−−−−→ Xj+1. We require that every state has at

least one successor, therefore all traces of S are infinite. We denote by T (S) the set of
all traces of S. Given a trace p = 〈(I0, O0, X0), (I1, O1, X1), . . .〉, we write p[j] for
(Ij , Oj , Xj), p[j, l] for 〈(Ij , Oj , Xj), . . . , (Il, Ol, Xl)〉, p[j,∞] for 〈(Ij , Oj , Xj), . . .〉
and p|V to denote 〈(I0|V , O0|V , X0|V), (I1|V , O1|V , X1|V), . . .〉. We lift restriction to
sets of traces T by defining T |V as {p|V | t ∈ T}.
S is deterministic iff there is a unique pair of an initial state and initial output and

for each state X and input I , there is at most one state X ′ with output O, such that

X
I,O−−→ X ′. Otherwise, the model is non-deterministic.
In the following, we presume the existence of sets of atomic propositions AP =

{API ∪ APO ∪ APX } (intentionally kept abstract)1 serving as labels that characterize
inputs, outputs, and states (or properties thereof).

For a trace p = 〈(I0, O0, X0), (I1, O1, X1), . . .〉 the corresponding trace over AP
is AP(p) = 〈AP(I0) ∪ AP(O0) ∪ AP(X0),AP(I1) ∪ AP(O1) ∪ AP(X1), . . .〉. We lift
this definition to sets of traces by defining APTr(S) def

= {AP(p) | p ∈ T (S)}.

Example 1. Figure 1a shows the formalization of a beverage machine in SMV [25]. In
Figure 1b, we use atomic propositions to enumerate the possible values of in and out.
This SMV model closely corresponds to an STS: the initial condition predicate α and
transition relation δ are formalized using integer arithmetic as follows:

α
def
=out=ε ∧ wtr=2

δ
def
=wtr>0 ∧ in=req ∧ out=coff ∧ wtr’=wtr-1∨
wtr>0 ∧ in=req ∧ out=tea ∧ wtr’=wtr-1∨
in=fill ∧ ¬mut ∧ out=ε ∧ wtr’=2∨
in=fill ∧ mut ∧ out=ε ∧ wtr’=1∨
in=ε ∧ out=ε ∧ wtr’=wtr

The trace p = 〈(ε, ε, 2), (req, ε,2), (req,coff, 1), (ε,tea, 0), . . .〉 is one pos-
sible execution of the system (for brevity, variable names are omitted). Examples of
atomic propositions for the system are [in=coff], [out=ε], [wtr>0], [wtr=0] and
the respective atomic proposition trace of p is AP(p) = 〈{[in=ε], [out=ε], [wtr>0]},
{[in=req], [out=ε], [wtr>0]}, {[in=req], [out=coff], [wtr>0]}, {[in=req],
[out=tea], [wtr=0]} . . .〉

2.2 HyperLTL

In the following, we provide an overview of the HyperLTL, a logic for hyperproperties,
sufficient for understanding the formalization in Section 4. For details, we refer the
reader to [13]. HyperLTL is defined over atomic proposition traces (see Section 2.1) of
a fixed STS S = 〈I,O,X , α, δ〉 as defined in Section 2.1.

1 Finite domains can be characterized using binary encodings; infinite domains require an ex-
tension of our formalism in Section 2.2 with equality and is omitted for the sake of simplicity.



Syntax. Let AP be a set of atomic propositions and let π be a trace variable from a set
V of trace variables. Formulas of HyperLTL are defined by the following grammar:

ψ ::= ∃π.ψ | ∀π.ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | #ϕ | ϕUϕ

Connectives ∃ and ∀ are universal and existential trace quantifiers, read as ”along
some traces” and ”along all traces”. In our setting, atomic propositions a ∈ AP express
facts about states or the presence of inputs and outputs. Each atomic proposition is
sub-scripted with a trace variable to indicate the trace it is associated with. The Boolean
connectives ∧,→, and↔ are defined in terms of ¬ and ∨ as usual. Furthermore, we use
the standard temporal operators eventually ♦ϕ def

= true Uϕ, and always 2ϕ def
= ¬♦¬ϕ.

