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Abstract

Sets, lists, and maps are elementary data structures used in most
programs. Program analysis tools therefore need to decide verification
conditions containing variables of such types. We propose a new theory
for the SMT-Lib standard as the standard format for such formulae.

1 Motivation

Sets, lists, and maps are elementary data structures used in most programs.
All modern high-level languages by now offer libraries with implementations
of these data structures. Instances are the Standard Template Library (STL)
for C++, and the Java Collection library. In case of low-level languages
(such as plain ANSI-C), variables of type set or list are often introduced as
ghost variables for specification purposes. It is therefore natural to expect
program analysis and verification tools to be able to reason about such
programs, by means of deciding the validity of formulae containing variables
of such types. Componentisation of such tools requires a standard exchange
format for these types of formulae.

The standardisation of formats in logic has played a major role in ac-
celerating research in the past. Examples for successful standardisation
efforts are the DIMACS format for Boolean formulae in conjunctive normal
form (CNF), and the SMT-Lib format [11] dedicated to various first-order
theories that are used in verification. The associated SMT-Lib repository
includes more than 60000 benchmark problems to date and dozens of sup-
porting tools. As in the case of propositional SAT, annual competitions have
resulted in a significant advance in the capacity of the available solvers.

We propose to add a new theory to SMT-Lib, serving as a standard
format for formulae that include operations on finite sets, lists, and maps.
Our proposal is based on the Vienna Development Method (VDM) [3],1 but
aims at providing a set of core operators suitable for verification conditions
arising in other modeling and verification frameworks, such as Z [12], the B
method [1], or ASMs [7]. Our proposed theory is less general (more specific)

1http://www.vdmportal.org
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than, e.g., the theory of algebraic datatypes or generalisations of the theory
of arrays. This makes it possible to include relevant operations such as the
length of lists or the range of finite maps that could not easily be expressed
in the more general case. Besides, the structure of verification problems can
be preserved to a larger degree in a more specific format.

VDM originates from IBM’s Vienna Laboratory in the 1970s. It has
grown to include a group of techniques and tools based on a formal speci-
fication language—the VDM Specification Language (VDM-SL). It has an
extended form, VDM++, which supports the modelling of object-oriented
and concurrent systems. Support for VDM includes commercial and aca-
demic tools for analysing models, including support for testing and proving
properties of models and generating program code from validated VDM
models. There is a history of industrial usage of VDM and its tools. There
is also a growing body of research on the formalism that has led to notable
contributions to the engineering of critical systems, compilers, concurrent
systems and to logic for computer science.

2 The Type System and the Domain Universe

The current version of the SMT-Lib language [11] is based on many-sorted
first-order logic. On top of this logic, several first-order theories (like integer
arithmetic or arrays) are included in the standard, each one with specific
types, operators, and semantics. Types are specified by means of a set of sort
symbols S. The language does not provide any means for type constructors,
polymorphism, or composite types.2 This is at odds with our goal to support
container types such as sets and maps. As a solution, we propose to use a
grammar that generates S, which is given in Figure 1.

The proposed type system is based on the domain universe of VDM-SL
(see [3],3 Section 1.4), but is sufficiently general to be applicable for other
languages. We use the following domains (which are defined in more detail
in the next section):

• The basic domains Z (Int) and R (Real). These domains have the
same semantics and offer the same operations as the theories already
provided by the SMT-Lib [11].

Since the Boolean domain B and the natural numbers can be mapped
to the integers Z, and the rationals Q can be mapped to Z×Z, we
omit these domains in our type system in Figure 1.

2It is expected that such extensions will be added to SMT-Lib in the near future, but it
should be possible to adapt the following definitions without difficulties. The polymorphic
SMT-solver Alt-Ergo [2] demonstrates that the integration of polymorphism and type
constructors into SMT solvers is possible without major performance penalties.

