Software Model Checking
with
Predicate Abstraction, Interpolation, & IC3

Johannes Birgmeier, Aaron Bradley,
Georg Weissenbacher

Challenges in (Software) Model Checking

1. Finding Inductive Invariants
2. Scalability (State Space Explosion)

How we will address these challenges

W' eRPOLATIo W

Partl: IC3

\\“EP\POLA TIo W

Incremental Construction of Inductive Clauses for Indubitable Correctness

» Verification of finite state systems
» Aaron Bradley

SAT-Based Model Checking without Unrolling [VMCAI'11]
» Given: Finite State Transition System

» Initial states I C S
» Transition relation T C S x S
» Safety property P

Incremental Construction of Inductive Clauses for Indubitable Correctness

v

Verification of finite state systems

v

Aaron Bradley
SAT-Based Model Checking without Unrolling [VMCAI'11]
Given: Finite State Transition System
» Initial states / C S
» Transition relation T C S x S
» Safety property P
Goal: Inductive invariant F
» I(s) = F(s),
» F(S)AT(s,s") = F(s')
» F(s)= P(s)

v

v

IC3

Approach: Construct sequence Fo, F1, ..., Fx of candidates

I < Fo (1)
YO <i<k.Fi= Fii (2)
VO<i<k.Fi=P (3)
VO<i<k.FAT=F.,4 (4

IC3

Approach: Construct sequence Fo, F1, ..., Fx of candidates

I < Fo (1)
YO <i<k.Fi= Fi 2)
VO<i<k.Fi=P (3)
VO<i<k.FAT=F_; (4

(1) Fo represents the initial states

IC3

Approach: Construct sequence Fo, F1, ..., Fx of candidates

I < Fo (1)
YO <i<k.Fi= Fi 2)
VO<i<k.Fi=P (3)
VO<i<k.FAT=F_; (4

(1) Fo represents the initial states
(2+4) F; over-approximates states reachable in < j steps

IC3

Approach: Construct sequence Fo, F1, ..., Fx of candidates

I < Fo (1)
YO <i<k.Fi= Fi 2)
VO<i<k.Fi=P (3)
VO<i<k.FAT=F_; (4

(1) Fo represents the initial states
(2+4) F; over-approximates states reachable in < j steps
(3) All F; are safe

IC3

Sequence Fy, F1, ..

., Fx of candidates for invariant

I<:>F0

VO <i<k.Fi= Fiy
VOL<i<Kk.Fi= P
VO<i<k.FANT=

/
i+1

Important properties of algorithm:

» New frame Fy,1 is added if Fi is “safe”, k increased

» Over-approximation Fy, Fq, ..
» Inductiveness is primary goal

., Fx is refined incrementally

IC3

| = F (1)
VO <i<k.Fi= Fi)
VO<i<k.F=P 3)
VO<i<k.FAT=Fl, (4

IC3

< Fy
VO<i<k.Fi= Fiq
VO<i<k.Fi=P
VO<i<k.FAT= F,

(1)
@2
(3
(4

~

)
)

Step 1: Check whether I = Pand INT = P

IC3

< Fy
VO<i<k.Fi= Fiq
VO<i<k.Fi=P
VO<i<k.FAT= F,

(1)
@2
(3
(4

~

)
)

Step 1: Check whether I = Pand INT = P

IC3

& F (1)
YO <i<k.Fi= Fi 2)
VO<i<k.Fi=P (3)
VO<i<k.FiAT=Fl, (4

Step 1: Check whether I = Pand INT = P

v’ Expand: Add Fy < P to sequence of frames Fo, ...

P<:>F1

IC3

1< Fy

VO <i<k.Fj= Fi4
VO<i<k.Fi=P
VO<i<k.FAT= F,

(1)
(@)
(3)
(4)

Step 2: Check whether F{ A T = P’

P<:>F1

IC3

1< Fy

VO <i<k.Fj= Fi4
VO<i<k.Fi=P
VO<i<k.FAT= F,

(1)
(@)
(3)
(4)

Step 2: Check whether F{ A T = P’

X There’s a state ssuchthat Ff ASA T AP

s

P<:>F1

IC3: Consecution

What do we know about s?
» s ¢ Fy, otherwise would have discovered s earlier

S

P<:>F1

IC3: Consecution

What do we know about s?

» s ¢ Fy, otherwise would have discovered s earlier
Try to show that s is unreachable from Fy:

» FpA-SAT = -8

consecution check

S

P<:>F1

IC3: Consecution

What do we know about s?