Semantics Π |=S ψ states that ψ is valid for a given mapping Π : V → APTr(S)
of trace variables to atomic proposition traces. Let Π [π 7→ p] be as Π except that π is
mapped to p. We use Π [i,∞] to denote the trace assignment Π ′(π) = Π(π) [i,∞] for
all π. The validity of a formula is defined as follows:

Π |=S aπ iff a ∈ Π(π)[0]
Π |=S ∃π.ψ iff there exists p ∈ APTr(S) : Π [π 7→ p] |=S ψ
Π |=S ∀π.ψ iff for all p ∈ APTr(S) : Π [π 7→ p] |=S ψ
Π |=S ¬ϕ iff Π 6|=S ϕ
Π |=S ψ1 ∨ ψ2 iff Π |=S ψ1 or Π |=S ψ2

Π |=S #ϕ iff Π [1,∞] |=S ϕ
Π |=S ϕ1 Uϕ2 iff there exists i ≥ 0 : Π [i,∞] |=S ϕ2

and for all 0 ≤ j < i we have Π [j,∞] |=S ϕ1

We write |=S ψ if Π |=S ψ holds and Π is empty. We call q ∈ T (S) a π-witness
of a formula ∃π.ψ, if Π [π 7→ p] |=S ψ and AP(q) = p.

3 Killing mutants

In this section, we introduce mutants, tests, and the notions of potential and definite
killing. We discuss how to represent an STS and its corresponding mutant as a single
STS, which can then be model checked to determine killability.

3.1 Mutants

Mutants are variations of a model S obtained by applying small modifications to the
syntactic representation of S. A mutant of an STS S = 〈I,O,X , α, δ〉 (the original
model) is an STS Sm = 〈I,O,X , αm, δm〉 with equal sets of input, output, and state
variables as S but a deviating initial predicate and/or transition relation. We assume
that Sm is equally input-enabled as S, that is T (Sm)|I = T (S)|I , i.e., the mutant
and model accept the same sequences of inputs. In practice, this can easily be achieved
by using self-loops with empty output to ignore unspecified inputs. We use standard
mutation operators, such as disabling transitions, replacing operators, etc. Due to space



limitations and the fact that mutation operators are not the primary focus of this work,
we do not list them here, but refer to the Appendix of [16] and [5]. We combine an
original model represented by S and a mutant Sm into a conditional mutant Sc(m), in
order to perform mutation analysis via model checking the combined model.

The conditional mutant is defined as Sc(m) def
= 〈I,O,X ∪ {mut}, αc(m), δc(m)〉,

where mut is a fresh Boolean variable used to distinguish states of the original and the
mutated STS.

Suppose Sm replaces a sub-formula δ0 of δ by δm0 , then the transition relation pred-
icate of the conditional mutant δc(m) is obtained by replacing δ0 in δ by (mut ∧ δm0 ) ∨
(¬mut∧ δ0). We fix the value of mut in transitions by conjoining δ with mut↔ mut′.
The initial conditions predicate of the conditional mutant is defined similarly.

Consequently, for a trace p ∈ T (Sc(m)) it holds that if p|{mut} = {⊥}ω then
p|I∪O∪X ∈ T (S), and if p|{mut} = {>}ω then p|I∪O∪X ∈ T (Sm). Formally, Sc(m)

is non-deterministic, since mut is chosen non-deterministically in the initial state. How-
ever, we only refer to Sc(m) as non-deterministic if either S or Sm is non-deterministic,
as mut is typically fixed in the hypertproperties presented in Section 4.

Example 1 and Figure 1a show a conditional mutant as an STS and in SMV.

3.2 Killing

Killing a mutant amounts to finding inputs for which the mutant produces outputs that
deviate from the original model. In a reactive, model-based setting, killing has been for-
malized using conformance relations [29], for example in [4,15], where an implemen-
tation conforms to its specification if all its input/output sequences are part of/allowed
by the specification.

In model-based testing, the model takes the role of the specification and is assumed
to be correct by design. The implementation is treated as black box, and therefore mu-
tants of the specification serve as its proxy. Tests (i.e., input/output sequences) that
demonstrate non-conformance between the model and its mutant can be used to check
whether the implementation adheres to the specification or contains the bug reflected in
the mutant. The execution of a test on a system under test fails if the sequence of inputs
of the test triggers a sequence of outputs that deviates from those predicted by the test.
Formally, tests are defined as follows:

Definition 1 (Test). A test t of length n for S comprises inputs t|I and outputs t|O
of length n, such that there exists a trace p ∈ T (S) with p|I [0, n] = t|I and
p|O[0, n] = t|O.

