Software Model Checking with Predicate Abstraction, Interpolation, & IC3

Johannes Birgmeier, Aaron Bradley, Georg Weissenbacher

Challenges in (Software) Model Checking

- 1. Finding Inductive Invariants
- 2. Scalability (State Space Explosion)

How we will address these challenges

Part I: IC3

Incremental Construction of Inductive Clauses for Indubitable Correctness

- ► Verification of *finite state systems*
- Aaron Bradley

SAT-Based Model Checking without Unrolling [VMCAl'11]

- Given: Finite State Transition System
 - ▶ Initial states $I \subseteq S$
 - ▶ Transition relation $T \subseteq S \times S$
 - Safety property P

Incremental Construction of Inductive Clauses for Indubitable Correctness

- Verification of finite state systems
- ► Aaron Bradley

SAT-Based Model Checking without Unrolling [VMCAl'11]

- Given: Finite State Transition System
 - ▶ Initial states $I \subseteq S$
 - ▶ Transition relation $T \subseteq S \times S$
 - ► Safety property P
- ► Goal: **Inductive** invariant F
 - $ightharpoonup I(s) \Rightarrow F(s),$
 - ▶ $F(s) \land T(s,s') \Rightarrow F(s')$
 - ▶ $F(s) \Rightarrow P(s)$

Approach: Construct sequence F_0, F_1, \ldots, F_k of candidates

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

Approach: Construct sequence F_0, F_1, \dots, F_k of candidates

$$I \Leftrightarrow F_0$$
 (1)

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1}$$
 (2)

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P$$
 (3)

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1}$$
 (4)

(1) F_0 represents the initial states

Approach: Construct sequence F_0, F_1, \ldots, F_k of candidates

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

- (1) F_0 represents the initial states
- (2+4) F_i over-approximates states reachable in $\leq i$ steps

Approach: Construct sequence F_0, F_1, \ldots, F_k of candidates

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

- (1) F_0 represents the initial states
- (2+4) F_i over-approximates states reachable in $\leq i$ steps
 - (3) All F_i are safe

Sequence F_0, F_1, \ldots, F_k of candidates for invariant

$$I \Leftrightarrow F_0$$
 (1)

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1}$$
 (2)

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P$$
 (3)

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1}$$
 (4)

$$\forall 0 \leq i < k \cdot F_i \wedge I \Rightarrow F'_{i+1} \quad (4)$$

Important properties of algorithm:

- ▶ New frame F_{k+1} is added if F_k is "safe", k increased
- ightharpoonup Over-approximation F_0, F_1, \ldots, F_k is refined incrementally
- Inductiveness is primary goal

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

$$I \Leftrightarrow F_0 \qquad (1)$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \qquad (2)$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \qquad (3)$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \qquad (4)$$

Step 1: Check whether $I \Rightarrow P$ and $I \land T \Rightarrow P'$

$$I \Leftrightarrow F_0 \qquad (1)$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \qquad (2)$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \qquad (3)$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \qquad (4)$$

Step 1: Check whether $I \Rightarrow P$ and $I \land T \Rightarrow P'$

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

Step 1: Check whether $I \Rightarrow P$ and $I \land T \Rightarrow P'$

✓ *Expand:* Add $F_1 \Leftrightarrow P$ to sequence of frames F_0, \ldots

$$I \Leftrightarrow F_0$$
 (1)

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1}$$
 (2)

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P$$
 (3)

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1}$$
 (4)

Step 2: Check whether $F_1 \wedge T \Rightarrow P'$

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

Step 2: Check whether $F_1 \wedge T \Rightarrow P'$

X There's a state *s* such that $F_1 \wedge s \wedge T \wedge \neg P'$

What do we know about s?

▶ $s \notin F_0$, otherwise would have discovered s earlier

What do we know about s?

▶ $s \notin F_0$, otherwise would have discovered s earlier Try to show that s is unreachable from F_0 :

$$\qquad \underbrace{F_0 \land \neg s \land T \Rightarrow \neg s'}_{\text{consecution check}}$$

What do we know about s?

▶ $s \notin F_0$, otherwise would have discovered s earlier Try to show that s is unreachable from F_0 :

$$\underbrace{F_0 \land \neg s \land T \Rightarrow \neg s'}_{\text{consecution check}}$$

► If this doesn't hold, s has a predecessor in F₀ §

What do we know about s?

▶ $s \notin F_0$, otherwise would have discovered s earlier Try to show that s is unreachable from F_0 :

$$\underbrace{F_0 \land \neg s \land T \Rightarrow \neg s'}_{\text{consecution check}}$$

▶ If this <u>holds</u>, s is *inductive relative to F*₀

IC3: Relative Inductiveness

$$F_0 \wedge \neg s \wedge T \Rightarrow \neg s'$$

▶ We can replace F_1 with $F_1 \land \neg s$

IC3: Relative Inductiveness

$$F_0 \wedge \neg s \wedge T \Rightarrow \neg s'$$

- ▶ We can replace F_1 with $F_1 \land \neg s$
- ► But that would only eliminate one state!

