
Restructuring Resolution Refutations for
Interpolation

Vijay D’Silva1,2, Daniel Kroening1,2, Mitra Purandare2, and
Georg Weissenbacher1,2?

1 Computing Laboratory, Oxford University
2 Computer Systems Institute, ETH Zurich

Abstract. Interpolants are the cornerstone of several approximate ver-
ification techniques. Current interpolation techniques restrict the search
heuristics of the underlying decision procedure to compute interpolants,
incurring a negative impact on performance, and apply primarily to the
lazy proof explication framework. We bridge the gap between fast deci-
sion procedures that aggressively use propositional reasoning and slower
interpolating decision procedures by extending the scope of the latter
to non-lazy approaches and relaxing the restrictions on search heuris-
tics. Both are achieved by combining a simple set of transformations on
resolution refutations. Our experiments show that this method leads to
speedups when computing interpolants and to reductions in proof size.

1 Introduction

The bottle-neck in model checking is usually steps that involve quantifier elimi-
nation such as computing an image, constructing an abstract transition relation,
and fixed point detection. For a suitably constructed formula, a Craig interpolant
provides a quantifier-free approximation, with respect to logical implication, of a
quantified formula. This enables a family of approximate verification techniques
that obviate the need for quantifier elimination [1–3].

Program verification using interpolants requires decision procedures for first
order theories that can compute interpolants for unsatisfiable conjunctions of
theory literals. Such an interpolating decision procedure must deal with a logic
used in program verification and incur a low overhead as compared to a state-
of-the-art decision procedure. These concerns can be at odds with existing tech-
niques for computing interpolants. Nearly all available techniques compute in-
terpolants in the lazy explication paradigm [4] and are not applicable if some
constraints from the theory are propositionally encoded. An extreme case of the
latter is implemented in nearly all competitive solvers for bit-vector arithmetic.

Further, interpolants are typically constructed from proofs of unsatisfiability
and require proofs to have a certain structure. Interpolating decision procedures
often restrict the search techniques used in order to ensure that the proof of

? Supported by Microsoft Research’s European PhD Scholarship Programme.

unsatisfiability which is obtain has this structure. Such restrictions may unfor-
tunately have an adverse effect on the performance of the decision procedure.
For example, a restriction is imposed in [5] to construct interpolants in combi-
nations of theories. The authors themselves point out that “the restrictions on
the branching and learning heuristics needed to generate [interface equality] local
proofs might have a negative impact in performance.” We present techniques that
a posteriori transform a resolution refutation produced by a decision procedure
(not necessarily interpolating) to obtain a refutation satisfying such restrictions.

A consequence of the methods presented in this article is that one can use a
fast decision procedure that does not compute interpolants to decide if a formula
is satisfiable and then use a slower interpolating decision procedure to construct
interpolants. The only restrictions we make are that the fast decision procedure
should generate a resolution refutation for unsatisfiable formulae, and that the
propositional formula for which the refutation is generated has a certain structure
(described in § 3.1). Our approach has two advantages. First, one can decide
satisfiability, usually the most computationally expensive step in the verification
methods we consider, using the most efficient methods available as long as they
satisfy the two constraints above. Second, the resolution proof only includes the
parts of the initial formula required to show unsatisfiability, so the interpolating
decision procedure has to work with a smaller formula.

The typical restrictions on proof structure imposed in the literature are tan-
tamount to imposing a partitioned partial order on the resolution proof. That
is, the variables occurring in the proof are partitioned and a restriction defines
a partial order over resolution steps on variables depending on the block of the
partition in which they occur. Restrictions that can be described in this manner
occur in methods for constructing interpolants in theory combinations [5], and
interpolant strengthening [2].

We present an algorithm that given a resolution proof and a partitioned par-
tial order, produces a proof satisfying this order. This approach is independent
of the decision procedure that produces the resolution proof and has a low over-
head in practice. The contributions of this paper build upon this algorithm. We
highlight that our algorithms are devised following an extensive survey of proofs
concerning resolution systems in the automated deduction and proof complexity
literature. Proofs by induction on the structure of a resolution refutation, in
particular in [6, 7], are a fertile source of ideas for tranformations on refutations.

Contributions. We make two contributions. First, we extend the applicability
of current interpolation methods beyond the lazy proof explication setting. Given
an interpolating decision procedure for conjunctions of literals in a ground theory,
we obtain an interpolation method for any decision procedure that combines lazy
explication with propositionally encoded constraints. A direct consequence of our
method is an interpolating decision procedure for a fragment of bit-vector logic.
No such decision procedure exists in the literature. Second, we present several
tools for transforming resolution proofs. These have applications not explored in
the paper, such as interpolant strengthening [2] and proof compression [8, 9].

2 Resolution Proofs and Transformations

We introduce the notation, basic terminology and background on resolution in
§ 2.1, followed by our transformations on resolution proofs in § 2.2, which lead
to our algorithm for reordering proofs in § 2.3.

2.1 Resolution Proofs

Let A be a set of atomic propositions (atoms), LA = {a, a|a ∈ A} be the cor-
responding set of literals, where l or equivalently ¬l denotes the negation of
a literal l. A clause C is a set of literals and ℘(LA), where ℘(S) denotes the
powerset of the S, is the set of clauses over LA. The empty clause is denoted �
and contains no literals. The disjunction of two clauses C and D is their union,
denoted C ∨ D, which is further simplified to C ∨ l if D is a singleton {l}. A
clause C subsumes D if C ⊆ D. Observe that the empty clause subsumes every
clause. A propositional formula is defined as usual with ⊥ denoting false, and
> denoting true. A formula F is in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses.

The resolution principle states that any assignment that satisfies the clauses
C ∨ x and D ∨ x also satisfies C ∨D. It is formally described by the inference
rule:

C ∨ x D ∨ x
C ∨D [Res]

The clauses C ∨ x and D ∨ x are the antecedents, the atomic proposition x
is the pivot, and C ∨D is the resolvent. Let Res(C,D, x) denote the resolvent of
C and D with pivot x. A clause C is derived from F by resolution, where F is
a formula in CNF, if it is the resolvent of two clauses that either occur in F or
have been derived from F by resolution.

Definition 1. A resolution proof is a labelled DAG, R = (VR, ER, `R, sR),
where VR is a set of vertices, ER is a set of edges, `R is a labelling function
that maps each vertex to a clause and sR ∈ VR is the sink vertex. An initial
vertex has in-degree 0 and all other vertices are internal and have in-degree 2.
The sink has out-degree 0 and the clause labelling it is a conclusion. If v is an
internal vertex and (v1, v), (v2, v) ∈ ER, then `R(v) is the resolvent of `R(v1)
and `R(v2).

The subscripts above are dropped if clear. A resolution proof R is a proof
of a clause C from a CNF formula F if `R(sR) = C and for each initial vertex
v ∈ VR, `R(v) occurs in F . A vertex v1 in R is a parent of v2 if (v1, v2) ∈ ER. If
a vertex v has parents v1 and v2, let piv(v) be the pivot for inferring `(v) from
`(v1) and `(v2) by resolution. Further, let v+ denote the parent of v labelled
with the antecedent of `R(v) containing piv(v) and let v− be the parent labelled
with the antecedent containing ¬piv(v).

A vertex v1 is an ancestor of v2 if there is a path from v1 to v2. A set W
of vertices in a proof is ancestor-free if no vertex in W has an ancestor in W .