For non-deterministic models, in which a single sequence of inputs can trigger dif-
ferent sequences of outputs, we consider two different notions of killing. We say that
a mutant can be potentially killed if there exist inputs for which the mutant’s outputs
deviate from the original model given an appropriate choice of non-deterministic ini-
tial states and transitions. In practice, executing a test that potentially kills a mutant
on a faulty implementation that exhibits non-determinism (e.g., a multi-threaded pro-
gram) may fail to demonstrate non-conformance (unless the non-determinism can be
controlled). A mutant can be definitely killed if there exists a sequence of inputs for



which the behaviors of the mutant and the original model deviate independently of how
non-determinism is resolved.

Note potential and definite killability are orthogonal to the folklore notions of weak
and strong killing, which capture different degrees of observability. Formally, we define
potential and definite killability as follows:

Definition 2 (Potentially killable). Sm is potentially killable if

T (Sm)|I∪O * T (S)|I∪O

Test t for S of length n potentially kills Sm if

{q[0, n] | q ∈ T (Sm) ∧ q[0, n]|I = t|I}|I∪O * {p[0, n] | p ∈ T (S)}|I∪O.

Definition 3 (Definitely killable). Sm is definitely killable if there is a sequence of
inputs ~I ∈ T (S)|I , such that

{q ∈ T (Sm) | q|I = ~I}|O ∩ {p ∈ T (S) | p|I = ~I}|O = ∅

Test t for S of length n definitely kills Sm if

{q[0, n] | q ∈ T (Sm) ∧ q[0, n]|I = t|I}|O∩
{p[0, n] | p ∈ T (S) ∧ p[0, n]|I = t|I}|O = ∅

Definition 4 (Equivalent Mutant). Sm is equivalent iff Sm is not potentially killable.

Note that definite killability is stronger than potential killabilty, though for deter-
ministic systems, the two notions coincide.

Proposition 1. If Sm is definitely killable then Sm is potentially killable.
If Sm is deterministic then: Sm is potentially killable iff Sm is definitely killable.

The following example shows a definitely killable mutant, a mutant that is only
potentially killable, and an equivalent mutant.

Example 2. The mutant in Figure 1a, is definitely killable, since we can force the sys-
tem into a state in which both possible outputs of the original system (coff, tea)
differ from the only possible output of the mutant (ε).

Consider a mutant that introduces non-determinism by replacing line 7 with the
code if(in=fill):(mut ? {1,2} : 2), indicating that the machine is filled
with either 1 or 2 units of water. This mutant is potentially but not definitely killable, as
only one of the non-deterministic choices leads to a deviation of the outputs.

Finally, consider a mutant that replaces line 4 with if(in=req&wtr>0):(mut
? coff : {coff,tea}) and removes the mut branch of line 7, yielding a machine
that always creates coffee. Every implementation of this mutant is also correct with
respect to the original model. Hence, we consider the mutant equivalent, even though
the original model, unlike the mutant, can output tea.



4 Killing with hyperproperties

In this section, we provide a formalization of potential and definite killability in terms
of HyperLTL, assert the correctness of our formalization with respect to Section 3, and
explain how tests can be extracted by model checking the HyperLTL properties. All
HyperLTL formulas depend on inputs and outputs of the model, but are model-agnostic
otherwise. The idea of all presented formulas is to discriminate between traces of the
original model (2¬mutπ) and traces of the mutant (2mutπ). Furthermore, we quantify
over pairs (π, π′) of traces with globally equal inputs (2

∧
i∈API

iπ ↔ iπ′) and express
that such pairs will eventually have different outputs (♦

∨
o∈APO

¬(oπ ↔ oπ′)).

4.1 Deterministic Case

To express killability (potential and definite) of a deterministic model and mutant, we
need to find a trace of the model (∃π) such that the trace of the mutant with the same
inputs (∃π′) eventually diverges in outputs, formalized by φ1 as follows:

φ1(I,O) := ∃π∃π′2(¬mutπ ∧mutπ′

∧
i∈API

iπ ↔ iπ′) ∧ ♦(
∨

o∈APO

¬(oπ ↔ oπ′))

Proposition 2. For a deterministic model S and mutant Sm it holds that

Sc(m) |= φ1(I,O) iff Sm is killable.

If t is a π-witness for Sc(m) |= φ1(I,O), then t[0, n]|I∪O kills Sm (for some n ∈ N).