IC3: Generalization

Could eliminate s from F_1 . But we can do better!

- ► Try to generalize s:
 - \checkmark $F_0 \land \neg s \land T \Rightarrow \neg s'$
 - ► Find $c \subseteq \neg s$ such that $F_0 \land c \land T \Rightarrow c'$ (consider subsets of clause $\neg s$)

IC3: Generalization

Could eliminate s from F_1 . But we can do better!

- ► Try to generalize s:
 - \checkmark $F_0 \land \neg s \land T \Rightarrow \neg s'$
 - ► Find $c \subseteq \neg s$ such that $F_0 \land c \land T \Rightarrow c'$ (consider subsets of clause $\neg s$)
 - $ightharpoonup F_1 := F_1 \wedge c$

$$I \Leftrightarrow F_0$$
 (1)

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1}$$
 (2)

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P$$
 (3)

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1}$$
 (4)

Once no more bad states reachable from F_1 , expand...

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

Once no more bad states reachable from F_2 , expand...

$$I \Leftrightarrow F_0$$
 (1)

$$\forall 0 \le i < k \cdot F_i \Rightarrow F_{i+1}$$
 (2)

$$\forall 0 \le i \le k \cdot F_i \Rightarrow P$$
 (3)

$$\forall 0 \le i < k \cdot F_i \land T \Rightarrow F'_{i+1}$$
 (4)

Once no more bad states reachable from F_2 , expand...

$$I \Leftrightarrow F_0 \tag{1}$$

$$\forall 0 \leq i < k \cdot F_i \Rightarrow F_{i+1} \tag{2}$$

$$\forall 0 \leq i \leq k \cdot F_i \Rightarrow P \tag{3}$$

$$\forall 0 \leq i < k \cdot F_i \wedge T \Rightarrow F'_{i+1} \tag{4}$$

Until we eventually reach a fixed point.

Does this work for software?
Yes; simply replace SAT solver with SMT solver, but:

- ► State space much larger or infinite
- Will painstakingly eliminate single/small sets of states
- ► High risk of divergence

Part II: Predicate Abstraction

Predicate Abstraction: A Form of Abstract Interpretation

- Map concrete states to abstract states
- Reduce size of state space
 - Obtain finite representation

Abstract Domain: Set of Predicates

Map concrete states to abstract states by evaluating predicates:

- ► Concrete variable: i
- ▶ Predicates: $b_1 \equiv (i \neq 0)$ and $b_2 \equiv (i \leq 10)$

Predicate Abstraction: Explicit Abstract Transition Relation

Example: Abstraction of i++ and $b_1 = (i \neq 0)$

► We have to account for all possibilities!

Predicate Abstraction: Explicit Abstract Transition Relation

Example: Abstraction of i++ and $b_1 = (i \neq 0)$

- We have to account for all possibilities!
 - Even if there is just a single transition from $i \neq 0$ to i = 0!

Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation

- requires many calls to SMT solver
- ► is computationally expensive

Construction of explicit abstract transition relation

- requires many calls to SMT solver
- ▶ is computationally expensive
- contrary to the spirit of IC3 (focus on single states)

Construction of explicit abstract transition relation

- requires many calls to SMT solver
- ▶ is computationally expensive
- contrary to the spirit of IC3 (focus on single states)

Abstraction of single states is computationally cheap!

▶ Predicates: $b_1 \equiv (i \neq 0), b_2 \equiv (i \leq 10)$

- ▶ $F_0, F_1, ... F_k$: CNF over *predicates*
- ► Transition relation *T*: program as SMT formula

- ▶ F_0 , F_1 , ... F_k : CNF over *predicates*
- ► Transition relation *T*: program as SMT formula
- ► state s: concrete predecessor of bad state

- ▶ $F_0, F_1, ... F_k$: CNF over *predicates*
- ► Transition relation *T*: program as SMT formula
- ▶ state s: concrete predecessor of bad state

Check consecution for s:

$$F_1 \wedge \neg s \wedge T \Rightarrow \neg s'$$

- ▶ F_0 , F_1 , ... F_k : CNF over *predicates*
- ▶ Transition relation T: program as SMT formula
- ▶ state s: concrete predecessor of bad state

Check consecution for s:

$$F_1 \wedge \neg s \wedge T \Rightarrow \neg s'$$

If s not relative inductive, proceed with predecessor t

- ▶ $F_0, F_1, ... F_k$: CNF over *predicates*
- ► Transition relation *T*: program as SMT formula
- state s: concrete predecessor of bad state Consecution:

