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ABSTRACT
Conventional Bounded Software Model Checking tools gen-
erate a symbolic representation of all feasible executions of
a program up to a predetermined bound. An insufficiently
large bound results in missed bugs, and a subsequent increase
of the bound necessitates the complete reconstruction of the
instance and a restart of the underlying solver. Conversely,
exceedingly large bounds result in prohibitively large decision
problems, causing the verifier to run out of resources before
it can provide a result.

We present an incremental approach to Bounded Software
Model Checking, which enables increasing the bound without
incurring the overhead of a restart. Further, we provide an
LLVM-based open-source implementation which supports a
wide range of incremental SMT solvers. We compare our
implementation to other traditional non-incremental soft-
ware model checkers and show the advantages of performing
incremental verification by analyzing the overhead incurred
on a common suite of benchmarks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Bounded Model Checking

General Terms
Experimentation, Performance

Keywords
LLVM, Incremental, SMT, C

1. INTRODUCTION
Bounded Model Checking (BMC) is arguably one of the

most successful and widely used formal verification tech-
niques, as witnessed by the TACAS most influential paper
award for Biere et al.’s seminal paper [5]. As BMC per-
forms a symbolic exploration of execution traces up to a
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bounded length only, the primary application of the tech-
nique is the detection of bugs. While BMC was initially
aimed at hardware designs, it has since become a standard
technique for software verification that is implemented in
numerous verification tools [13].

We illustrate the inner workings of a typical implementa-
tion of BMC for software using the program in Figure 1a.
The program implements Wegner’s algorithm [25] to assert
that more than 7 bits (or flags) in a bit-vector x are set
if x matches a certain bit-mask. Bounded software model
checking tools such as LLBMC [21] or CBMC [9] unwind
the control flow graph (CFG) of the program into a directed
acyclic graph (DAG) until a certain user-specified bound is
reached, and convert the resulting loop-free code into static
single assignment (SSA) form [11]. Figures 1b and 1c illus-
trate this process for the unwinding depths one and two,
respectively. To avoid a blowup of the DAG, the loop exit
edges (dashed in Figure 1) are merged after each loop iter-
ation. Since each variable is assigned only once along each
path in SSA form, this requires a case split to determine the
value of variable c at node u. (In the SSA representation,
this is typically indicated using a φ function c3 := φ(c1, c2).)
For Figure 1b, we obtain the encoding in Figure 2.

By negating the assertion we achieve that any satisfying
assignment (provided by a satisfiability checker) of this in-
stance corresponds to a program execution that violates the
assertion. The given instance, however, is unsatisfiable, indi-
cating that there is no path that traverses the loop at most
one time and violates the assertion. To detect a bug, we need
to increment the loop bound and reconstruct the formula
(since the disjunctive case split cannot be augmented), or
provide a sufficiently large bound in the first place.

For the given program, determining that 3 is the smallest
bound admitting an assertion violation is non-trivial unless
one understands that the assignment y:=y&(y-1) resets the
right-most bit in y that is one. Safe over-estimations (e.g., the
bit-width of x) lead to unnecessarily hard problem instances
for the satisfiability solver, and under-estimations necessitate
expensive restarts.

BMC tools deploy contemporary SAT or SMT solvers and
benefit greatly from the impressive advances in this field [6].
A characteristic of most modern SMT solvers is that they
solve formulas incrementally, reusing the results of previous
calls whenever the formula is augmented with additional
conjuncts. Additionally, incremental solvers make it possible
to add formulas on a tentative basis and later retract them
without requiring a restart.
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Figure 1: Incremental unwinding of a control flow graph

(y1 = x) ∧ (c1 = 0) ∧ (c2 = c1 + 1) ∧ (y2 = y1&(y1 − 1)) (assignments)
((y1 = 0) ∧ (c3 = c1)) ∨ ((y1 6= 0) ∧ (y2 = 0) ∧ (c3 = c2)) (case split)

((y1 = 0) ∨ ((y1 6= 0) ∧ (y2 = 0))) ∧ ((x&42 = 42) ∧ (c3 ≤ 7)) (negated assertion)