4.2 Non-deterministic Case

For potential killability of non-deterministic models and mutants,2 we need to find a
trace of the mutant (∃π) such that all traces of the model with the same inputs (∀π′)
eventually diverge in outputs, expressed in φ2:

φ2(I,O) := ∃π∀π′2(mutπ ∧ ¬mutπ′

∧
i∈API

iπ ↔ iπ′)→ ♦(
∨

o∈APO

¬(oπ ↔ oπ′))

Proposition 3. For non-deterministic S and Sm, it holds that

Sc(m) |= φ2(I,O) iff Sm is potentially killable.

If s is a π-witness for Sc(m) |= φ2(I,O), then for any trace t ∈ T (S) with t|I = s|I ,
t[0, n]|I∪O potentially kills Sm (for some n ∈ N).

2 The Appendix of [16] covers deterministic models with non-deterministic mutants and vice-
versa.



To express definite killability, we need to find a sequence of inputs of the model (∃π)
and compare all non-deterministic outcomes of the model (∀π′) to all non-deterministic
outcomes of the mutant (∀π′′) for these inputs, as formalized by φ3:

φ3(I,O) := ∃π∀π′∀π′′2
(
¬mutπ ∧mutπ′ ∧ ¬mutπ′′∧∧
i∈API

iπ ↔ iπ′ ∧ iπ ↔ iπ′′
)
→ ♦

( ∨
o∈APO

¬(oπ′ ↔ oπ′′)
)

In Figure 1b, we present an instance of φ3 for our running example.

Proposition 4. For non-deterministic S and Sm, it holds that

Sc(m) |= φ3(I,O) iff Sm is definitely killable.

If t is a π-witness for Sc(m) |= φ3(I,O), then t[0, n]|I∪O definitely kills Sm (for some
n ∈ N).

To generate tests, we use model checking to verify whether the conditional mutant
satisfies the appropriate HyperLTL formula presented above and obtain test cases as
finite prefixes of witnesses for satisfaction.

5 Non-deterministic models in practice

As stated above, checking the validity of the hyperproperties in Section 4 for a given
model and mutant enables test-case generation. To the best of our knowledge, MCHY-
PER [18] is the only currently available HyperLTL model checker. Unfortunately, MC-
HYPER is unable to model check formulas with alternating quantifiers.3 Therefore, we
are currently limited to checking φ1(I,O) for deterministic models, since witnesses of
φ1 may not satisfy φ2 in the presence of non-determinism.

To remedy this issue, we propose a transformation that makes non-determinism con-
trollable by means of additional inputs and yields a deterministic STS. The transformed
model over-approximates killability in the sense that the resulting test cases only kill
the original mutant if non-determinism can also be controlled in the system under test.
However, if equivalence can be established for the transformed model, then the original
non-deterministic mutant is also equivalent.

5.1 Controlling non-determinism in STS

The essential idea of our transformation is to introduce a fresh input variable that en-
ables the control of non-deterministic choices in the conditional mutant Sc(m). The
new input is used carefully to ensure that choices are consistent for the model and the
mutant encoded in Sc(m). W.l.o.g., we introduce an input variable nd with a domain
sufficiently large to encode the non-deterministic choices in αc(m) and δc(m), and write

3 While satisfiability in the presence of quantifier alternation is supported to some extent [17].



nd(X,O) to denote a value of nd that uniquely corresponds to state X with output O.
Moreover, we add a fresh Boolean variable xτ to X used to encode a fresh initial state.

Let X+
def
= X ∪ {mut} and X+, X

′
+, I, O be valuations of X+, X ′

+, I, and O, and
X and X ′ denote X+|X and X ′

+|X ′ , respectively. Furthermore, ψ(X), ψ(X+, I), and
ψ(O,X ′

+) are formulas uniquely satisfied by X , (X+, I), and (O,X ′
+) respectively.

Given conditional mutant Sc(m) def
= 〈I,O,X+, α

c(m), δc(m)〉, we define its control-
lable counterpart D(Sc(m))

def
= 〈I ∪ {nd},O,X+ ∪ {xτ}, D(αc(m)), D(δc(m))〉. We

initialize D(δc(m))
def
= δc(m) and incrementally add constraints as described below.