Transformation Notation Effect

Resolution ProofRes(P1, P2, x) Resolve the conclusion of P1 and P2 on x.
Substitution P [v1 7→ P1, . . . , vk 7→ Pk] Set π(vi) to Pi and propagate changes.
Restriction P [l← ⊥] Set l to ⊥ in P propagate changes.
Projection P �l Eliminate resolutions on l in P

Table 1. Transformations on Resolution Proofs

We note in passing, that the ancestor relation defines a partial order over the
vertices in a proof and that an ancestor-free set is an anti-chain with respect to
this partial order. The subgraph of proof that includes all ancestors of a vertex
v is denoted π(v). Observe that π(v) is a proof.

A resolution refutation is a resolution proof in which the sink is labelled
with the empty clause. The words proof and refutation, if not further qualified
connote resolution proofs and resolution refutations. A refinement of resolution
is a restriction on the structure of the resolution proof. A tree resolution proof
is a tree. A regular resolution proof satisfies that on every path from an initial
vertex to the conclusion, each pivot occurs at most once [10].

2.2 Refactoring Resolution Proofs

A proof transformation is an algorithm that maps a resolution proof to another.
We introduce four simple proof transformations, summarised in Table 1. Re-
stricted forms of these transformations exist in the literature. Our contribution
is to generalise them and use them to derive algorithms for restructuring proofs.
Restructured proofs are used to construct interpolants in quantifier-free theories.

The first transformation, denoted ProofRes(P1, P2, x), applies to two proofs
P1 and P2 and produces a new proof P . The conclusion of P is the resolvent of
the conclusions of P1 and P2, if x ∈ `P1(sP1) and x ∈ `P2(sP2). If x /∈ `P1(sP1),
then P is just P1, and if x ∈ `P1(sP1) but x /∈ `P2(sP2), then P is P2. The
intuition is that the proofs P1 and P2 are to be extended by resolving on x,
assuming that the conclusion of P1 contains x and that of P2 contains x. If the
conclusion of P1 does not contain x, then one can assume that x has already
been eliminated and use P1. The other case is symmetric. A formal definition
follows.

Definition 2. Let P1 = (V1, E1, `1, s1) and P2 = (V2, E2, `2, s2) be resolution
proofs. The proof resolution transformation ProofRes(P1, P2, x) results in a proof
P , where P is P1 if x /∈ `1(s1), and P is P2 if x /∈ `2(s2), otherwise P =
(V,E, `, s) where s is a new vertex not in V1 or V2, V = V1 ∪ V2 ∪ {s}, E =
E1 ∪ E2 ∪ {(s1, s), (s2, s)}, and for v ∈ V , `(v) is `1(v) if v ∈ V1, and is `2(v)
if v ∈ V2, and is Res(`1(s1), `2(s2), x) if v = s.

A similar transformation appears in the function Resolve in Figure 6 in [11].
However, the result of Resolve(P1, P2, x) is defined to be P2 if the conclusion of
P1 does not contain x and is P1 if the conclusion of P2 does not contain x. This

Refactor(v, R, ρ)
Input: Vertex v, Proof R = (VR, ER, `R, s),

Substitution mapping ρ = {v1 7→ P1, . . . , vk 7→ Pk}
1: if visited(v) then return
2: end if
3: visited(v)← True

4: if v ∈ dom(ρ) then π(v)← ρ(v); return
5: else if v has no parents then return
6: else
7: Refactor(v+, R, ρ)
8: Refactor(v−, R, ρ)
9: π(v)← ProofRes(π(v+), π(v−), piv(v))

10: return
11: end if

Fig. 1. Replace vertices in a proof and propagate changes

order does affect the correctness of the algorithms we propose, so we cannot use
Resolve in place of ProofRes.

The next three transformations in Table 1 change the subproof at a vertex
(or set of vertices) and propagate the change along the proof graph. We first
define a replacement operation that replaces the proof at a vertex v in a proof
P1 with a proof P2. This operation is not a proof transformation because the
result may not be a proof.

Definition 3. Let P1 = (V1, E1, `1, s1) and P2 = (V2, E2, `2, s2) be resolu-
tion proofs. The replacement, of the proof at a vertex v in P1 with P2, de-
noted π(v) ← P2, is the DAG G = (V,E, `, s1), where V = V1 ∪ V2, E =
(E1 \ {(v+, v), (v−, v)}) ∪ (E2 \ {(s+

2 , s2), (s−2 , s2)} ∪ {(s+
2 , v), (s

−
2 , v)}, and the

labelling function ` is defined such that `(v) = `2(s2), and for all v′ 6= v, `(v′) is
`1(v′) if v′ ∈ V1 and is `2(v′) otherwise.

The DAG G in Definition 3 is not a resolution proof because the the suc-
cessors of v may no longer be labelled with resolvents of their parent vertices.
To make G a resolution proof, we need to recursively relabel the descendants
of v. Replacement and relabelling are combined in the algorithm Refactor in
Figure 1. Given a mapping ρ of vertices to resolution proofs, Refactor re-
places π(v) with ρ(v) if v is in the domain of ρ. The proofs at vertices not
in the domain of ρ are replaced with ProofRes(π(v+), π(v−), piv(v)). This sec-
ond step ensures that each vertex is labelled with the resolvent of its parents.
The algorithm as presented admits a simple optimisation. The tranformation
ProofRes(π(v+), π(v−), piv(v)) introduces a new vertex and replacing π(v) with
this proof Disconnects the newly introduced vertex from the proof. Thus, one
can directly replace π(v) with the resolvent of π(v+) and π(v−).

The substitution transformation on proofs is defined using Refactor. Let
dom(f) denote the domain of a mapping f . A mapping ρ = {v1 7→ P1, . . . , vk 7→

a3

a1 a3 a1

a1 a2 a3 a2 a1a2a2

a2a3 a3

7→

(a)

a3

a1 a3 a1

a2 a1a2a2

a2a3 a3

(b)

a3

� a1

a2 a1a2a2

a2a3 a3

(c)

�

a2a2

a2a3 a3

a3

a1

a1a2

(d)

Fig. 2. Refactoring proofs.

Pk} of vertices to proofs is ancestor-free if the sets {v1, . . . , vk} and {sP1 , . . . , sPk
}

are ancestor free. Substitution is defined for ancestor-free mappings.

Definition 4. Let R = (VR, ER, `R, sR) be a resolution proof and ρ = {v1 7→
P1, . . . , vk 7→ Pk} be an ancestor free mapping. The substitution R[v1 7→ P1, . . . , vk 7→
Pk], or equivalently R[ρ], is the proof returned by Refactor(sR, R, ρ).

A restricted form of substitution has been used in the proof complexity liter-
ature to construct regular, tree resolution proofs from tree resolution proofs. For
an example, see [12, Lemma 5.1]. A similar method has more recently appeared
in the RepairProof algorithm in [8]. The RepairProof algorithm is used to re-
duce proof size by reusing singleton clauses and by making tree-shaped proofs
regular. In contrast, in our transformation, the proof substituting a vertex can
be arbitrary as illustrated below. In the examples in this paper, if each vertex in
a proof is labelled with a unique clause, and a vertex v is labelled with the clause
C, we directly refer to “the vertex C” to avoid having to name vertices. Further,
a clause {a1, a2} is written as a1a2 in figures to avoid clutter. Lemma 1, which
follows Example 1 states that the result of substitution is a resolution proof.