Figure 2: Encoding of unwinding in Figure 1b

We exploit this feature to implement a bounded software
model checker that unwinds the program incrementally and
terminates as soon as an assertion violation can be detected
– even if the specified unwinding bound is not reached. Our
method eliminates the necessity for restarts and avoids the
construction of unnecessarily large SMT instances. Moreover,
it relieves the user of its responsibility to provide an adequate
bound. While incremental solving necessarily results in a
computational overhead, the performance penalty is quickly
offset by the avoidance of restarts in situations where the
exact bound is not known. In addition (and unlike non-
incremental tools), our technique is able to provide partial
results for bug-free programs even if the specified bound is
prohibitively large.

We present our incremental BMC method in Section 2
and provide an experimental evaluation in Section 3. Our
implementation is available under the terms of the GNU
public license version 3 (GPL3) on github (https://github.
com/hguenther/nbis).

2. INCREMENTAL BMC

2.1 Programs
A program is a directed graph 〈Locs,Stmts〉 with nodes

Locs (representing the program locations including the initial
location l0 ∈ Locs) and edges Stmts annotated with guarded
assignments 〈[γ], x := e〉, where the guard γ is a predicate
over the program variables, and e is an expression assigned
to variable x. The guard may be omitted if it is true and
the assignment may be omitted if the edge is a conditional
jump. The semantics of guarded assignments is determined
by the predicate transformer

sp(〈[γ], x := e〉, ϕ)
def
= ∃xi . (ϕ ∧ γ)[x/xi] ∧ (x = e[x/xi]) ,

where i is a fresh index and ϕ[x/xi] denotes the formula ϕ
with all free occurrences of x replaced by xi.

An unwinding of a program 〈Locs,Stmts〉 is a connected
DAG 〈V,E〉 with nodes V and edges E such that there ex-
ists a mapping ` : V → Locs and for every 〈v1, v2〉 ∈ E we
have 〈`(v1), `(v2)〉 ∈ Stmts, and each edge 〈v1, v2〉 ∈ E is ac-
cordingly annotated with a guarded assignment stmt(v1, v2).
Moreover, there is a unique root node v0 ∈ V with `(v0) = l0.
Figures 1b and 1c show unwindings for the program in Fig-
ure 1a. Given an unwinding 〈V,E〉, the formulas ψv rep-
resenting reachable states for each node v ∈ V are defined
inductively:

ψv
def
=

{
true if v = v0∨

〈u,v〉∈E sp(stmt(u, v), ψu) otherwise
(1)

This symbolic representation can be derived from the
SSA form of an unwinding in a straight forward manner.
An assertion assert(α) at node v ∈ V can be violated if
ψv ∧ ¬α is satisfiable, which can be easily checked using an
SMT solver.

2.2 Merge Nodes
The iterative expansion of a given unwinding 〈V,E〉 results

in new loop exit edges incident to the node succeeding the
loop (node u in Figure 1, for instance). These nodes, which
we call merge nodes, are chosen in a manner such that the
resulting expanded unwinding remains cycle-free. Expanding
the unwinding increases the in-degree of merge nodes v ∈ V
and necessitates a modification of the corresponding predicate
ψv defined above (1).

While contemporary SMT solvers allow for adding addi-
tional conjuncts to the formulas ψv (1), an expansion of the
disjunctions for merge nodes v is not possible, thus requiring
a reconstruction of ψv and a restart of the solver.



2.3 Incremental Representation
To avoid the problem described above, we use a symbolic

representation of unwindings 〈V,E〉 that can be extended on
demand. An SSA representation of 〈V,E〉 guarantees that
exactly one version of each program variable is associated
with each node v (e.g., c2 and y2 at v1 and c3 at u in
Figure 1b). We use xv to denote the SSA version of x in
scope at node v.