3The corresponding technical report [3] is available at
http://www.vdmportal.org/twiki/pub/Main/VDMpublications/tr-isovdmsl.pdf.
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〈basic〉 ::= Int | Real
〈tuple〉 ::= (〈type〉*· · · *〈type〉)
〈set〉 ::= Set of 〈type〉
〈list〉 ::= List of 〈type〉
〈map〉 ::= Map 〈type〉 to 〈type〉
〈type〉 ::= 〈basic〉 | 〈tuple〉 | 〈set〉 | 〈list〉 | 〈map〉

Figure 1: The grammar generating the set of concrete sort symbols S

• The domain A1 × · · · ×An of n-ary tuples (for n ≥ 0), provided that
A1, . . . , An are domains in our type system.

• The domain L(A) of finite lists, provided that A is a domain.

• The domain F(A) of finite sets, provided that A is a domain.

• The domain M(A,B) of finite maps, provided that A and B are do-
mains.

Finitely enumerable VDM-SL types such as tokens, characters, and quote
types (also called atoms or quarks) can be mapped to a subset of the integers,
and records can be mapped to tuples. Therefore, these types are omitted.

2.1 Undefinedness in the Proposed SMT-Lib Theories

A recurring issue when defining specification languages is the phenomenon
of undefinedness or partiality, see [8] for an overview. This problem occurs
whenever the semantics of “illegal” function applications (like division by
zero) needs to be defined. The solution chosen in VDM-SL is to introduce a
distinguished individual and truth value ⊥ as value of ill-defined expressions.

Introducing such a value ⊥ in the SMT-Lib format is, unfortunately, out
of the question: it would be a major change to the SMT-Lib base logic and
inconsistent with existing SMT-Lib theories and the semantics assumed by
SMT-solvers. We therefore follow the approach known as under-specification
[8], which means that an ill-defined expression like 1

0 is defined to evaluate
to an ordinary, but otherwise unspecified value. This means that the equa-
tion 1

0 = 1
0 is valid (because the value of 1

0 is arbitrary but fixed), and that
the equations 1

0 = 23 and 1
0 = 2

0 are satisfiable but not valid.
Translations from VDM-SL to SMT-Lib need to be defined such that the

meaning of formulae is preserved. Due to the different semantics of VDM-
SL and SMT-Lib w.r.t. undefinedness (even though the theories proposed in
this paper strongly resemble the datatypes available in VDM-SL), it can be
expected that the translation of certain expressions requires the introduction
of additional case distinctions to handle undefined cases correctly (see, e.g.,
[5] on how to construct such case distinctions). It is, however, unlikely that
such case distinctions incur a significant overhead.
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3 Set Theory

We base our definition of the domain universe, the types, and the respective
operations on standard set theory. The following concepts, thus, describe
the intended semantics of the theories that are described in the later sections
of this proposal.

We write a ∈ A to denote that a is an element of the set A. Sets can
be explicitly defined by means of enumerations {a1, . . . , an}, whereby the
multiplicity of elements is irrelevant (e.g., {a, a} = {a}). As a special case,
{} denotes the empty set. The set-theoretic operations ⊆,∩,∪, \ are given
the usual semantics. The expression |S| denotes the cardinality of a finite
set S. Finally, we use F(A) to define the set of finite subsets of A, and P(A)
to define the powerset of A (i.e., the set of all subsets):

P(A) = {B | B ⊆ A} F(A) = {B ∈P(A) | B is finite}

Cartesian products. An n-tuple (a1, . . . , an) can be defined by explicitly
listing its elements a1, . . . , an. The generalised Cartesian product of n sets
A1, . . . , An is then defined as the set of all n-tuples:

n×
i=1

Ai = {(a1, . . . , an) | a1 ∈ A1, . . . , an ∈ An}

For an n-ary Cartesian product ×n
i=1Ai, there is a family of n projections

{π1, . . . , πn} such that for all (a1, . . . , an) ∈×n
i=1Ai and for all k ∈ {1, . . . , n}

the equation πk((a1, . . . , an)) = ak holds. Similarly, for all t ∈×n
i=1Ai the

equation t = (π1(t), . . . , πn(t)) holds.