Non-deterministic initial conditions: Let X be an arbitrary, fixed state. The unique
fresh initial state is Xτ def

= X[xτ ], which, together with an empty output, we enforce by
the new initial conditions predicate:

D(αc(m))
def
= ψ(Xτ , Oε)

We add the conjunct ¬ψ(Xτ )→ ¬xτ ′ to D(δc(m)), in order to force xτ evaluating
to ⊥ in all states other than Xτ . In addition, we add transitions from Xτ to all pairs of
initial states/outputs in αc(m). To this end, we first partition the pairs in αc(m) into pairs
shared by and exclusive to the model and the mutant:

J∩ def
= {(O,X+) | X,O |= αc(m)}

Jorig
def
= {(O,X+) | ¬X+(mut) ∧ (X+, O |= αc(m)) ∧ (X+[mut], O 6|= αc(m))}

Jmut
def
= {(O,X+) | X+(mut) ∧ (X+, O |= αc(m)) ∧ (X+[¬mut], O 6|= αc(m))}

For each (O,X+) ∈ J∩∪Jmut∪Jorig, we add the following conjunct toD(δc(m)):

ψ(Xτ ) ∧ nd(O,X)→ ψ(O,X ′
+)

In addition, for inputs nd(O,X) without corresponding target state in the model or
mutant, we add conjuncts to D(δc(m)) that represent self loops with empty outputs:

∀(O,X+) ∈ Jorig : ψ(Xτ [mut]) ∧ nd(O,X)→ ψ(Oε, X
τ ′[mut])

∀(O,X+) ∈ Jmut : ψ(Xτ [¬mut]) ∧ nd(O,X)→ ψ(Oε, X
τ ′[¬mut])

Non-deterministic transitions: Analogous to initial states, for each state/input pair, we
partition the successors into successors shared or exclusive to model or mutant:

T∩
(X+,I)

def
= {(X+, I, O,X

′
+) | X

I,O−−→ X ′}

T orig(X+,I)

def
= {(X+, I, O,X

′
+) | ¬X+(mut) ∧ (X+

I,O−−→ X ′
+) ∧ ¬(X+[mut]

I,O−−→ X ′
+)}

Tmut(X+,I)
def
= {(X+, I, O,X

′
+) | X+(mut) ∧ (X+

I,O−−→ X ′
+) ∧ ¬(X+[¬mut]

I,O−−→ X ′
+)}

A pair (X+, I) causes non-determinism if

|(T∩
(X+,I)

∪ T orig(X+,I)
)|X∪I∪O∪X ′ | > 1 or |(T∩

(X+,I)
∪ Tmut(X+,I)

)|X∪I∪O∪X ′ | > 1.



For each pair (X+, I) that causes non-determinism and each (X+, I, Oj , X
′
+j) ∈

T∩
(X+,I)

∪ Tmut(X+,I)
∪ T orig(X+,I)

, we add the following conjunct to D(δc(m)):

ψ(X+, I) ∧ nd(Oj , Xj)→ ψ(Oj , X
′
+j)

Finally, we add conjuncts representing self loops with empty output for inputs that
have no corresponding transition in the model or mutant:

∀(X+, I, Oj , X
′
+j) ∈ T

orig
(X+,I)

: ψ(X+[mut], I) ∧ nd(Oj , Xj)→ ψ(Oε, X
′
+j [mut])

∀(X+, I, Oj , X
′
+j) ∈ Tmut(X+,I)

: ψ(X+[¬mut], I) ∧ nd(Oj , Xj)→ ψ(Oε, X
′
+j [¬mut])

The proposed transformation has the following properties:

Proposition 5. Let S be a model with inputs I, outputs O, and mutant Sm then

1. D(Sc(m)) is deterministic (up to mut).
2. T (Sc(m))|X+∪I∪O ⊆ T (D(Sc(m)))[1,∞]|X+∪I∪O.
3. D(Sc(m)) 6|= φ1(I,O) then Sm is equivalent.

The transformed model is deterministic, since we enforce unique initial valuations
and make non-deterministic transitions controllable through input nd. Since we only

add transitions or augment existing transitions with input nd, every transition X
I,O−−→

X ′ of Sc(m) is still present in D(Sc(m)) (when input nd is disregarded). The po-
tential additional traces of Item 2 originate from the Oε-labeled transitions for non-
deterministic choices present exclusively in the model or mutant. These transitions en-
able the detection of discrepancies between model and mutant caused by the introduc-
tion or elimination of non-determinism by the mutation.

For Item 3 (which is a direct consequence of Item 2), assume that the original non-
deterministic mutant is not equivalent (i.e., potentially killable). Then D(Sc(m)) |=
φ1(I,O), and the corresponding witness yields a test which kills the mutant assuming
non-determinism can be controlled in the system under test. Killability purported by φ1,
however, could be an artifact of the transformation: determinization potentially deprives
the model of its ability to match the output of the mutant by deliberately choosing a
certain non-deterministic transition. In Example 2, we present an equivalent mutant
which is killable after the transformation, since we will detect the deviating output tea
of the model and ε of the mutant. Therefore, our transformation merely allows us to
provide a lower bound for the number of equivalent non-deterministic mutants.