For each node v, we introduce a propositional activation
variable av which indicates whether the unwinding contains
a feasible execution path reaching v. Given an unwinding
〈V,E〉 in SSA form, av is constructed as follows:

av
def
=


true if v = v0
pv ∨

∨
〈u,v〉∈E(au ∧ γ)

(where stmt(u, v) = 〈[γ], 〉) otherwise

For node u in Figure 1b, for instance, we obtain

au = pu ∨ (av0 ∧ (y1 = 0)) ∨ (av1 ∧ (y2 = 0)) . (2)

The disjunct pv is an optional proxy variable which is
only introduced at merge nodes. Proxy variables enable us
to retroactively introduce additional incoming edges in the
encoding. This technique is similar to an encoding used for
LTL [17]. The expansion of the unwinding in Figure 1b to
the unwinding in Figure 1c results in the constraint pu =
(av2 ∧ (y3 = 0) ∨ pw), where pw is a fresh proxy variable.
Whenever we call the SMT solver, “dangling” proxy variables
are constrained by adding a retractable formula ¬pw.

Unlike in Formula 1, assignments are modeled as separate
constraints:∧

{xv = e | 〈u, v〉 ∈ E ∧ stmt(u, v) = 〈 , xv := e〉}

Nodes for which the variable versions of the incoming
edges disagree are annotated with φ functions in SSA (e.g.,
c3 = φ(c1, c2) for node u in Figure 1b). A φ function for x

at node v is encoded as∧
〈u,v〉∈E

((au ∧ γ)⇒ (xv = xu)) (where stmt(u, v) = 〈[γ], 〉)

(3)
(assuming that stmt(u, v) does not update xu). Formula 3
can be augmented upon expansion of the unwinding. The
encoding of c3 = φ(c1, c2) at node u in Figure 1b is (av0 ∧
(y1 = 0) ⇒ (c3 = c1)) ∧ (av1 ∧ (y2 = 0) ⇒ (c3 = c2)), to
which av2 ∧ (y3 = 0) ⇒ (c3 = c4) is added upon further
unwinding (Figure 1c).

Assertions are represented using propositional variables bv
which are constrained with the negated assertion condition
and the activation variable of the respective node. The
assertion in Figure 1 yields the constraint

bu = au ∧ ((x&42 = 42) ∧ (c3 ≤ 7)) .

To check for assertion violations, we assert a disjunction over
all assertion variables.

2.4 Pointers and Memory
Dynamic memory accesses are implemented by maintaining

a set of memory states Mem and a set of pointers Ptrs. Each
memory state represents the state of the memory at a certain
point of program execution and contains a set of all the
allocated memory objects. Each memory object is represented
by a bitvector SMT-variable and has a unique identifier. For
a memory-state m ∈ Mem, we write m(i) to refer to the

memory object identified by i. Every pointer p ∈ Ptrs has
two attributes:

• A set of object identifiers points-to(p) which keeps track
of all the objects the pointer p can potentially point to.
This is required to limit the number of case splits over
the objects the pointer can actually point to, which
reduces the strain on the SMT solver.

• The SMT representation of the actual object identifier
the pointer points to, refered to as repr(p). This can
be any SMT expression such that it evaluates to one
of the object identifiers in its points-to set, i.e.∨

i∈points-to(p)

repr(p) = i

always holds.

In the following, we introduce a set of memory instructions
which we use to encode constraints over Mem, Ptrs, and the
program variables. As the program is unwound incremen-
tally, the program statements are converted into memory
instructions, which are then applied to successively add the
corresponding constraints to the encoding.

• connect cm1m2 enforces the conditional equivalence
of the memory states m1 and m2. This is achieved by
generating constraints such that

c⇒ (∀i .m1(i) = m2(i))

holds. Note that the quantifier can be expanded, since
the number of objects i is finite.

• connect ptr c p1 p2 connects the pointers p1 and p2
if the condition c holds. The memory model must
generate constraints to make c ⇒ repr(p1) = repr(p2)
and ∀i ∈ points-to(p1).i ∈ points-to(p2) true.