Partial functions. A binary relation between sets A and B is an arbitrary
subset of the Cartesian product A×B. The sets of partial functions and of
finite partial functions from A to B are defined by:

A ⇀ B = {f ∈P(A×B) | ∀(a, b1), (a, b2) ∈ f. b1 = b2}
M(A,B) = {f ∈ A ⇀ B | f is finite}

We use dom(f) to denote the domain of a (partial) function f , and
rng(f) to denote the range:

dom(f) = {a ∈ A | ∃b ∈ B . (a, b) ∈ f}
rng(f) = {b ∈ B | ∃a ∈ A . (a, b) ∈ f}

Finite lists. L(A) denotes the set of all finite lists over a set A:

L(A) = {f ∈M(N, A) | ∃n ∈ N. dom(f) = {1, . . . , n}}
Thus, a list is a partial function mapping indices i ∈ N to elements of the
set A. To define a list by means of enumeration of its elements, we use the
constructor [a1, . . . , an]. The length of a list l ∈ L(A) is denoted by len(l).
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4 The Domain of Finite Sets

Finite sets of uniformly typed elements are the most basic collection datatype
that we propose as an SMT-Lib theory. Semantically, assuming that the
type t denotes the non-empty domain (the set) A, the type Set of t de-
notes the domain F(A). The table below contains all proposed operations
on finite sets in mathematical and in concrete SMT-Lib notation. The oper-
ations are typed so that it is impossible to construct sets with non-uniformly
typed elements. The equality operation on sets is extensional, i.e., two sets
are considered equal if and only if they contain the same elements (this holds
for all datatypes defined in this proposal).

Math. notation Proposed SMT-Lib notation Prop. SMT-Lib typing4

{a1, . . . , an} (set 〈term〉∗) (α∗ Set of α)
a ∈ A (in 〈term〉 〈term〉) (α Set of α)
A ⊆ B (subset 〈term〉 〈term〉) (Set of α Set of α)
A1 ∩ · · · ∩An (inter 〈term〉+) (Set of α+ Set of α)
A1 ∪ · · · ∪An (union 〈term〉+) (Set of α+ Set of α)
A \B (setminus 〈term〉 〈term〉) (Set of α Set of α

Set of α)
P(A) (power 〈term〉) (Set of α

Set of Set of α)
|A| (card 〈term〉) (Set of α Int)

We do not include an operator for set comprehensions, because a similar
effect can be achieved by introducing a fresh constant that is defined using
a quantified axiom.

5 Tuples and Cartesian Products

Tuple types (t1* · · · *tn) denote the Cartesian product ×n
i=1Ai of the

individual domains. The primary operations on tuples are the construction
of tuples by listing n terms (of arbitrary types), and the projection of a
tuple to one of its components. Because the SMT-Lib standard does not
provide dependent types, we declare n projection operations project[i] for
each n-ary tuple type (i ∈ {1, . . . , n}). Again, equality is extensional, i.e.,
two tuples are equal if and only if they contain the same components.

Besides the basic operations, Cartesian products over n finite sets (of
arbitrary types) are also supported, which introduces a connection between
the theories of tuples and of finite sets.

4Note, that the type of an n-ary predicate is in SMT-Lib specified by an n-
tuple (t1 · · · tn), while the type of an n-ary function with result type t0 is given by
an n + 1-tuple (t1 · · · tn t0).

5



Math. notation Prop. SMT-Lib notation Prop. SMT-Lib typing
(a1, . . . , an) (tuple 〈term〉∗) (α1 ... αn (α1*· · · *αn))
πi(a) (project[i] 〈term〉) ((α1*· · · *αn) αi)
×n

i=1Ai (cart 〈term〉∗) (Set of α1 ... Set of αn

Set of (α1*· · · *αn))

6 The Domain of Lists

If the type t denotes the non-empty domain A, then the type List of t
denotes the domain L(A) of finite lists. Although lists lend themselves to a
direct implementation as an algebraic datatype, we include them explicitly
in the proposed SMT-Lib extension to be able to equip them with a set
of operations similarly as in VDM-SL: functions to construct lists from a
sequence of elements and from a sequence of lists, as well as various func-
tions for accessing the elements of lists (see [3] for formal definitions of the
functions). The value of the SMT-Lib expression (nth 〈term〉 〈term〉) is
unspecified if the given index does not occur in the list, as are the values
of (hd 〈term〉) and (tl 〈term〉) when the functions are applied to empty
lists.