Example 1. Consider the resolution proof R in Figure 2(a). Let v be the vertex
labelled with the clause a1a2a3 in Figure 2(a) and P be the proof shown alongside
with the conclusion a2. We demonstrate how Refactor is used to obtain the
substitution R[v 7→ P]. First, the proof π(v) is replaced with P in 2(b) by line 4
in Refactor. The dashed arrows in Figure 2(b) indicate the parts of the proof
along which the change has to be propagated. Next, as per line 9 in Refactor,
the child of v is labelled with the resolvent of a2 and a2 in 2(c). This step results
in the empty clause which is propagated to the sink to obtain the proof in 2(d).
The faded subgraph is no longer included in the transformed proof. C

Lemma 1. If R = (V,E, `, s) is a resolution proof and ρ is an ancestor-free
mapping of vertices to resolution proofs, then R[ρ] is a resolution proof.

Proof: By induction on the number of ancestors of s. If s has no ances-
tors, then π(v) ← ρ(v) results in a proof because ρ(v) is a proof. Assume that
Refactor returns a proof if s has at most n ancestors. Consider the case where
s has n + 1 ancestors. If s ∈ dom(ρ), we are done because ρ(s) is a proof and
ρ is ancestor-free. Otherwise, each parent of s has at most n ancestors, so by
the induction hypothesis Refactor(v+, R, ρ) and Refactor(v−, R, ρ) are valid
proofs. It remains to show that line 9 in Refactor results in a valid proof. This
holds because ProofRes is a proof transformation and after replacement, s is
labelled with the resolvent of its parents.

The restriction that ρ should be ancestor free is much weaker than requiring
that the proofs in the range of ρ be disjoint. This allows the proofs to share
subproofs, which is essential for efficiency. The following lemma is shows how
one can use substitution to strengthen the conclusion of a proof. It is useful for
proving the correctness of the two remaining transformations.

Lemma 2. Let R1 = (V1, E1, `1, s1) and R[ρ] = (V2, E2, `2, s2) be resolution
proofs, where ρ is an ancestor-free mapping, and Cv be the conclusion of the
proof ρ(v) for each v ∈ dom(ρ). If Cv ⊆ `(v) for each v ∈ dom(ρ), then `2(s2) ⊆
`1(s1).

Proof: By induction on the number of ancestors of s1. If s1 has no ances-
tors, then Cs1 ⊆ `1(s1) by the condition of the lemma. Assume that the lemma
holds if s1 has at most n ancestors. If s1 has n + 1 ancestors, s+

1 and s−1 have
at most n ancestors each and by the induction hypothesis, the lemma holds for
π(s+

1)[ρ] and π(s−1)[ρ]. Let s+
2 be the sink of π(s+

1)[ρ] labelled with C+ and s−2
be the sink of π(s−1)[ρ] labelled with C−. We need to show that the lemma holds
for ProofRes(π(s+

2), π(s−2), piv(s1)), which is equivalent to R[ρ]. If piv(s1) /∈ C+

then `2(s2) = C+ by the definition of ProofRes, and `2(s2) ⊆ `1(s1) by the
induction hypothesis and resolution. If piv(s1) ∈ C+ but ¬piv(s1) /∈ C− then
`2(s2) = C− by the definition of ProofRes, and C− ⊆ `1(s1) by the induction
hypothesis and resolution. Finally, if piv(s1) ∈ C+ and ¬piv(s1) ∈ C−, then
Res(C+, C−, piv(s1)) ⊆ Res(`1(s+

1), `1(s−1), piv(s1)), by the induction hypothe-
sis and resolution. In all cases, we have that `2(s2) ⊆ `1(s1).

A particular case of subsumption as above arises from strengthening the
conclusion of a proof by assigning truth values to atoms. For simplicity, we
identify a proof with a single vertex with the clause labelling that vertex. That
is, for a proof P = ({sP }, ∅, `P , sP) and a clause C such that `P (sP) = C, we
say P = C and denote the replacement π(v)← P by π(v)← C. The restriction
of a proof is defined next.

Definition 5. Let R = (VR, ER, `R, sR) be a resolution proof and l be a lit-
eral occurring in R. Define the mapping ρl = {v 7→ P |v is an initial vertex, l ∈
`(v), and P = `(v)\{l}}. The restriction of R with l set to ⊥ is defined by R[ρl].

The restriction ofR with l set to⊥ is, by abuse of notation, denotedR[l← ⊥].
The restriction with l set to > is R[l ← ⊥]. Restriction A statement about the
correctness of restriction follows.

Lemma 3. Let R1 = (V1, E1, `1, s1) be a resolution proof, l be a literal occurring
in R1 and R2 = (V2, E2, `2, s2) be R1[l← ⊥]. The literal l does not occur in any
clause in R2, and `2(s2) ⊆ `1(s1).

Proof: We first prove by induction on the number of ancestors of s1 that
l does not occur in R2. If s1 has no ancestors, then `2(s2) = `1(s1) \ {l},
so l does not occur in R2. Assume that l does not occur in R2 if s1 has at
most n ancestors. By the definition of restriction, R2 = R1[l ← ⊥] = R1[ρl]
for ρl as in Definition 5. From the definition of substitution, we have that
R2 = ProofRes(π(s+

1)[ρl], π(s−1)[ρl], piv(s1)). The induction hypothesis applies
to π(s+

1)[ρl] and π(s−1)[ρl], so l does not occur in these two proofs. We conclude
that l does not occur in R2 because ProofRes does not introduce literals.

For the second part, observe that for each v ∈ dom(ρl), where ρl is as before,
ρl(v) is a single vertex labelled with `1(v) \ {l}. It follows from Lemma 2 that
`2(s2) ⊆ `1(s1).

The last transformation we introduce, which is essential for changing the
order of resolution steps in a proof is projection. Restriction eliminates a certain
literal from a proof. In contrast, we use projection to eliminate resolution steps
on a specified literal, which ensures that the literal is present in the conclusion
of the proof. Projection is used to prove lower bounds on the size of resolution
proofs in [7, Lemma 3.2].

Consider the proof R[l ← ⊥]. It is obtained from R by removing l from
the labels of some initial vertices in R and propagating this change along the
structure of the proof. By Lemma 3, the literal l does not occur in the proof
R[l ← ⊥]. If we now add the literal l back to the clauses from which it was
removed, l is guaranteed to be present in the conclusion of the proof because it
is never resolved away. This transformation is defined below.

Definition 6. Let R1 = (V1, E1, `1, s1) be a resolution proof, and R2 = R1[l ←
⊥] = R1[ρ1] = (V2, E2, `2, s2), be the restriction of R1 with l set to ⊥, obtained by
substitution with the mapping ρl. Define the mapping γ = {v 7→ P |v ∈ dom(ρl)∩
V2 and P = `2(v)∪ {l}}. The projection of l from R1, denoted R1�l is the proof
(R1[l← ⊥])[γ].

The definition above is not strictly formal because the initial vertices in
dom(ρl) may not be the initial vertices in R2 after refactoring. A purely formal
definition would require defining a total, surjective function mapping vertices
from R1 to R2 and defining the domain of ρ2 to be those vertices in R2 which
are the image of an initial vertex in R1. We hope this definition suffices to define
projection. Lemma 4 states a basic property of projection.