5.2 Controlling non-determinism in modeling languages

The exhaustive enumeration of states (J) and transitions (T ) outlined in Section 5.1 is
purely theoretical and infeasible in practice. However, an analogous result can often be
achieved by modifying the syntactic constructs of the underlying modeling language
that introduce non-determinism, namely:



Fig. 2: Tool Pipeline of our Experiments

– Non-deterministic assignments. Non-deterministic choice over a finite set of ele-
ments {x′1, . . . x′n}, as provided by SMV [25], can readily be converted into a case-
switch construct over nd. More generally, explicit non-deterministic assignments
x := ? to state variables x [26] can be controlled by assigning the value of nd to x.

– Non-deterministic schedulers. Non-determinism introduced by concurrency can be
controlled by introducing input variables that control the scheduler (as proposed in
[23] for bounded context switches).

In case non-determinism arises through variables under-specified in transition rela-
tions, these variable values can be made inputs as suggested by Section 5.1. In general,
however, identifying under-specified variables automatically is non-trivial.

Example 3. Consider again the SMV code in Figure 1a, for which non-determinism can
be made controllable by replacing line if(in=req&wtr>0):{coff,tea} with
lines if(nd=0&in=req&wtr>0):coff, elif(nd=1&in=req&wtr>0):tea
and adding init(nd):={0,1}.

Similarly, the STS representation of the beverage machine, given in Example 1, can
be transformed by replacing the first two rules by the following two rules:

nd=0 ∧ wtr>0 ∧ in=req ∧ out=coff ∧ wtr’=wtr-1∨
nd=1 ∧ wtr>0 ∧ in=req ∧ out=tea ∧ wtr’=wtr-1∨

6 Experiments

In this section, we present an experimental evaluation of the presented methods. We
start by presenting the deployed tool-chain. Thereafter, we present a validation of our
method on one case study with another model-based mutation testing tool. Finally, we
present quantitative results on a broad range of generic models.

6.1 Toolchain

Figure 2 shows the toolchain that we use to produce test suites for models encoded in
the modeling languages Verilog and SMV. Verilog models are deterministic while SMV
models can be non-deterministic.
Variable annotation. As a first step, we annotate variables as inputs and outputs. These
annotations were added manually for Verilog, and heuristically for SMV (partitioning
variables into outputs and inputs).
Mutation and transformation. We produce conditional mutants via a mutation engine.
For Verilog, we implemented our own mutation engine into the open source Verilog



compiler VL2MV [12]. We use standard mutation operators, replacing arithmetic op-
erators, Boolean relations, Boolean connectives, constants, and assignment operators.
The list of mutation operators used for Verilog can be found in the Appendix of [16].
For SMV models, we use the NuSeen SMV framework [5,6], which includes a mutation
engine for SMV models. The mutation operators used by NuSeen are documented in
[5]. We implemented the transformation presented in Section 5 into NuSeen and applied
it to conditional mutants.
Translation. The resulting conditional mutants from both modeling formalisms are
translated into AIGER circuits [9]. AIGER circuits are essentially a compact repre-
sentation for finite models. The formalism is widely used by model checkers. For the
translation of Verilog models, VL2MV and the ABC model checker are used. For the
translation of SMV models, NuSMV is used.
Test suite creation. We obtain a test suite, by model checking ¬φ1(I,O) on condi-
tional mutants. Tests are obtained as counter-examples, which are finite prefixes of π-
witnesses to φ1(I,O). In case we can not find a counter-example, and use a complete
model checking method, the mutant is provably equivalent.

Case study test suite evaluation. We compare the test suite created with our method
for a case study, with the model-based mutation testing tool MoMuT [2,15]. The case
study is a timed version of a model of a car alarm system (CAS), which was used in the
model-based test case generation literature before [4,3,15].

To this end, we created a test suite for a SMV formulation of the model. We evalu-
ated its strength and correctness on an Action System (the native modeling formalism
of MoMuT) formulation of the model. MoMuT evaluated our test suite by computing
its mutation score — the ratio of killed- to the total number of- mutants— with respect
to Action System mutations, which are described in [15].