Math. notation Prop. SMT-Lib notation Prop. SMT-Lib typing
[ ] nil (List of α)
append([x], l) (cons 〈term〉 〈term〉) (α List of α List of α)
l(i) (nth 〈term〉 〈term〉) (List of α Int α)
len(l) (len 〈term〉) (List of α Int)
hd(l) (hd 〈term〉) (List of α α)
tl(l) (tl 〈term〉) (List of α List of α)
inds(l) (inds 〈term〉) (List of α Set of Int)
elems(l) (elems 〈term〉) (List of α Set of α)
append(l1, . . . , ln) (append 〈term〉∗) (List of α∗ List of α)

Equality is extensional, i.e., two lists are equal if and only if they have
the same length and contain the same elements in the same order.

7 Finite Mappings

The theory of finite maps has a similar vocabulary and semantics as Mc-
Carthy’s arrays, with the difference that finite maps are only defined over
finite domains (and therefore only have a finite range as well). Semantically,
the map types denote sets M(A,B) of finite partial functions.

The operations on such maps are defined in the table below. The func-
tion (overwrite 〈term〉 〈term〉 〈term〉) can be used to overwrite a map
at an arbitrary given point and can also be used to extend the domain of
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the map. Together with emptyMap, this enables the construction of finite
maps by enumeration. The value of a map access (apply 〈term〉 〈term〉) is
unspecified if the point to be queried is not an element of the map domain.
The remaining functions return the domain and the range of maps, and can
be used to remove elements from the domain of a map (see [3] for formal
definitions of the functions).

Equality is extensional, i.e., two finite maps are equal if and only if they
are defined over the same domain and return the same values on all points
of the domain.

Math. notation Prop. SMT-Lib notation Prop. SMT-Lib typing
{} emptyMap (Map α to β)
f(i) (apply 〈term〉 〈term〉) (Map α to β α β)
f b

a (overwrite (Map α to β α β
〈term〉 〈term〉 〈term〉) Map α to β)

dom(f) (dom 〈term〉) (Map α to β Set of α)
rng(f) (rng 〈term〉) (Map α to β Set of β)
restrict(l,m) (restrict 〈term〉 〈term〉) (Map α to β Set of α

Map α to β)
subtract(l,m) (subtract 〈term〉 〈term〉) (Map α to β Set of α

Map α to β)

8 An Example in VDM++

In order to illustrate the usage of the proposed theories, we consider the
model of a sorting procedure written in the VDM++, the object-oriented
version of VDM-SL (Fig. 2). Models like this can be authored, debugged,
and analysed with the VDMTools5 system. In particular, this tool is able to
generate verification conditions that ensure the well-formedness of models,
but it lacks support for powerful automatic reasoners.

In order to verify that the expression l(j) in the definition of RestSeq is
well-defined, for instance, the following proof obligation is generated:

∀l : L(Z), i : N.
(
i ∈ inds(l)⇒ ∀j ∈ inds(l) \ {i}. j ∈ inds(l)

)
Using the proposed SMT-Lib theories, this can equivalently be expressed in
SMT-Lib syntax (and eventually be verified using SMT-Solvers):

(forall (?l List of Int) (?i Int) (implies
(and (>= ?i 0) (in ?i (inds ?l)))
(forall (?j Int) (implies

(in ?j (setminus (inds ?l) (set ?i)))
(in ?j (inds ?l))))))