Lemma 4. Let R1 = (V1, E1, `1, s1) be a resolution proof, l ∈ `1(v) for some
initial vertex v ∈ V1 and R1�l = (V2, E2, `2, s2). It holds that l ∈ `2(s2) and that
`2(s2) ⊆ `1(s1) ∪ {l}.

Proof: First, we show by induction on the number of ancestors of s1 that l ∈
`2(s2). If s1 has no ancestors, l is not in the clause labelling the sink of R1[l← ⊥]
and by definition l is contained in R1�l. Suppose this holds if the sink of a proof
has at most n ancestors. Consider the case of n + 1 ancestors. By definition
R1�l is the proof (R1[l ← ⊥])[γ], where γ is a mapping as in Definition 6.
R1[l← ⊥] is in turn a proof of the form ProofRes(π(s+

1), π(s−1), piv(s1))[l← ⊥].
By the definition of restriction, this proof is equivalent to ProofRes(π(s+

1)[l ←
⊥], π(s−1)[l← ⊥], piv(s1)). If piv(s1) is the atom in l, this proof is equivalent to
π(s+

1)[l← ⊥], because by Lemma 3, l does not occur in π(s+
1)[l← ⊥]. If piv(s1)

is not the atom in l, R1[l← ⊥] is as above.
Thus, (R1[l← ⊥])[γ] is either (1) (π(s+

1)[l← ⊥])[γ] or (2) ProofRes((π(s+
1)[l←

⊥])[γ], (π(s−1)[l← ⊥])[γ], piv(s1)), where piv(s1) is not the atom in l. In the first
case, s+

1 has at most n ancestors, so the induction hypothesis applies. In the sec-
ond case, at least one of π(s+

1) or π(s−1) has an initial vertex labelled with a
clause containing l. Without loss of generality, let π(s+

1) be this proof. The in-
duction hypothesis now applies, so the conclusion of P1 = (π(s+

1)[l ← ⊥])[γ]
contains l. Finally, because piv(s1) is not the atom in l, the conclusion of
ProofRes(P1, (π(s−1)[l← ⊥])[γ], piv(s1)) contains l. It follows that l ∈ `2(s2).

For the second part, we have from Lemma 3 that the conclusion of R1[l← ⊥],
say C, subsumes `1(s1). From the first part, we have that the conclusion of R1�l,
`2(s2) = C ∪ {l}. It follows that `2(s2) ⊆ `1(s1) ∪ {l}.

2.3 Reordering Resolution Proofs

We use transformation to design an algorithm for reordering resolution proofs.
Though reordered proofs have several applications, we restrict our attention to
the construction of theory-specific interpolants. A proof is reordered with respect
to a partition of the pivot variables in the proof, and a partial oder over these
partitions. We define this notion next.

Definition 7. A partially ordered partition of a set S is a tuple (βS ,vS), where
βS is a partition of S and vS is a partial order over the blocks of βS.

Let βS(v) denote the block of v ∈ S in βS . A sequence v0, . . . , vk from S
respects (βS ,vS) if for any vi, vj in the sequence with 0 ≤ i ≤ j ≤ k, if βS(vi)
and βS(vj) are comparable, then βS(vi) vS βS(vj). Let A be the set of atoms
appearing in a resolution proof R and (βA,vA) be a partially ordered partition
of A. The proof R respects (βA,vA) if on every path v0, . . . , vk from the sink to
an initial vertex, the sequence of pivots piv(v0), . . . , piv(vk) respects (βA,vA).
To reduce notational burden, we write βA(v0) for βA(piv(v0)) and say v0, . . . , vk

respects (βA,vA) if piv(v0), . . . , piv(vk) respects (βA,vA). The subscripts are
dropped if clear.

The idea of our reordering algorithm is as follows. Let p = v0, . . . , vk be a
path from the sink to a vertex in the proof that respects (β,v). If v is the next
vertex on this path and vk 6v v, we identify a vertex vi such that the sequences
v0, . . . , vi, v and v, vi+1, . . . , vk respect (β,v). The resolutions on piv(v) and

¬piv(v) in π(vi+1) are projected out and resolved after the vertex vi+1. Observe
that the proof is now closer to being partially ordered.

Some vertices in π(vi+1) may have decendants that do not lie on a path to
π(vi+1). Such vertices have to be copied because the literals that are projected
out may be required in other parts of the proof. We reduce the number of copies
required using dominators (dominators are defined shortly). Despite copying, the
new proof at vi+1 may be smaller because piv(v) occurs only once as a pivot vari-
able. The transformations above (projection, resolution and copying on-demand)
are repeatedly applied until every path respects (β,v). The Reorder algorithm
appears in Figure 3. We begin the description of this algorithm by defining dom-
inators.

Definition 8. A vertex v in a proof R is dominated by v′ if v′ occurs on every
path from v to sR.

For example, in Figure 2(a), the vertex labelled with a2 is dominated by a3

but not by a1. If v1 is dominated by v2, replacing π(v2) by Res(π(v2)�l, π(v2)�l, l),
where l = piv(v1), will not weaken the conclusion of the proof (this can be proved
using Lemma 4). If v1 is not dominated by v2, we need to propagate the change
to the label of v1 to other parts of the proof, which may affect the order of pivot
variables. Instead, we copy nodes on a path from v1 to v2 that are not dominated
by v2. The method DominatedCopy(v1, v2) in Figure 3 creates a copy v3 of a
vertex v1 if v1 is not dominated by v2 and sets children of v1 not dominated by
v2 as children of v3. A different proof transformation using dominators appears
in [9].

We now consider the procedure Reorder. The procedure follows a path in
the proof DAG until it encounters a pivot that breaks the order. Resolution on
this pivot is deferred to a position on the path that respects the order. When
multiple positions exist, the choice can be made heuristically. Choosing a vertex
close to the sink can result in reduction of proof size, while a higher vertex may
require fewer vertices to be copied. We illustrate a run of Reorder next.

Example 2. Consider the proof in Figure 4(a). Define the partitioned partial
order (β,v), where β is {{a1}, {a2}, {a3}} and β(a1) v β(a3) v β(a2). The
path labelled with the sequence of clauses �, a1, a2, a1, does not respect (β,v)
because β(a2) 6v β(a1). We choose the lowest vertex labelled with a1 and reorder
the proof. That is, we consider two proofs:π(�)�a1 and π(�)�a1.

The proof π(�)�a1 has only one vertex labelled a1. The proof π(�)�a1 is
shown in Figure 4(b). The resolvent of these proofs on a1 produces the proof
in Figure 4(c), which respects (β,v). Observe that this proof is regular and is
smaller than the original proof. C

Our reordering method amounts to sorting the order of pivots in proof and
may induce changes in several parts of the proof. A seemingly more local trans-
formation appears in [2]. We briefly discuss the difference between this method
and Reorder.