• allocm1 p sm2 allocates a new object of size s and cre-
ates a new state m2, which contains the new object and
all previous objects of m1. The pointer p is initialized
to point to the new object. Accordingly, for the fresh
object identifier i and the SMT bitvector variable v
representing the new object, the instruction yields the
following:

∀i′ 6= i .m2(i′) = m1(i′),

m2(i) = v, repr(p) = i, and

points-to(p) = {i} .

• null p constrains the pointer p to point to the null
object. The representation of the null object is 0 and
the points-to set is empty:

(repr(p) = 0) ∧ (points-to(p) = ∅)

• loadmpr assigns the content of pointer p in state m
into the SMT variable r. The encoding guarantees that
if the representation of the pointer p matches an object
identifier i then the result r will be the memory object
m(i): ∧

i∈points-to(p)

(repr(p) = i)⇒ (r = m(i)) .
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Figure 3: Incremental memory instructions

• storem1 v pm2 stores the value v into the object that
the pointer p is pointing to at state m1, thus creating
a new memory state. The constraint

m2(i) =

{
v if i ∈ points-to(p) ∧ repr(p) = i
m1(i) otherwise

is maintained for all objects i.

• compare p1 p2 r compares the pointer p1 and p2 for
equality and stores the result in the SMT variable r,
such that r = (repr(p1) = repr(p2)) holds.

Since the points-to sets of pointers can change due to new
connect-instructions, load and store instructions from or to
these changed pointers have to be augmented to take the
newly reachable objects into account. Consider the example
given in Figure 3. Every node v in the CFG has a memory
state mv associated with it. Since the assignment p0:=q0
does not manipulate the dynamically allocated memory, we
have ma = mb. At the 〈a, b〉 edge, the address of q0 gets
assigned to p0, so we use q0 instead of introducing an alias
pointer.

To realize the edge 〈b, g〉, we must first connect the pointer
q0 to the pointer p3 (associated with node g). This means that
we have to initialize the points-to set for p3 with the one of q0.
Suppose that q0 can point to two object identifiers i0 and i1,
which are represented in mb by the objects mb(i0) and mb(i1).
We obtain points-to(p3) = {i0, i1}. We also get the following
constraint for the SMT instance: cb ⇒ repr(p3) = repr(q0).
Then we have to connect the memory state mb to mg, which
yields cb ⇒ mg(i0) = mb(i0) and cb ⇒ mg(i1) = mb(i1).

Suppose that p1 can only point to the object identified by
i0. Storing 15 to this pointer creates a memory state md in
which md(i0) = 15. Connecting p1 to p3 does not change the
points-to set of p3 since i0 is already contained in it. However,
we get the new SMT constraint cd ⇒ repr(p3) = repr(p1). By
connecting md to mg, we only get one constraint, namely
cd ⇒ mg(i0) = md(i0), since md does not contain i1.

Loading from pointer p3 at edge 〈g, h〉 entails adding a con-
straint for each object identifier in points-to(p3): repr(p3) =
i0 ⇒ r = mg(i0) and repr(p3) = i1 ⇒ r = mg(i1).

Now the third incoming edge is added in step 2; suppose
that me is empty, so the allocation creates a fresh variable
v of 4 bytes and a fresh identifier i2 such that mf (i2) = v.
The pointer p2 is created with the singleton points-to set
points-to(p2) = {i2} and the representation repr(p2) = i2.
Connecting the pointers p2 and p3 now adds the new object
identifier i2 into the points-to set of p3, so we have to augment

the SMT formulas generated by the load instruction from
p3 by the following formula: repr(p3) = i2 ⇒ r = mg(i2).
The constraints cf ⇒ repr(p3) = repr(p2) and cf ⇒ mg(i2) =
mf (i2) are added as before. After adding these constraints
r now represents every possible loading result of the three
incoming edges.

2.5 Catching Memory Bugs
To detect invalid memory accesses (either loads from

or stores to null-pointers), we must generate an assertion
repr(p) 6= 0 for every memory instruction loadmpr or
storem1 v pm2. However, oftentimes we can actually stat-
ically infer that p can never be a null pointer. We can
accomplish this by introducing a special object identifier inull
which identifies no allocated object but instead its presence
in a points-to set signifies that the pointer can potentially
be null. With this in place, we only have to generate the
assertions for pointer with inull ∈ points-to(p).