5http://www.vdmtools.jp/en/
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class ExplSort is subclass of Sorter
operations

public

Sort : Z∗ o→ Z∗

Sort (l) 4
let r ∈ Permutations (l)

be st IsOrdered (r) in

return r
functions

Permutations : Z∗ → Z∗-set
Permutations (l) 4

cases l :
[], [-]→ {l},
others→ ⋃ {{append([l (i)], j ) |

j ∈ Permutations (RestSeq (l , i))} |
i ∈ inds l}

end;
RestSeq : Z∗ × N→ Z∗

RestSeq (l , i) 4
[l (j ) | j ∈ (inds l \ {i})]

pre i ∈ inds l
post elems RESULT ⊆ elems l ∧

len RESULT = len l − 1 ;
IsOrdered : Z∗ → B
IsOrdered (l) 4
∀ i , j ∈ inds l · i > j ⇒ l (i) ≥ l (j )

end ExplSort

class Sorter
operations

public

Sort : Z∗ o→ Z∗

Sort (arg) 4
is subclass responsibility

end Sorter

Figure 2: Model of a sorting program in VDM++, taken from the VDMTools
distribution. It consists of an abstract superclass Sorter and a concrete
subclass ExplSort that sorts by enumerating all permutations of a list.

It has to be stressed, of course, that this is only an example, and that
the theories proposed in this document are not restricted to the VDMTools
context.

9 Notes on Decision Procedures

In this proposal, we have mainly included those functions that are necessary
to naturally translate problems from VDM-SL to SMT-Lib. The existence
of decision procedures or efficient calculi for the resulting theories (or frag-
ments of them) has been taken into account, but has not been the primary
selection criterion. We sketch how some existing solutions for reasoning
about sets and arrays might be used to design SMT-solvers for the new
theories.6 Further related work is [6, 4, 16].

6Some of the techniques were proposed by Nikolaj Bjørner in personal communication.
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Reduction to arrays. It is possible to reduce the basic operations of finite
sets and maps to McCarthy’s theory of arrays [9] (we only consider the case
of sets at this point). A set from Set of t would be represented by an array
with index type t and value type Boolean (which possibly has to be encoded
into Int if the booleans are not available as a type). Membership tests a ∈ A
and removing or adding single elements to a set (A ∪ {a} and A \ {a}) can
then be expressed using the array operations select and store.

The theory of arrays can be extended (while keeping it decidable) by
adding arrays with a default value (e.g., [13]) as well as conditional oper-
ators on arrays that update one array in all points specified by a second
array (this has been implemented in the Z3 theorem prover [10]). These ad-
ditional operators allow to express empty sets (and thus arbitrary enumera-
tions {a1, . . . , an}) as well as arbitrary unions, intersections, and differences
of sets (A ∪B, A ∩B, A \B). Using extensional arrays, also equality of sets
(A = B) and the subset relationship (A ⊆ B) can be encoded. This covers
all operations on sets but powersets (P(A)) and cardinality (|A|), which
might be added using uninterpreted functions and explicit axioms.

Reduction to algebraic datatypes. Many SMT-Solvers support the
theory of algebraic datatypes, which can be used to naturally encode the
basic operations of tuple types (the constructor (a1, . . . , an) as well as the
projections πi(a)) and of lists (the constructor [a1, . . . , an] and the destruc-
tors hd and tl). For the remaining operations, it may be necessary to use
uninterpreted functions and explicit axioms.

Theory combination with shared BAPA. Wies et al. [15] describe an
approach to combine theories by exchanging reductions to boolean algebra
with Presburger arithmetic (BAPA). The theories for which such a combi-
nation is possible cover a large fragment of the language proposed in this
paper, and are not restricted to quantifier-free formulae.

10 Conclusions and Related Work

We have proposed a collection of theories for finite datatypes that are of
interest for software modelling and verification, and that currently lack ad-
equate support in the SMT-Lib format. We are in the process of collecting
examples that stem from VDM-SL specifications in order to create an initial
set of benchmarks and to demonstrate the applicability of the new theories.

A related effort to create a problem interchange format is the TPTP
format [14], which also includes theories such as set theory or number theory
(such theories are defined using incomplete sets of axioms). Because the
TPTP support for arithmetic is still in its infant stages, we believe that
SMT-Lib currently is a better basis for exchanging verification problems.
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