Let (β,v) be a partitioned partial order as before and x and y be two atoms
such that β(x) v β(y). Consider a pair of vertices with pivots that do not respect

Reorder(v, p = v0, . . . , vk)
Input: vertex v, path v0, . . . , vk to v in R with sR = v0

1: if v is a leaf then return
2: else if β(vk) v β(v) then
3: Reorder(v+, (v0, . . . , vk, v))
4: Reorder(v−, (v0, . . . , vk, v)); return
5: else
6: find vi such that v0, ..vi, v and v, vi+1, . . . , vk respect (β,v)
7: for all v′ between v and vi+1 do
8: DominatedCopy(v′, vi+1)
9: end for

10: Let P be Res(π(vi+1)�piv(v), π(vi+1)�¬piv(v), piv(v))
11: Refactor(this proof, {vi 7→ P})
12: Reorder(vi, p = v0, . . . , vi)
13: end if

DominatedCopy(v1, v2)
Input: Vertex v1 to copy, vertex v2

1: if v1 is dominated by v2 then return
2: else
3: Create new vertex v3, add edges (v+

1 , v3), (v
−
1 , v3)

4: Set `(v3) to `(v1)
5: for all edges (v1, v4) in P do
6: if v4 is not dominated by v2 then
7: Delete (v1, v4), add (v3, v4)
8: end if
9: end for

10: end if

Fig. 3. Reorder a proof given a partitioned partial order.

this order. More formally, let v be a vertex with pivot y, and v+ have pivot x.
The proof at π(v+) is of the form Res(P1, P2, x) for two proofs P1 and P2, and
let P3 be the proof π(v−). The method of [2] essentially swaps the order of
the two resolution steps using the substitution R[v 7→ P], where P is the proof
Res(Res(P1, P3, y),Res(P2, P3, y), x).

To reorder a proof using this transformation, one can repeatedly swap the
pivots in a proof until the proof respects the desired partitioned partial order.
Just as in Reorder, one may also have to copy vertices and propagate changes.
Copying is discussed in [2]. We provide an example to demonstrate that refac-
toring is also required after swapping two pivots.

Example 3. Consider the proof in Figure 5(a). Let (β,v) be a partitioned partial
order with β(a1) v β(a2). There is a path in Figure 5(a) which does not respect
this order. We can swap the order of these two resolution steps as described
above to obtain the proof in Figure 5(b). This proof has a stronger conclusion.

�

a1

a1

a1a3

a3

a2

a1a2 a1 a1a2a2a3

(a) Original

a1a3

a1a3

a2a3 a1a2

a1

�

a1

a2

a1

(b) π(�)�a1

a1a3

a1a3

a2a3 a1a2

a1

�

a1

(c) Reordered

Fig. 4. Reordering a Proof

a1a2 a1

a2 a1a2

a1

(a) Original

a1a2 a1a2

a1 a1

�
(b) Reordered

Fig. 5. Reordering a Proof using the method of [2]

In general one may not have the empty clause, so the change will have to be
propagated along the proof. C

Thus, whether one uses the method in [2] or the algorithm Reorder, vertices
have to be copied and changes have to be propagated along the proof. In the
next section, we show how theory-specific interpolants can be constructed using
a method for reordering proofs. Any method is applicable.

3 Interpolants by Reordering Refutations

In this section, we study the problem of constructing theory-specific interpolants
using resolution proofs generated by a SAT solver. In § 3.1, we introduce the
notation and review the basic concepts of the class of decision procedures we
consider. The problem of constructing interpolants is examined in § 3.3.

3.1 SAT-Based Decision Procedures

We work in the standard setting of a first order theory. Consider a theory T over
the signature ΣT with variables, function symbols, and predicate symbols, where
constants are nullary functions and atomic propositions are nullary predicates.
If P is an n-ary predicate and r1, . . . rn are terms, P (r1, . . . , rn) is an atom.
Literals, clauses and CNF formulae are defined over atoms as in Section 2.1
and formulae are defined as usual. We consider only quantifier-free formulae. We
write φ |=T ψ to denote that the formula φ entails the formula ψ in the theory T .
Validity and satisfiability in T are defined as usual. A solver for T , or T -solver,

is an algorithm that decides if φ is satisfiable. Let Var(φ) be the set of variables
in φ, Atoms(φ) be the atoms in φ, and φ � ψ denote that the variables and
atomic propositions occurring in φ occur in ψ.

The propositional skeleton of a formula φ is a formula sk(φ) obtained by
replacing each atom in φ by an atomic proposition not in φ. Observe that we
can define a bijective mapping λ : LAtoms(sk(φ)) → LAtoms(φ) between the literals
in sk(φ) and φ. A satisfying assignment to sk(φ) is a conjunction of literals
l1 ∧ · · · ∧ lk over atoms in sk(φ) that satisfies sk(φ).

Contemporary decision procedures construct a formula ψ so that φ is satis-
fiable if and only if sk(φ) ∧ ψ is. Lazy approaches use a SAT solver to generate
truth assignments to sk(φ) and iteratively strengthen ψ. If l1 ∧ · · · ∧ lk satisfies
sk(φ), a dedicated solver is used to check the satisfiability of λ(l1) ∧ · · · ∧ λ(lk)
in T . If this formula is unsatisfiable, l1 ∧ · · · ∧ lk is an assignment that the SAT
solver should not consider. T -solvers include algorithms to return conjunction
η1 = t1 ∧ · · · ∧ tn of literals in λ(l1) ∧ · · · ∧ λ(lk) that lead to unsatisfiability in
T . Observe that ¬η1 is valid in T .

The search space of the SAT solver is not restricted using the formula sk(φ)∧
ψ1, where ψ1 is the blocking clause ¬λ−1(t1)∨· · ·∨¬λ−1(tn). If φ is unsatisfiable,
the lazy decision procedure eventually generates a resolution refutation for a
formula of the form sk(φ) ∧ ψ1 · · ·ψk where each ψi is a blocking clause.

Example 4. Consider the formula φ ≡ (y ≤ 4 ∨ x = 5) ∧ (x = y) ∧ (x − 6 ≥
0). The propositional skeleton sk(φ) for φ is (e1 ∨ e2) ∧ e3 ∧ e4. One possible
unsatisfiable conjunction derived by interaction with a solver for this theory is
sk(φ) ∧ (e1 ∨ e3 ∨ e4) ∧ (e2 ∨ e3 ∨ e4). C

See [4] for an overview of techniques for generating small blocking clauses and
using information deduced by the solver. Another approach to deciding formulae
in a theory is to propositionally encode constraints on the literals in sk(φ) and
delegate all reasoning to the SAT solver. Eager approaches generate a formula
sk(φ)∧Θ, where Θ is a conjunction of constraints of the form ei ⇔ θi in which ei

is an atom from the propositional skeleton and θi is a propositional formula that
constrains ei. The constraints ensure that every truth assignment to sk(φ) ∧ Θ
corresponds to a truth assignment to φ in the theory T and vice versa.

Example 5. Consider the formula φ ≡ (x = y) ∧ ((x&2) = 2) in which the
variables x and y are interpreted as bit-vectors of width 2. This formula can
be propositionally encoded because each bit in x can be represented by the
propositional variables x0 and x1. The same applies for y.

The propositional skeleton sk(φ) is e1∧e2. The constraints Θ are encoded by
the formula (e1 ⇔ (x0 ⇔ y0 ∧ x1 ⇔ y1)). The propositional formula sk(φ)∧Θ is
checked by a SAT solver to determine satisfiability of φ. C

Decision procedures may combine both approaches by propositionally encod-
ing some constraints and using a T -solver to determine if satisfying assignments
generated by the SAT solver can be satisfied in the theory T . Thus, we assume
that for an unsatisfiable formula φ in theory T , a T -solver produces a resolution

refutation for a CNF encoding of a formula of the form

Φ = sk(φ) ∧
k∧

i=1

ψi ∧
n∧

j=1

ej ⇒ αj ∧
n∧

j=1

αj ⇒ ej (1)

where ψi is a blocking clause over skeleton literals, ej is an atom in sk(φ), and
αi is a propositional encoding of a constraint on ei.

