
Wolverine: Battling Bugs with Interpolants?

(Competition Contribution)

Georg Weissenbacher1, Daniel Kroening2, and Sharad Malik1

1 Department of Electrical Engineering, Princeton University
2 Department of Computer Science, Oxford University

Abstract. Wolverine is a software verifier that checks safety proper-
ties of sequential ANSI-C and C++ programs, deploying Craig interpola-
tion to derive program invariants. We describe the underlying approach
and the architecture, and provide instructions for installation and usage.

1 Approach

Wolverine [8] is a software verification tool for ANSI-C and C++ programs
that aims at finding either a Hoare-style correctness proof or a counterexam-
ple for a given reachability property. The tool is an implementation of the
interpolation-based lazy abstraction algorithm [9] outlined in Figure 1. A de-
scription of the steps À to Ä of Figure 1 is provided below.

À Front-end
Generate

CFG

Á Explore
Expand ART

leaf node

[else]

Â Simulate
Check path
feasibility

reachederror

node



Ã Interpolate
Generate new
Hoare triples

[
path

is safe

]
[
path is

unsafe

]

Ä Check Safety
Check Hoare

proof for CFG

[
e
l
s
e
][

Hoare proof

is complete

]

Fig. 1: UML activity diagram describing the work-flow of Wolverine

À Wolverine generates a control flow graph (CFG) representation of the
program and encodes reachability properties using assertions/error nodes.

Á Following the lazy abstraction paradigm established by [5], Wolverine con-
structs an abstract reachability tree (ART). To this end, it explores the paths
of the CFG (in a depth first search manner) until it encounters an assertion.3

Corresponding author: Georg Weissenbacher (georg.weissenbacher@magd.oxon.org)
? Supported by a gift from the Intel Labs Academic Research Office.
3 The search algorithm of Wolverine 0.5c incorporates a constant propagation do-

main in order to enable early pruning of infeasible execution traces.



CProver
C/C++ À

Front-end

CFG

CProver
Symbolic Â

Simulator

SSA

Interpolating
Decision Ã

Procedure

Reachability Checker Á,Ä

(a) UML component diagram for Wolverine

path interpolatort

+interpolate(...)

wolver interpolatort

wp interpolatort1
1

(b) Interpolator class hierarchy

Fig. 2: Software architecture of Wolverine

Â Given a path that reaches an assertion, Wolverine deploys symbolic sim-
ulation to determine whether the path corresponds to a feasible program
execution violating the assertion; such unsafe executions are reported.

Ã If the path is safe, Wolverine uses Craig interpolation to generate Hoare
triples that prove that the assertion holds (c.f. [4]) and updates the edges
and nodes of the ART accordingly: the spurious counterexample serves as a
catalyst for refining the current approximation of safely reachable states [2].

Ä If the Hoare triples of the ART are sufficient to prove the safety of all paths
of the CFG, Wolverine concludes that the program is correct. Otherwise,
the tool continues to expand paths that are not yet covered (step Á).

2 Software Architecture

Figure 2a shows the components and architecture of Wolverine. Our im-
plementation uses the front-end (À) and the symbolic simulator (Â) of the
CProver framework (http://www.cprover.org). Wolverine uses an interpo-
lating decision procedure (Ã) to extract Hoare triples from infeasible paths. To
this end, the tool deploys its built-in decision procedure for equality logic with
uninterpreted functions and limited support for bit-vectors [3, 6, 7] and falls back
on the weakest precondition should this interpolator fail (see Figure 2b).

3 Tool Setup and Usage

Installation. Binaries for Linux, Windows, and MacOS X can be downloaded
from the project website (http://www.cprover.org/wolverine) and should be de-
ployed in a directory listed in the PATH environment variable. Wolverine re-
quires a pre-processor (cl.exe, which is part of Visual Studio Express, on Win-
dows and GNU’s gcc on Unix-based platforms) and the header files typically
packaged with it to be installed.

Usage. Wolverine must be executed from within the Visual Studio command
prompt on Windows or a terminal on Linux and Mac OS X, and accepts options
and source file names of the program to be verified as operands. By default,
Wolverine scans the program for assertions and checks whether they hold. If



executed with the option --error-label ERROR, Wolverine checks whether
the label ERROR is reachable.

By default, Wolverine assumes that the host platform and the target plat-
form for the program under test coincide. Therefore, in order to verify a Win-
dows device driver on a Linux host, the options --no-library --i386-win32

are recommended (but were not applied in the competition). The target proces-
sor architecture of the program under test has to be specified using the options
--32 or --64 where it differs from the host. In the competition, these options
were applied accordingly to all benchmarks.

4 Strengths and Limitations

While Wolverine shares many of the characteristics of predicate abstraction-
based verifiers (most prominently, Slam [1]), it avoids the computationally ex-
pensive image computation required to construct the abstraction (c.f. [9]), en-
abling the rapid detection of counterexamples (discussed in [8]).

Wolverine’s performance is contingent on the Hoare triples that the inter-
polating decision procedure derives from spurious counterexamples. The inherent
properties of interpolants typically enable concise abstractions. A “diverging” se-
quence of predicates, however, can result in a failed verification attempt. The
built-in interpolator of Wolverine version 0.5c provides no support for linear
arithmetic, quantified invariants, and heap models. In the competition, this led
to a sub-optimal performance of Wolverine for benchmarks containing arith-
metic expressions, unbounded arrays, or dynamic data structures. Moreover,
Wolverine does currently not support the verification of concurrent programs.

References

1. Ball, T., Rajamani, S.K.: The slam project: Debugging system software via static
analysis. In: POPL, pp. 1–3. ACM (2002)

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV. LNCS, vol. 1855, pp. 154–169. Springer (2000)

3. D’Silva, V., Purandare, M., Weissenbacher, G., Kroening, D.: Interpolant strength.
In: VMCAI. LNCS, vol. 5944, pp. 129–145. Springer (2010)

4. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL, pp. 232–244. ACM (2004)

5. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70. ACM (2002)

6. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-
level. In: FMCAD. pp. 85–89. IEEE (2007)

7. Kroening, D., Weissenbacher, G.: An interpolating decision procedure for transitive
relations with uninterpreted functions. In: HVC. LNCS, vol. 6405. Springer (2011)

8. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with
Wolverine. In: CAV, LNCS, vol. 6806, pp. 573–578. Springer (2011)

9. McMillan, K.L.: Lazy abstraction with interpolants. In: CAV, LNCS, vol. 4144, pp.
123–136. Springer (2006)