2.6 Extending the Memory Model
The memory model described above is very limited and

only able to handle very simple programs without arrays,
pointer indirections, casts or structs. We informally describe
the various extensions implemented in Nbis to handle more
complex programs here:

• Pointer stores and loads. To enable the memory model
to store and load pointers to/from other pointers we
need to extend each memory object with a points-to
set. Whenever a pointer is loaded from a memory
object, it inherits its points-to information from the
memory object. Similarily, storing a pointer transfers
its points-to information to the memory-object.

• Structures. Instead of representing each memory model
with one single SMT variable, we can allow a memory
object to be composed of multiple SMT variables, where
each variable represents a field in structure data type.

• Arrays. While arrays of a constant size can be handled
by creating an SMT variable for each array element, ar-
rays with a variable size require more thought. We can
represent arrays of dynamic size using the SMT theory
of arrays with McCarthy’s select and update func-
tions to manipulate arrays. Each array is represented
by an SMT array variable representing the content of
the array and a bitvector variable storing the size of the
array for error checking (if the array index is larger than
the size variable, we detect a memory access violation).



Since LLVM handles all arrays as heap objects, we
have to augment the symbolic representation of point-
ers. Instead of having the pointer representation only
identify the object the pointer is pointing to, we split
the pointer representation into two parts: The first part
of the pointer represents the object identifier, as before,
while the second half of the pointer representation can
be used to represent a potential offset into the object.
To avoid having to check for all possible offsets into
a given object, we can also augment the points-to set
of pointers with a set of offsets that the pointer can
potentially represent.

• Global variables. Since global variables are implemented
in LLVM as pointers to pre-allocated objects, a global
variable v can be represented by an object identifier iv
which is present in every memory state and a pointer
pv which only points to the object identified by iv. We
generate a memory instruction allocm0 pv smstart at
the beginning of the unrollment where s is the size
of the global variable and mstart is the initial memory
state for the program.

• Pointer casts. Since the C-language allows almost every
possible conversion between pointers, care has to be
taken to incorporate pointer casts into the memory
model. For example, if the program casts a pointer to a
64-bit integer into a byte-array and accesses the pointer
using a dynamic offset, the loading instruction has to
generate a case split over all the byte components of
the integer.

2.7 Optimizations
Since increasing the bound may add new incoming edges

to merge nodes, it is not possible to safely infer informa-
tion about the values of variables from a given unwinding.
Accordingly, optimizations such as constant-propagation,
elimination of overflow-checks, etc. can only be applied by
performing an up-front static analysis of the program. We
perform an approximate static analysis to infer the following
information: (a) lower and upper bounds of variables to
remove redundant array-bounds checks, (b) access and align-
ment information for data structures to simplify load and
store instructions, (c) alias information to remove redundant
checks for null-pointer accesses.

3. EVALUATION
To evaluate our approach, we implemented it in a tool

called Nbis, written in Haskell. Nbis uses the intermediate
representation of the LLVM compiler framework [19], which
simplifies the handling of the complex semantics of the C pro-
gramming language. Our implementation supports a range
of SMT solvers such as Z3 [12], MathSAT [8], STP [16],
CVC4 [2], Yices [14], and others supporting the SMT-LIB
standard [3]. The implementation is available under the
terms of the GNU public license version 3 (GPL3) on github
(https://github.com/hguenther/nbis).

To demonstrate the feasibility of incremental verification,
we evaluated Nbis on the programs in the bitvector category
of the SV-Comp 2013.1 First, we compared Nbis in non-

1We used the following versions of solvers: Z3 4.3.1, STP
1d89673988c7d86fc3bca1d0ab9a7497366bab04, MathSAT
5.2.10, CVC4 1.4-prerelease and Yices 2.1.0

incremental mode to the state-of-the-art tools CBMC [9],
ESBMC [10], and LLBMC [21]. Since CBMC relies on bit-
blasting and a SAT -solver, we compared it to Nbis running
with the STP [16] backend. We also compared Nbis in this
configuration with LLBMC, since it also uses STP as its
backend. ESBMC, on the other hand, uses Z3 [12] as a
solver, so we used the same solver as the backend in our
comparison. Figure 4 shows the running times of these tools
plotted with a logarithmic time-scale. The performance
of Nbis running with STP is comparable (and often even
better) than CBMC and only slightly worse than LLBMC.
Comparing Nbis with ESBMC, we can see that Nbis fares
better on every benchmark.