3.2 Interpolants in Lazy Approaches

We briefly review how interpolants are constructed using a purely lazy decision
procedure.

Definition 9. Let A∧B be a formula that is unsatisfiable in a theory T . A Craig
interpolant is a formula I such that A |=T I, B |=T ¬I, I � A and I � B.

Craig interpolants are referred to as interpolants. An interpolating decision
procedure is one that given a formula A∧B, decides if A∧B is unsatisfiable and
returns an interpolant if this is the case. An interpolating decision procedure for
conjunctions requires A and B to be conjunctions of literals.

If a lazy decision procedure generates a resolution proof, interpolants can
be constructed using an interpolating decision procedure for conjunctions and
interpolation rules for resolution. The decision procedure is used to generate
blocking clause interpolants, which are defined below.

Definition 10. Let φ ≡ A ∧B be an unsatisfiable formula in a theory T , sk(φ)
be of the form sk(A)∧sk(B) and λ : LAtoms(sk(φ)) → LAtoms(φ). A blocking clause
interpolant IC for a blocking clause C over literals in sk(φ) is an interpolant for
the formula AC ∧BC , where

AC =
∧

l∈C\LAtoms(B)

λ(l) and BC =
∧

l∈C∩LAtoms(B)

λ(l).

Blocking clause interpolants are then combined with propositional inter-
polants to obtain an interpolant for a formula. One can combine these inter-
polants using the rules provided either by Pudlák [13] or McMillan [3]. Both
annotate the nodes of a resolution proof with partial interpolants. The annota-
tion of the empty clause is the interpolant for the formula. This general scheme,
using the annotation system of McMillan [3], appears in [5] and is defined below.

Definition 11. Let φ ≡ A∧B be an unsatisfiable formula in a theory T and R
be a resolution refutation for a CNF encoding of sk(A)∧ sk(B)∧k

i=1ψk, where ψi

is a blocking clause. A partial interpolant is inductively defined as an annotation
of the clauses in a proof as follows:

1. If C is a blocking clause, the annotated clause is C [IC], where IC is a
blocking clause interpolant.

2. If C is not a blocking clause but is initial and part of the CNF encoding of
sk(A), the annotated clause is C [C ∩ LAtoms(sk(B))].

3. If C is not a blocking clause but is initial and part of the CNF encoding of
sk(B), the annotated clause is C [>].

4. If x ∈ V ar(A) \ V ar(B), then

C ∨ x [I1] D ∨ x [I2]
C ∨D [I1 ∨ I2]

[A− Res]

5. If x ∈ V ar(B), then

C ∨ x [I1] D ∨ x [I2]
C ∨D [I1 ∧ I2]

[B− Res]

Theorem 1 ([14]). Let φ ≡ A∧B be an unsatisfiable conjunction in the theory
T , R be a resolution refutation for sk(A) ∧ sk(B) ∧

∧k
i=1 ψi, where each ψi is

a blocking clause and λ be as before. Let C be a clause labelling a vertex in R
and I be the partial interpolant annotating this clause. The following statements
hold:

1. A |=T I ∨
∨

l∈C\LAtoms(sk(B))
λ(l)

2. B |=T ¬I ∨
∨

l∈C∩LAtoms(sk(B))
λ(l)

3. I � A and I � B.

It follows from this theorem that the annotation of the empty clause is an
interpolant for A ∧B.

3.3 Beyond Interpolants in Lazy Approaches

The method for constructing interpolants in Definition 11 is restricted to proofs
of unsatisfiability generated by a purely lazy approach. We now show how proof
transformations can be used to construct interpolants for approaches that com-
bine the lazy approach with propositionally encoded constraints. A special case
where this applies is decision procedures that are entirely based on proposi-
tionally encoded constraints. No interpolating decision procedure exists for such
methods. We make the following assumptions:

1. Given an unsatisfiable conjunction φ = A ∧ B, the T -solver used generates
a resolution refutation for a CNF encoding of a formula Φ as in Equation 1.

2. Let C1∧ . . .∧Cm be the CNF formula encoding Φ in Equation 1. We assume
that there exists a function trace mapping each Ci to one of sk(φ), ψi, ej ⇒
αj , αj ⇒ ej in Φ. That is, we can determine if an initial clause in the res-
olution proof generated by the T -solver is derived from the propositional
skeleton, a blocking clause or a propositionally encoded constraint.

3. Recall that λ is a mapping from literals in the propositional skeleton of φ
to literals over atoms inφ. We assume that for each constraint of the form
ei ⇔ αi that αi and λ(ei) are equisatisfiable.

4. An interpolating decision procedure for conjunctions of theory literals exists.

Purely lazy approaches admit a two-tier interpolant construction process, where
interpolants are first constructed for conjunctions of theory literals and then
composed with Boolean connectives based on the structure of the proof. The
challenge when dealing with a refutation of a formula Φ as in Equation 1 is that
such a construction process may no longer be possible. First, there is no clear
separation in the proof between theory specific and Boolean reasoning. Second,
even if such a separation exists, the clauses corresponding to propositional con-
straints cannot be labelled with interpolants because the theory literals they
encode are not necessarily unsatisfiable.

The solution we propose is to transform a resolution refutation R of Φ (from
Eqn. 1) to a refutation R′ for a formula sk(φ)∧Ψ ∧Γ , where Ψ is the conjunction
of blocking clauses in the original formula and Γ is a conjunction of blocking
clauses that the SAT solver has deduced. If φ is unsatisfiable, there exist block-
ing clauses for all satisfying assignments to sk(φ). Satisfying assignments that
are not explicitly excluded by blocking clauses must be excluded by reasoning
with propositionally encoded constraints. In other words, these constraints im-
plicitly encode blocking clauses and by reordering the proof, we can obtain these
blocking clauses. Under the assumption that an interpolating decision proce-
dure for conjunctions of theory literals exists, we can apply the construction in
Definition 11 to obtain an interpolant.

We first derive the contradiction that the SAT solver constructs in terms of
theory literals and then show how reordering can be used to ensure that this
contradiction is in CNF. Similar to interpolant construction, we annotate the
vertices of a proof with a formula representing the combination of theory literals
that eventually yield a contradiction.

Definition 12. Let R be a resolution refutation of a CNF encoding of Φ in
Equation 1. The formula contra(v) is defined over vertices in VR as follows:

1. For an initial vertex v,
(a) contra(v) = ⊥ if trace(`(v)) is the propositional skeleton sk(φ), and
(b) contra(v) =

∧
l∈`(v) ¬λ−1(l) if trace(`(v)) is a blocking clause ψi, and

(c) contra(v) = λ−1(ei) if trace(`(v)) is the implication ei ⇒ αi in a propo-
sitional constraint, and

(d) contra(v) = ¬λ−1(ei) if trace(`(v)) is the reverse implication αi ⇒ ei in
a propositional constraint.

2. For an internal vertex v,
(a) if piv(v) ∈ Atoms(sk(φ)), then contra(v) = contra(v+)∨ contra(v−), and
(b) if piv(v) /∈ Atoms(sk(φ)), then contra(v) = contra(v+) ∧ contra(v−).

The construction contra(v) yields a formula with a useful property. If the
label `(v) of a vertex v contains only clauses from the propositional skeleton,
then contra(v) is unsatisfiable in the theory T .