» s ¢ Fy, otherwise would have discovered s earlier
Try to show that s is unreachable from Fy:

» FpA-SAT = -8

consecution check
» If this doesn’t hold, s has a predecessor in Fy 4

) S

P<:>F1

IC3: Consecution

What do we know about s?

» s ¢ Fy, otherwise would have discovered s earlier
Try to show that s is unreachable from Fy:

» FoA-SAT = -8

consecution check
» If this holds, s is inductive relative to Fg

IC3: Relative Inductiveness

Fo A-sAT = ¢

» We can replace F; with F{ A —s

IC3: Relative Inductiveness

Fo A-sAT = ¢

» We can replace F; with F{ A —s
» But that would only eliminate one state!

IC3: Generalization

Could eliminate s from F;. But we can do better!
» Try to generalize s:

vV FoA-SAT = —¢
» Findc C —ssuchthat Fp AcA T = ¢
(consider subsets of clause —s)

IC3: Generalization

Could eliminate s from F;. But we can do better!
» Try to generalize s:
vV FoA-SAT = —¢
» Findc C —ssuchthat Fp AcA T = ¢
(consider subsets of clause —s)
» Fi:=F AcC

F1 s

IC3

I & F (1)
YO <i<k.Fi= Fi 2)
VO<i<k.Fi=P (3)
VO<i<k.FAT=Fly (4

Once no more bad states reachable from F;, expand. . .

IC3

I & F (1)
YO <i<k.Fi= Fi 2)
VO<i<k.Fi=P (3)
VO<i<k.FAT=Fly (4

Once no more bad states reachable from F,, expand. ..

(7)r
F>

IC3

I & F (1)
YO <i<k.Fi= Fi 2)
VO<i<k.Fi=P (3)
VO<i<k.FAT=Fly (4

Once no more bad states reachable from F,, expand. ..

s

£

IC3

< Fy
VO<i<k.Fi= Fi4
VOLZ<i<k.Fi=P
VO<i<k.FAT= F,

1
2
3

(
(
(
(4

)
)
)
)

Until we eventually reach a fixed point.

P

IC3

Does this work for software?
Yes; simply replace SAT solver with SMT solver, but:

» State space much larger or infinite
» Will painstakingly eliminate single/small sets of states

» High risk of divergence

F F2

Part lI: Predicate Abstraction

WTERPOLATI,

Predicate Abstraction: A Form of Abstract Interpretation

» Map concrete states to abstract states

» Reduce size of state space
» Obtain finite representation

. -
Abstract domain ' /vo aj)
\ ’ I\ 3 i
\\/15___ N -
/ T
/ | \
' oy
I’ /// |
< \
// \\ SO //
. /
Concrete domain ¢ \ s
|

Abstract Domain: Set of Predicates

Map concrete states to abstract states by evaluating predicates:

» Concrete variable: i
» Predicates: by = (i #0) and b, = (i < 10)

. / (0,1)
Abstract domain ! R)
\ ’ AR P
S
// roA
! / !
h K \
I’ // |
.
// \ 5 // \\
. \ /
Concrete domain . ’)
L 10 /

Predicate Abstraction: Explicit Abstract Transition Relation

Example: Abstraction of i++ and by=(i # 0)
» We have to account for all possibilities!

b,

Predicate Abstraction: Explicit Abstract Transition Relation

Example: Abstraction of i++ and by=(i # 0)
» We have to account for all possibilities!
» Even if there is just a single transition from i # 0to 1 = 0!

b,

Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation
» requires many calls to SMT solver
» is computationally expensive

Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation
» requires many calls to SMT solver
» is computationally expensive
» contrary to the spirit of IC3 (focus on single states)

Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation
» requires many calls to SMT solver

» is computationally expensive
» contrary to the spirit of IC3 (focus on single states)

Abstraction of single states is computationally cheap!
» Predicates: by = (i #0), bp = (1 < 10)

L~ =by A b RN
. / ’
Abstract domain U byAbe
o/ A% P
5~ N -
/ TTTamh
I [
i \
| , \
i / |
: / |
,/*\"—_7—“7\\
// \\ 5 //
. { /
Concrete domain ¢ & 4
! 10

Predicate Abstraction IC3 Style

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula

Fa

Predicate Abstraction IC3 Style

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Fa

Predicate Abstraction IC3 Style

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Check consecution for s:

FiAN=sAT = ¢

Fa

Predicate Abstraction IC3 Style

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Check consecution for s:
FiAN=sAT = ¢

If s not relative inductive, proceed with predecessor t

Predicate Abstraction / Abstract Consecution

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Consecution:

FitAN=sANT = —¢

Fa

Predicate Abstraction / Abstract Consecution

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Abstract Consecution:

FtAN=8ANT = ¢

]

FitAN=sANT = —¢

Fa

Predicate Abstraction / Abstract Consecution

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Abstract Consecution:

FtAN=8ANT = ¢

]

FitAN=sANT = —¢

Predicate Abstraction / Abstract Consecution

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Check abstract consecution (instead of concrete):

FIN-SAT=-8 v

Predicate Abstraction / Abstract Consecution

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Check abstract consecution (instead of concrete):
FiIAN-SAT=-8 v

Replace F> with F> A ¢, where clause ¢ C —§

Abstract Consecution Failure

» Fo, F1, ... Fx: CNF over predicates
» Transition relation T: program as SMT formula
» state s: concrete predecessor of bad state

Check consecution:
FiAN-SAT= ¢ X

But what if abstract consecution fails?

Abstract Consecution Failure

FIN-8ANT = -3 X

]

FFA-SAT= -8V

Then s has a concrete predecessor t € F; that does not lead to s
in one step.

Abstract Consecution Failure

FFA-SAT=-8xX

]

FIN-sANT = -8V

Then s has a concrete predecessor t € F; that does not lead to s
in one step.

» Our abstract domain is too imprecise

Part lll: Craig Interpolation

\ﬁ—(EP\POLA TIo W

What is a Craig Interpolant?

Craig interpolant | for formula A = B:
» A=/ and /=B
» all non-logical symbols in / occurin A as well asin B

What is a Craig Interpolant?

Craig interpolant | for formula A = B:
» A=/ and /=B
» all non-logical symbols in / occurin A as well asin B

Can be provided by contemporary SMT solvers for many theories

Refinement for Abstract Consecution Failure

FIN-SAT=-5Xx

.

FFA-SAT=-8 v

How to save the day with interpolants:

Refinement for Abstract Consecution Failure

FFA-SAT = -8 X
FIAN-SAT = -8 /
~—— S~~~

A B
How to save the day with interpolants:

Refinement for Abstract Consecution Failure

FIN-SAT=-5Xx

]

FIAN-SAT = -8 /
—_—
A B
How to save the day with interpolants:
1. Compute interpolant R’

» FEA-SAT =R
» B = ¢

Refinement for Abstract Consecution Failure

FIN-8ANT = -8 X

]

FFA-SAT = -8 v/
S—————— ~~
A B
How to save the day with interpolants:
1. Compute interpolant R’
» FAEA-SAT = R
» B = ¢
2. Add —R to the abstract domain
» Note: s = —R, therefore 5§ A =R is new abstraction of s

Refinement for Abstract Consecution Failure

FIN-8ANT = -8 X

]

FFA-SAT = -8 v/
S—————— ~~
A B
How to save the day with interpolants:
1. Compute interpolant R’
» FAEA-SAT = R
» B = ¢
2. Add —R to the abstract domain
» Note: s = —R, therefore 5§ A =R is new abstraction of s

Refinement for Abstract Consecution Failure

Fin(-8VR)AT = (=8'VR)V/

e

FFA-SAT = -8 v/
S—————— ~~
A B
How to save the day with interpolants:
1. Compute interpolant R’
» FAEA-SAT = R
» B = ¢
2. Add —R to the abstract domain
» Note: s = —R, therefore 5§ A =R is new abstraction of s

Refinement IC3 Style

Refinement via Craig Interpolation
» without unrolling! (unlike most other SMC approaches)
» therefore extremely light-weight

Refinement IC3 Style

Refinement via Craig Interpolation
» without unrolling! (unlike most other SMC approaches)
» therefore extremely light-weight
Also: Refinement can be delayed!
» Spurious state may be eliminated later without refinement

Conclusion: IC3 + Predicate Abstraction + Interpolation

\\{(eRPOLATIo W

Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:
» on INVGEN, DAGGER, “Beautiful Interpolants” benchmarks
» using mostly linear arithmetic
» solve substantially more problems than CPAChecker
» details in our CAV’14 paper!

» delaying refinement pays off (evaluated several strategies)

Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:
» on INVGEN, DAGGER, “Beautiful Interpolants” benchmarks
» using mostly linear arithmetic
» solve substantially more problems than CPAChecker
» details in our CAV’14 paper!

» delaying refinement pays off (evaluated several strategies)

Lessons learned:
» Induction focus of IC3 successfully transferred to software
» Predicate abstraction in this setting is cheap
» Refinement doesn’t require unrolling!