- ▶ $F_0, F_1, ... F_k$: CNF over *predicates*
- ▶ Transition relation T: program as SMT formula
- ► state s: concrete predecessor of bad state

Abstract Consecution:

- ▶ $F_0, F_1, ... F_k$: CNF over *predicates*
- ▶ Transition relation T: program as SMT formula
- ► state s: concrete predecessor of bad state

Abstract Consecution:

- ▶ $F_0, F_1, ... F_k$: CNF over *predicates*
- ► Transition relation *T*: program as SMT formula
- ▶ state s: concrete predecessor of bad state

Check *abstract* consecution (instead of concrete):

$$F_1 \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{s}'$$

- ▶ F_0 , F_1 , ... F_k : CNF over *predicates*
- ▶ Transition relation T: program as SMT formula
- ► state s: concrete predecessor of bad state

Check abstract consecution (instead of concrete):

$$F_1 \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{s}'$$

Replace F_2 with $F_2 \wedge c$, where clause $c \subseteq \neg \hat{s}$

Abstract Consecution Failure

- ▶ $F_0, F_1, ... F_k$: CNF over *predicates*
- ▶ Transition relation T: program as SMT formula
- ► state s: concrete predecessor of bad state

Check consecution:

$$F_1 \wedge \neg s \wedge T \Rightarrow \neg s'$$

But what if abstract consecution fails?

Abstract Consecution Failure

Then \hat{s} has a concrete predecessor $t \in F_1$ that does not lead to s in one step.

Abstract Consecution Failure

Then \hat{s} has a concrete predecessor $t \in F_1$ that does not lead to s in one step.

► Our abstract domain is too imprecise

Part III: Craig Interpolation

What is a Craig Interpolant?

Craig interpolant I for formula $A \Rightarrow B$:

- ► $A \Rightarrow I$ and $I \Rightarrow B$
- ▶ all non-logical symbols in *I* occur in *A* as well as in *B*

What is a Craig Interpolant?

Craig interpolant I for formula $A \Rightarrow B$:

- ► $A \Rightarrow I$ and $I \Rightarrow B$
- ▶ all non-logical symbols in *I* occur in *A* as well as in *B*

Can be provided by contemporary SMT solvers for many theories

- 1. Compute interpolant R'
 - $ightharpoonup F_1 \wedge \neg s \wedge T \Rightarrow R'$
 - ► R' ⇒ ¬s'

- 1. Compute interpolant R'
 - ► $F_1 \land \neg s \land T \Rightarrow R'$
 - $ightharpoonup R' \Rightarrow \neg s'$
- 2. Add $\neg R$ to the abstract domain
 - ▶ Note: $s \Rightarrow \neg R$, therefore $\hat{s} \land \neg R$ is new abstraction of s

- 1. Compute interpolant R'
 - $ightharpoonup F_1 \land \neg s \land T \Rightarrow R'$
 - R' ⇒ ¬s'
- 2. Add $\neg R$ to the abstract domain
 - ▶ Note: $s \Rightarrow \neg R$, therefore $\hat{s} \land \neg R$ is new abstraction of s

$$F_{1} \wedge (\neg \hat{s} \vee R) \wedge T \Rightarrow (\neg \hat{s'} \vee R') \checkmark$$

$$F_{1} \wedge \neg s \wedge T \Rightarrow \neg s' \checkmark$$

$$A$$

- 1. Compute interpolant R'
 - $ightharpoonup F_1 \land \neg s \land T \Rightarrow R'$
 - R' ⇒ ¬s'
- 2. Add $\neg R$ to the abstract domain
 - ▶ Note: $s \Rightarrow \neg R$, therefore $\hat{s} \land \neg R$ is new abstraction of s

Refinement IC3 Style

Refinement via Craig Interpolation

- ► without unrolling! (unlike most other SMC approaches)
- therefore extremely light-weight

Refinement IC3 Style

Refinement via Craig Interpolation

- without unrolling! (unlike most other SMC approaches)
- therefore extremely light-weight

Also: Refinement can be delayed!

Spurious state may be eliminated later without refinement

Conclusion: IC3 + Predicate Abstraction + Interpolation

Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:

- ▶ on INVGEN, DAGGER, "Beautiful Interpolants" benchmarks
 - using mostly linear arithmetic
- solve substantially more problems than CPAChecker
 - details in our CAV'14 paper!
- delaying refinement pays off (evaluated several strategies)

Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:

- ▶ on INVGEN, DAGGER, "Beautiful Interpolants" benchmarks
 - using mostly linear arithmetic
- solve substantially more problems than CPAChecker
 - ► details in our CAV'14 paper!
- delaying refinement pays off (evaluated several strategies)

Lessons learned:

- Induction focus of IC3 successfully transferred to software
- Predicate abstraction in this setting is *cheap*
- Refinement doesn't require unrolling!