To measure the performance overhead of incremental BMC,
we ran Nbis on every benchmark with different SMT-backends
and compared the performance to the running time in non-
incremental mode. A fair comparison between incremental
and non-incremental BMC is difficult, because the run-time
is influenced by the following parameters:

1. Unwinding depth. In the presence of a bug, the non-
incremental approach is at a disadvantage if the un-
winding depth significantly exceeds the depth at which
the bug manifests itself.

2. Check interval. By default, Nbis checks for bugs after
each unwinding, resulting in a significant overhead
if each unwinding step only adds a small number of
constraints to the instance. By increasing the number
of unwindings after which a check is performed to the
unwinding depth, we can enforce that only one SAT
query is made, which is equal to the non-incremental
algorithm.

Since it is always possible to tweak these parameters in
favor of either incremental or non-incremental BMC, we
measure the worst case for incremental verification:
• The bound for the non-incremental is set to the minimal

depth where the bug appears. If no bug is present and
a completeness threshold can be computed, it is used
as the bound. Otherwise a bound of 10 is selected.
• The incremental algorithm checks for bugs after each

unrolling step.
Table 1 shows the overhead of running the incremental al-
gorithm on the problem instances, where an overhead of n
means that the incremental version took n times as long to
complete. Missing entries indicate a time-out, which was set
to 30 seconds. The smallest overhead is highlighted.

We make the following observations:

1. The performance of incremental verification is contin-
gent on the solver: There are many examples—such
as “gcd 3”—where some solvers perform significantly
better than the rest.

2. Many examples from the bitvector benchmark suite
show a less-than twofold increase in execution time,
even under the worst possible circumstances. This is
very encouraging, as it suggests that the approach is
indeed viable for a wide range of examples.

3. Large overheads (such as the 12-fold increase of run-
ning time in the “modulus safe” benchmark) are owed
to the fact that incremental BMC prevents constant
propagation in the unwinding. This problem can be
mitigated by performing an up-front static analysis to
detect constants. We will add this feature in a future
version of Nbis.
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Figure 5 illustrates the runtime variation resulting from
the different performance characteristics of the SMT solvers:
We ran Z3 and STP on the “s3 clnt 2 safe”-benchmark
and compared the running times for each unwinding depth.
While STP has a linear increase in running time both in
incremental and non-incremental mode, Z3 shows a much
steeper curve in incremental mode. As of yet, the reasons for
these differences between solvers are unknown to the authors.

Figure 5 also illustrates that the additional cost of incre-
mental verification amortizes quickly once the non-incremen-
tal solver is restarted for the first time: For the given example,
the overhead of the incremental algorithm is never larger
than the cost of restarting the non-incremental algorithm.

4. RELATED WORK
A number of verification tools, such as CBMC [9], ES-

BMC [10], and LLBMC [21], F-Soft [18], SMT-BMC [1]
are based on non-incremental BMC. CBMC performs bit-
blasting and uses the SAT solver MiniSAT [15] to solve
the resulting propositional problem, while SMT-BMC and
ESBMC deploy an SMT solver. ESBMC and CBMC use
the same front-end for parsing C-files. F-Soft stands out as
it performs several static analyses on the program in order
to simplify the resulting unwinding instance. LLBMC bears
the closest similarity with Nbis, since it also uses the LLVM
internal representation. None of these tools allow the bound
to be increased incrementally.