Theorem 2. Let φ be a theory formula, R be a resolution refutation for a for-
mula Φ as in Equation 1, and S = LAtoms(Φ) \LAtoms(sk(φ)). If `(v)∩S = ∅, then
contra(v) is a contradiction in T .

Proof: Fill in details when I’m more awake.

Observe that for any vertex v in a proof, if π(v) contains no pivots in
Atoms(sk(φ)), then contra(v) must be a conjunction of T -literals. Moreover, if
`(v) contains only literals from the propositional skeleton, contra(v) is an un-
satisfiable conjunction and can be mapped to a blocking clause. To construct
an interpolant, it remains to ensure that the refutation generated by the solver
contains a sub-proof with such vertices v as initial vertices. Lemma 5 shows how
Reorder can be used to obtain such a proof.

Lemma 5. Let φ be an unsatisfiable CNF formula and S ⊆ Atoms(φ) be a set
of atoms. Define the partitioned partial order (βS ,vS) such that for all x, y ∈
Atoms(φ), βS(x) 6= βS(y) if x ∈ S, y /∈ S, and βS(x) = βS(y) otherwise, and
βS(x) vS βS(y) if x ∈ S. Let R be a refutation of φ that respects (βS ,vS).

1. There exists a set of vertices W ⊆ VR such that (a) every path from sR to
an initial vertex traverses a vertex in W , and (b) for each v ∈W , and vertex
v′ in π(v), piv(v′) /∈ S.

2. Define the mapping ρ = {v 7→ `R(v)|v ∈ W}. Then, R[ρ] is a resolution
refutation for

∧
v∈W `R(v).

Let S in Lemma 5 be Atoms(sk(φ)). Observe that W induces a cut in the proof
graph and that by Theorem 2, for v ∈ W , contra(v) is a contradictory conjunc-
tion of theory literals. Thus, we can compute an interpolant from the proof R[ρ]
by annotating each v ∈W with a partial interpolant obtained from contra(v). In
general, the entire proof need not be reordered. It is not necessary to move res-
olution steps that do not affect the propositional structure of contra(v). Again,
this choice can be made heuristically. Moving a pivot towards the sink of the
proof may require few changes, but will generate a few large unsatisfiable con-
junctions. If all skeleton atoms are resolved after constraint atoms, there may
be many small unsatisfiable conjunctions. A detailed example follows.

Example 6. Consider the bit-vector formula ((x = y) ⇒ ((x & 2) = 2)) ∧ (y =
z + z) ∧ (x = z � 1) ∧ ((z & 1) = 0), with sk(φ) being (e1 ⇒ e2) ∧ e3 ∧ e4 ∧ e5 .
The constraints on each skeleton atom and the corresponding CNF clauses are
shown below.

Encoding Propositional constraint CNF clauses

e1 ⇔ (x = y) e1 ⇔ (x0 ⇔ y0) ∧ e1 ⇔ . . . (e1 x0y0)(e1x0y0)(e1x0 y0)(e1x0y0) . . .

e2 ⇔ ((x&2) = 2) e2 ⇒ x1 (e2x1)

e3 ⇔ (y = z + z) e3 ⇒ y0 (e3 y0)

e4 ⇔ (x = z � 1) e4 ⇒ (x1 ⇔ z0) ∧ (e4 ⇒ x0) (e4 x1z0)(e4x1z0)(e4 x0)

e5 ⇔ ((z&1) = 0) e5 ⇒ z0 (e5 z0)

�

x1

x1 x0x0x1

e4 x0 e4

e3 x0x1

e3

x1z0z0

e1e2 e1x0y0

e2x1 e2x0y0

x0x1y0e3 y0e4 x1z0

e4

e5 z0e5

(a) Unordered proof

�

e1 e1

e1x1x1 x0e1x0

e4 x0 e4

e1x0e3

e3

e2x1 e1e2x1z0z0

e3 y0e1x0y0e4 x1z0

e4

e5 z0e5

(b) Refactored and ordered proof

Fig. 6. Refactoring proofs for the purpose of computing interpolants.

A refutation over these clauses is shown in Figure 6(a). Observe that skele-
ton atoms are resolved before constraint atoms on all paths. The optimisation
suggested above is applicable; it suffices to project e1 to obtain contradictory
conjunctions. The proofs π(�) � e1, which is the left sub-proof in Figure 6(b),
and π(�) � e1, which is the right sub-proof, are resolved to obtain �.

We now construct contra(v). For example, contra(e5z0) = ((z&1) = 0) and
contra(e2x1) = ((x&2) = 2). In particular, contra(e1) = ((z&1) = 0) ∧ (x1 ⇔
z0) ∧ ((x&2) = 2), and contra(e1) = ¬(x = y) ∧ (y = z + z) ∧ (x = z � 1) are
both contradictory conjunctions.

Define a partition of the formula where A is ((x = y)⇒ ((x & 2) = 2))∧ (y =
z + z), and B is(x = z � 1) ∧ ((z & 1) = 0). The partial interpolant (using a
method explained next) for contra(e1) is ¬(x = z + z), and for contra(e1) is
((x&2) = 2). The interpolant is the disjunction of these two. We emphasise that
no existing tools can compute interpolants for such a formula. C

Theory combinations. We briefly describe how to extended our method for
theory combinations, by relaxing the restrictions on solver heuristics in [5]. We
consider combination methods based on equalities deduced by individual T -
solvers, where the solvers communicate equalities à la Nelson-Oppen’s method,
or use a SAT-solver to integrate equalities via Delayed Theory Combination.
Method for computing interpolants in these settings appear in [5, 15].

In both cases, we obtain a refutation for a formula of the form sk(φ)∧Ψ∧Ω=,
where Ψ is a conjunction of blocking clauses and the atoms in Ω= encode equality
constraints. We only need modifications to deal with equalities over terms from

both parts of the formula for interpolation. The modifications in [5] restrict the
solver to produce a refutation in which such mixed equalities only appear in
sub-proofs and are resolved before any other atoms. An alternative is to define
a partitioned partial order such that mixed equalities in Ω= are in the same
block, and this block is maximum with respect to the partial order. Reordering
can generate a proof which respects this order. It remains to replace each mixed
equality by two pure equalities and resolutions on a mixed equality atom by two
resolution steps on pure equality atoms. This is achieved by substitution using
the proofs indicated in [5].

Solving Bit-vector Formulae. To compute interpolants for a fragment of bit-
vector logic that appears in program properties, we use a simple instantiation
rule for theory axioms to introduce tautological equalities on demand:

Ax-Inst
` ∀−→a .f(−→a) = g(−→a)
f(−→x) = g(−→x)

†

where ∀−→a .f(−→a) = g(−→a) is an axiom of the theory. The symbol † indicates the
requirement that f as well as g are interpreted functions of the theory, and
that −→x � A or −→x � B, respectively. This is not sufficient to deal with full bit-
vector arithmetic, but enables handling cases that occur in practice, in particular
formulae as in Example 6. Useful examples are the bit-vector axioms for dealing
with bit-shifts and bit-masks: (1) ∀t.t� 1 = t+ t, (2) ∀t.(t� c1)&c2 = 0 , and
(3) ∀t.(t|c)&c = c, where t is a term, and c, c1 and c2 are constants.