This procedure evaluates our test suite in two ways. Firstly, it shows that the tests are
well formed, since MoMuT does not reject them. Secondly, it shows that the test suite is
able to kill mutants of a different modeling formalism than the one it was created from,
which suggests that the test suite is also able to detect faults in implementations.

We created a test suite consisting of 61 tests, mapped it to the test format accepted
by MoMuT. MoMuT then measured the mutation score of our translated test suite on
the Action System model, using Action System mutants. The measured mutation score
is 91% on 439 Action System mutants. In comparison, the test suite achieves a mutation
score of 61% on 3057 SMV mutants. Further characteristics of the resulting test suite
are presented in the following paragraphs.

Quantitative Experiments. All experiments presented in this section were run in par-
allel on a machine with an Intel(R) Xeon(R) CPU at 2.00GHz, 60 cores, and 252GB
RAM. We used 16 Verilog models which are presented in [18], as well as models from
opencores.org. Furthermore, we used 76 SMV models that were also used in [5]. Fi-
nally, we used the SMV formalism of CAS. All models are available in [1]. Verilog and
SMV experiments were run using property driven reachability based model checking
with a time limit of 1 hour. Property driven reachability based model checking did not
perform well for CAS, for which we therefore switched to bounded model checking
with a depth limit of 100.



Characteristics of models. Table 1 present characteristics of the models. For Verilog
and SMV, we present average (µ), standard deviation (σ), minimum (Min), and max-
imum (Max) measures per model of the set of models. For some measurements, we
additionally present average (Avg.) or maximum (Max) number over the set of mutants
per model. We report the size of the circuits in terms of the number of inputs (#Input),
outputs (#Output), state (#State) variables as well as And gates (#Gates), which corre-
sponds to the size of the transition relation of the model. Moreover, the row “Avg. ∆ #
Gates” shows the average size difference (in % of # Gates) of the conditional mutant
and the original model, where the average is over all mutants. The last row of the table
shows the number of the mutants that are generated for the models.

We can observe that our method is able to handle models of respectable size, reach-
ing thousands of gates. Furthermore, ∆# Gates of the conditional mutants is relatively
low. Conditional mutants allow us to compactly encode the original and mutated model
in one model. Hyperproperties enable us to refer to and juxtapose traces from the origi-
nal and mutated model, respectively. Classical temporal logic does not enable the com-
parison of different traces. Therefore, mutation analysis by model checking classical
temporal logic necessitates strictly separating traces of the original and the mutated
model, resulting in a quadratic blowup in the size of the input to the classical model-
checker, compared to the size of the input to the hyperproperty model-checker.

Table 1: Characteristics of Models
Parameters Verilog SMV CAS

µ σ Min Max µ σ Min Max

# Models 16 76 1

# Input 186.19 309.59 4 949 8.99 13.42 0 88 58
# Output 176.75 298.94 7 912 4.49 4.26 1 28 7
# State 15.62 15.56 2 40 - - - - -

# Gates 4206.81 8309.32 98 25193 189.12 209.59 7 1015 1409
Avg. ∆ # Gates 3.98% 14.71% -10.2% 57.55% 8.14% 8.23% 0.22% 35.36% 0.86%

# Mutants 260.38 235.65 43 774 535.32 1042.11 1 6304 3057

Model checking results. Table 2 summarizes the quantitative results of our experi-
ments. The quantitative metrics we use for evaluating our test generation approach are
the mutation score (i.e. percentage of killed mutants) and the percentage of equivalent
mutants, the number of generated tests, the amount of time required for generating them
and the average length of the test cases. Furthermore, we show the number of times the
resource limit was reached. For Verilog and SMV this was exclusively the 1 hour time-
out. For CAS this was exclusively the depth limit 100.

Finally, we show the total test suite creation time, including times when reaching the
resource limit. The reported time assumes sequential test suite creation time. However,
since mutants are model checked independently, the process can easily be parallelized,
which drastically reduces the total time needed to create a test suite for a model. The



times of the Verilog benchmark suite are dominated by two instances of the secure
hashing algorithm (SHA), which are inherently hard cases for model checking.

We can see that the test suite creation times are in the realm of a few hours, which
collapses to minutes when model checking instances in parallel. However, the timing
measures really say more about the underlying model checking methods than our pro-
posed technique of mutation testing via hyperporperties. Furthermore, we want to stress
that our method is agnostic to which variant of model checking (e.g. property driven
reachability, or bounded model checking) is used. As discussed above, for CAS switch-
ing from one method to the other made a big difference.