Table 1: Incremental verification time overhead
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byte add 1 6.8 7.6 54.9 11.5 11.5 10.7
byte add 2 6.5 8.2 39.1 15.0 12.6 14.8
byte add u 5.1 5.8 9.2 47.0 – 6.0
gcd 1 1.1 1.0 3.0 1.0 1.0 1.0
gcd 2 – 5.7 3.0 – 1.3 –
gcd 3 – 7.8 2.7 – 1.3 –
gcd 4 1.0 1.0 1.0 1.0 1.0 1.0
interl. bits 1.3 1.1 1.1 1.2 1.1 1.0
jain 1 1.1 1.3 1.0 1.1 1.0 1.0
jain 2 1.0 1.0 1.0 1.3 1.0 1.1
jain 4 1.3 1.0 1.1 1.4 1.0 1.0
jain 5 1.0 1.0 1.0 1.0 1.0 1.0
jain 6 1.3 1.1 1.0 1.3 1.0 1.0
jain 7 1.2 1.0 1.0 1.1 1.1 1.0
modulus – 11.7 – – – –
num conv. 1 1.1 1.1 1.0 1.1 1.1 1.0
num conv. 2 1.2 1.0 1.1 1.1 1.1 1.0
parity – 14.9 – 14.4 – –
s3 clnt 1 s 5.2 6.7 10.5 2.6 – 2.5
s3 clnt 1 u 1.7 2.3 2.3 1.4 – 1.8
s3 clnt 2 s 1.8 1.1 2.0 2.0 8.5 1.2
s3 clnt 2 u 2.7 4.7 6.9 1.9 – 2.2
s3 clnt 3 s 5.7 7.68 13.5 2.2 – 2.0
s3 clnt 3 u 1.3 2.3 1.6 1.4 – 1.6
s3 srvr 1 1.7 1.3 1.6 1.9 6.5 1.5
s3 srvr 2 3.1 4.3 1.6 1.9 – 1.9
s3 srvr 3 3.5 1.8 4.6 1.1 – 1.3
soft float 1 – – – – – –
soft float 2 1.0 1.0 1.0 1.0 1.0 1.0
soft float 3 1.0 1.0 1.0 1.0 1.23 1.0
soft float 4 – – – – – –
soft float 5 1.0 1.1 1.1 1.1 1.1 1.1

Symbolic execution tools like KLEE [7] or KLOVER
[20], on the other hand, incrementally unwind the paths of
a program. Since these tools are typically aimed at test
case generation, they aim at satisfying coverage criteria.
Our approach avoids the explicit enumeration of paths by
performing a block-wise unwinding that encodes all program
paths in a single SMT instance by aggressively merging
similar states. LAV [24], a recent LLVM-based addition to
the BMC family, performs a block-wise unwinding of loops,
but does not merge the branches of the unwinding. As an
additional feature, LAV is able to over-approximate loops
(at the cost of potential false alarms). Aggressive merging of
(loop-free) paths has also proved beneficial in the context of
abstraction and unbounded model checking [4].

Many symbolic execution tools are performing a different
kind of incremental verification from our tool: Instead of
incrementing the search depth and re-using already learned
facts from previous depths, they try to use facts learned
from verifying a previous version of the same program with
small changes [22][26]. Other symbolic execution techniques
focus on maintaining a database of already learned facts to
facilitate information re-use between runs [23].

5. CONCLUSION AND FUTURE WORK
We introduced a BMC approach which takes advantage

of incremental SMT solvers in order to perform a gradual
unwinding of the program. Incremental BMC is favorable
if the specified unwinding depth significantly exceeds the
depth of the bug and relieves the user of the burden to
determine an adequate bound. In addition, an incremental
BMC can report partial results for bug-free programs even if
the specified unwinding depth is not reached.

As the presented benchmarks show, the performance of
incremental bounded model checking is encouraging on many
examples. We are confident that the overhead for the remain-
ing examples can be addressed with additional optimizations
(such as an up-front static analysis enabling constant propa-
gation) in future versions of Nbis.

In addition, incremental BMC enables additional optimiza-
tions typically used in symbolic simulation: the ability to
perform a query at any point during the unwinding process
enables the verification tool to prune infeasible traces. This
optimization will be incorporated into a future version of
Nbis.
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