Example 7. If the axiom ∀t.t� 1 = t+ t is instantiated with z � 1, we can
compute an interpolant for the unsatisfiable conjunction ¬(x = y) ∧ (y = z +
z) ∧ (x = z � 1) using an interpolating decision procedure for equality logic. C

4 Evaluation

We evaluated the feasibility of the proposed techniques by integrating them
into our verification tool suite consisting of the hardware model checker EBMC
and the predicate abstraction framework SATABS [16].3 We discuss (a) the
impact of Reorder on the proof size during predicate abstraction of hardware
benchmarks with bit-vector terms, and (b) the performance of our interpolation
technique when used as refinement algorithm in SATABS, using the DDVerify
benchmarks. The change in proof size in the latter is negligible.4

EBMC is a hardware model checker that implements interpolation. The first
column of Table 2 lists benchmarks from the Sun PicoJava II, opencores
(http://www.opencores.org), Texas97 and VIS benchmark suites. Subsequent
columns show the unwinding bound k, the size of the refutation before and after
applying Reorder, measured as number of resolution steps (clauses in proof

3 Both tools are available for download from http://www.verify.ethz.ch/
4 http://www.verify.ethz.ch/ddverify/

model k original proof after Reorder time [s] # blk. cl.

cache-coherence 10 881 913 ≈0 61
11 981 1021 ≈0 68
12 1081 1131 ≈0 75
13 1181 1241 ≈0 82
14 1281 1353 ≈0 89
15 1381 1465 ≈0 96

ethernet 10 1362 1365 ≈0 32
11 9572 10192 ≈0 325
12 14180 15294 0.5 461
13 26236 14437 43 509

Miim 10 4446 3343 0.2 358
11 4886 3030 0.5 320
12 5086 5337 0.3 570
13 6025 5962 0.7 650

pj-icu 12 509 565 ≈0 28
13 617 1001 ≈0 32
14 552 568 ≈0 33
15 624 665 ≈0 37

usb-phy 10 567 571 ≈0 49
11 1071 1082 ≈0 85
12 1156 1170 ≈0 90
13 1332 1352 ≈0 102

Table 2. Impact of Reorder on the proof size (given as number of resolution steps)

dev. driver iter. CSIsat [s] lifting [s] dev. driver iter. CSIsat [s] lifting [s]

machzwd 11 5.52 4.06 nbd 13 143.60 11.74

pcwd pci 11 7.29 4.76 toshiba 8 0.69 0.90

umem 12 13.95 4.37 cs5535 gpio 6 5.31 1.81

efirtc 15 7.95 5.19 nwbutton 17 24.01 5.65

Table 3. Runtimes of interpolating decision procedures in DDVerify [18]

minus initial clauses), and the time for reordering. The last column shows the
number of blocking clauses identified by our algorithm.

Contrary to what one may expect, though reordering involves copying, the
resulting proof may be smaller. The proof size of the ethernet entry with width
13 is almost halved by reordering. The reason is that each update by Reorder
makes the proof more regular. As Tseitin explains [10], “The regularity condition
can be interpreted as a requirement for not proving intermediate results in a form
stronger than that in which they are later used.” A tree refutation of minimal
size is regular, though a regular refutation may be smaller than the minimal tree.
The relationship between the sizes of regular refutations and those generated by
SAT-solvers is a topic of ongoing research [17].

In Table 3, we list the runtime of using our interpolation algorithm in predi-
cate abstraction. We measure the total time for propositionally encoding a coun-

terexample and constructing interpolants, over all iterations till the CEGAR
loop terminates. A counterexample φ is typically a conjunction of constraints,
so the proof size remains unchanged in all examples. We use CSIsat [19] to
compute the partial interpolants for the blocking clauses our algorithm derives.
We compare the runtime of our tool to that of CSIsat for directly computing
interpolants (without propositional encoding). In most cases, we observe a sig-
nificant speedup, which we believe is because our algorithm extracts from the
core only blocking clauses that lead to unsatisfiability.

5 Related Work

Transformations on resolution proofs appear in proofs about the completeness
of resolution refinements in the automated deduction literature, and for deriving
lower bounds in proof complexity. The idea of reordering dates back (at least)
to Andrews [20], and substitution was suggested by Tseitin [10]. A full survey
is beyond the scope of this paper. Proof transformations have been applied to
reduce the size of unsatisfiable cores [8] and to strengthen interpolants [2].

Several linear-time algorithms for computing interpolants from resolution
refutations exist. Huang [21] also considers paramodulation, Pudlák’s [13] sys-
tem includes bounded arithmetic, and McMillan’s [14] applies to linear arith-
metic and equality with uninterpreted functions. Interpolating decision proce-
dures can be combined using the Nelson-Oppen approach as in [15] or using
delayed theory combination [5]. All these methods are based on proof producing
decision procedures. An technique for conjunctions of literals in linear arithmetic
that does not rely on proofs appears in [22] and is implemented in the CSIsat
tool [19]. This method is compatible with the techniques we present here. Finally,
a first attempt to construct interpolants from proofs that include propositionally
encoded equality constraints is [23]. This method incomplete, since it does not
reorder the proof.

References

1. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Principles of Programming Languages (POPL), ACM (2004) 232–244

2. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation.
In: CAV. Volume 3576 of LNCS., Springer (2005) 39–51

3. McMillan, K.L.: Interpolation and SAT-based model checking. In: CAV. Volume
2725 of LNCS., Springer (2003) 1–13

4. Cimatti, A., Sebastiani, R.: Building efficient decision procedures on top of SAT
solvers. In: Formal Methods for the Design of Computer, Communication, and
Software Systems. Volume 3965 of LNCS., Springer (2006) 144–175

5. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in sat-
isfiability modulo theories. In: TACAS. Volume 4963 of LNCS., Springer (2008)
397–412

6. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and a
new technique for establishing completeness. J. ACM 17 (1970) 525–534

7. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
J. ACM 48 (2001) 149–169

8. Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Linear-time
reductions of resolution proofs. Technical Report IE/IS-2008-02, Technion (2008)

9. Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores with
dominators. In: CAV. Volume 4144 of LNCS., Springer (2006) 109–122

10. Tseitin, G.: On the complexity of proofs in poropositional logics. In: Automa-
tion of Reasoning: Classical Papers in Computational Logic 1967–1970. Volume 2.,
Springer (1983) Originally published 1970.

11. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation.
Logical Methods in Computer Science 3 (2007)

12. Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic
1 (1995) 425–467

13. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. The Journal of Symbolic Logic 62 (1997) 981–998

14. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science
345 (2005) 101–121

15. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In:
Computer Aided Deduction. (2005) 353–368

16. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of
ANSI–C programs using SAT. Formal Methods in System Design (FMSD) 25
(2004) 105–127

17. Hertel, P., Bacchus, F., Pitassi, T., Gelder, A.V.: Clause learning can effectively
p-simulate general propositional resolution. In: AAAI Conference on Artificial
Intelligence. (2008) 283–290

18. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current Linux device drivers. In: ASE, IEEE (2007) 501–504

19. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:
CAV. Volume 5123 of LNCS., Springer (2008) 304–308

20. Andrews, P.B.: Resolution with merging. J. ACM 15 (1968) 367–381
21. Huang, G.: Constructing Craig interpolation formulas. In: Computing and Com-

binatorics (COCOON). Volume 959 of LNCS., Springer (1995) 181–190
22. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.

In: VMCAI. Volume 4349 of LNCS., Springer (2007) 346–362
23. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-

level. In: FMCAD, IEEE (2007) 85–89