The mutation scores average is around 60% for all models. It is interesting to notice
that the scores of the Verilog and SMV models are similar on average, although we use
a different mutation scheme for the types of models. Again, the mutation score says
more about the mutation scheme than our proposed technique. Notice that we can only
claim to report the mutation score, because, besides CAS, we used a complete model
checking method (property driven reachability). That is, in case, for example, 60% of
the mutants were killed and no timeouts occurred, then 40% of the mutants are provably
equivalent. In contrast, incomplete methods for mutation analysis can only ever report
lower bounds of the mutation score. Furthermore, as discussed above, the 61.7% of
CAS translate to 91% mutation score on a different set of mutants. This indicates that
failure detection capability of the produced test suites is well, which ultimately can only
be measured by deploying the test cases on real systems.

Table 2: Experimental Results
Metrics Verilog SMV CAS

µ σ Min Max µ σ Min Max

Mutation Score 56.82% 33.1% 4.7% 99% 64.79% 30.65% 0% 100% 61.7 %
Avg. Test-case Len. 4.26 1.65 2.21 8.05 15.41 58.23 4 461.52 5.92
Max Test-case Len. 21.62 49.93 3 207 187.38 1278.56 4 10006 9

Avg. Runtime 83.08s 267.53s 0.01s 1067.8s 1.2s 5.48s - 46.8s 7.8s

Equivalent Mutants 33.21% 32.47% 0% 95.3% 35.21% 30.65% 0% 100% 0%
Avg. Runtime 44.77s 119.58s 0s 352.2s 0.7s 2.02s - 14.9s -

# Resource Limit 9.96% 27.06% 0% 86.17% 3.8% 19.24% 0% 100% 38.34 %

Total Runtime 68.58h 168.62h 0h 620.18h 0.4h 1.19h 0h 6.79h 1.15h

7 Related Work

A number of test case generation techniques are based on model checking; a survey is
provided in [19]. Many of these techniques (such as [30,28,21]) differ in abstraction
levels and/or coverage goals from our approach.

Model checking based mutation testing using trap properties is presented in [20].
Trap properties are conditions that, if satisfied, indicate a killed mutant. In contrast, our



approach directly targets the input / output behavior of the model and does not require
to formulate model specific trap properties.

Mutation based test case generation via module checking is proposed in [10]. The
theoretical framework of this work is similar to ours, but builds on module checking
instead of hyperproperties. Moreover, no experimental evaluation is given in this work.

The authors of [4] present mutation killing using SMT solving. In this work, the
model, as well as killing conditions, are encoded into a SMT formula and solved using
specialized algorithms. Similarly, the MuAlloy [31] framework enables model-based
mutation testing for Alloy models using SAT solving. In this work, the model, as well
as killing conditions, are encoded into a SAT formula and solved using the Alloy frame-
work. In contrast to these approaches, we encode only the killing conditions into a for-
mula. This allows us to directly use model checking techniques, in contrast to SAT or
SMT solving. Therefore, our approach is more flexible and more likely to be applicable
in other domains. We demonstrate this by producing test cases for models encoded in
two different modeling languages.

Symbolic methods for weak mutation coverage are proposed in [8] and [7]. The for-
mer work describes the use of dynamic symbolic execution for weakly killing mutants.
The latter work describes a sound and incomplete method for detecting equivalent weak
mutants. The considered coverage criterion in both works is weak mutation, which, un-
like the strong mutation coverage criterion considered in this work, can be encoded as
a classic safety property. However, both methods could be used in conjunction with our
method. Dynamic symbolic execution could be used to first weakly kill mutants and
thereafter strongly kill them via hyperproperty model checking. Equivalent weak mu-
tants can be detected with the methods of [7] to prune the candidate space of potentially
strongly killable mutants for hyperpropery model checking.

A unified framework for defining multiple coverage criteria, including weak mu-
tation and hyperproperties such as unique-cause MCDC, is proposed in [24] . While
strong mutation is not expressible in this framework, applying hyperproperty model
checking to the proposed framework is interesting future work.

8 Conclusion

Our formalization of mutation testing in terms of hyperproperties enables the automated
model-based generation of tests using an off-the-shelf model checker. In particular, we
study killing of mutants in the presence of non-determinism, where test-case generation
is enabled by a transformation that makes non-determinism in models explicit and con-
trollable. We evaluated our approach on publicly available SMV and Verilog models,
and will extend our evaluation to more modeling languages and models in future work.
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