
Proving Safety
with

Acceleration and Bounded Model Checking

Daniel Kröning, Matt Lewis,
Georg Weissenbacher



Challenges in Bounded Software Model Checking

1. High unwinding depth [FMSD’15]

2. Safety proofs [FM’15]



Challenges in Bounded Software Model Checking

1. High unwinding depth [FMSD’15]

2. Safety proofs [FM’15]



Challenges in Bounded Software Model Checking

void*

memset(buf, 0, len);

for(size t i=0; i<len; )

((char*)buf)[i]=c;

}



Challenges in Bounded Software Model Checking

void* memset(void *buf, int c, size t len){
for(size t i=0; i<len; i++)

((char*)buf)[i]=c;

}



Challenges in Bounded Software Model Checking

void* memset(void *buf, int c, size t len){
for(size t i=0; i<len; i++)

((char*)buf)[i]=c;

}



Acceleration

∃n ∈ N .

i++



Acceleration

∃n ∈ N .

i′ = i + 1



Acceleration

∃n ∈ N . i′ = i + n



Integers vs. Bit-Vectors

I Unsigned integers: 0 ≤ i <∞
I Unsigned bit-vectors: 0 ≤ i ≤ INT MAX

i = i + n for n > (INT MAX− i):

(arithmetic overflow)



Integers vs. Bit-Vectors

I Unsigned integers: 0 ≤ i <∞
I Unsigned bit-vectors: 0 ≤ i ≤ INT MAX

i = i + n for n > (INT MAX− i):

(arithmetic overflow)



Does it really matter in practice?

I Last week on sv-comp@googlegroups.com:

“
We use the property
CHECK(init(main()),

LTL(G ! signed integer overflow) )

[. . .]

The results are quite unpleasant, it seems there are
lots of overflow bugs in our benchmarks.
– Matthias Heizmann ”

sv-comp@googlegroups.com


Bounding Acceleration

I Solution: impose bound β on n:

n < β

(i)

(β depends on state)
I Example:

∃n ≤ (INT MAX− i)︸ ︷︷ ︸
β

(i)

. i′ = i+ n

I β can also be implicit



Bounding Acceleration

I Solution: impose bound β on n:

n < β

(i)

(β depends on state)

I Example:
∃n ≤ (INT MAX− i)︸ ︷︷ ︸

β

(i)

. i′ = i+ n

I β can also be implicit



Bounding Acceleration

I Solution: impose bound β on n:

n < β(i)

(β depends on state)
I Example:

∃n ≤ (INT MAX− i)︸ ︷︷ ︸
β(i)

. i′ = i+ n

I β can also be implicit



Accelerating Arrays: Content Matters

0 0 0 0 0 0 0 0

0 len-1

∃n ≤

β(i)︷ ︸︸ ︷
(INT MAX− i) . i′ = i+ n ∧ i = 0 ∧ i′ < len ∧(

∀j ≤ n . buf′[i+ j] = c ∧
∀j > n . buf′[i+ j] = buf[i+ j]

)

I Bound can be conservative⇒ Under-Approximation
I Details in our previous papers [CAV’13; FMSD’15]



Accelerating Arrays: Content Matters

0 0 0 0 0 0 0 0

0 len-1

∃n ≤

β(i)︷ ︸︸ ︷
(INT MAX− i) . i′ = i+ n ∧ i = 0 ∧ i′ < len ∧(

∀j ≤ n . buf′[i+ j] = c ∧
∀j > n . buf′[i+ j] = buf[i+ j]

)

I Bound can be conservative⇒ Under-Approximation
I Details in our previous papers [CAV’13; FMSD’15]



Instrumenting Programs

while (P) {
B;

}
u

v

[¬P]

π

B

while (P) {
if(*) {
π̃;
} else {
B;

}
}

u

v

[¬P]

π̃B



Instrumenting Programs

while (P) {
B;

}
u

v

[¬P]

π

B

while (P) {
if(*) {
π̃;
} else {
B;

}
}

u

v

[¬P]

π̃B



Reachability Diameter

unsigned N = 106;
unsigned x = N, y = 0;
while (x > 0) {

x = x− 1;
y = y+ 1;

}
assert (y 6= N);

Reachability diameter:
I Longest shortest path between two states
I From x = 106, y = 0 to x = 0, y = 106: 106 iterations



Reachability Diameter

unsigned N = 106;
unsigned x = N, y = 0;
while (x > 0) {

x = x− 1;
y = y+ 1;

}
assert (y 6= N);

Reachability diameter:
I Longest shortest path between two states
I From x = 106, y = 0 to x = 0, y = 106: 106 iterations



Reducing the Reachability Diameter using Acceleration

unsigned N = 106;
unsigned x = N, y = 0;
while (x > 0) {

x = x− 1;
y = y+ 1;

}
assert (y 6= N);

unsigned n= ∗;
assume (n> 0)

}
iteration counter

assume(x > 0);
}

feasibility check

x = x−n;
y = y+n;

}
acceleration

assume(¬underflow (x));
}

iteration bound



Reducing the Reachability Diameter using Acceleration

unsigned N = 106;
unsigned x = N, y = 0;
while (x > 0) {

x = x− 1;
y = y+ 1;

}
assert (y 6= N);

unsigned n= ∗;
assume (n> 0)

}
iteration counter

assume(x > 0);
}

feasibility check

x = x−n;
y = y+n;

}
acceleration

assume(¬underflow (x));
}

iteration bound



Fail Fast, Fail Early. . .

unsigned N = 106, x = N, y = 0;
while (x > 0) {

if (∗) {
n= ∗; assume (n> 0);
x = x−n; y = y+n;
assume (¬underflow (x));

} else {
x = x− 1; y = y+ 1;

}
}
assert (y 6= N);

I From x = 106, y = 0 to x = 0, y = 106: 1 iteration



Fail Fast, Fail Early. . .

u

v

[¬P]

π̃B

I Reduced reachability diameter
I Shorter paths to bugs!



Challenges in Bounded Software Model Checking

1. High unwinding depth [FMSD’15]

2. Safety proofs [FM’15]



Proving Safety

I Why not use interpolation-based model checking?

I Accelerated transition relation contains quantifiers
I Insurmountable challenge for current interpolation systems

I In some cases, BMC can actually prove safety!



Proving Safety

I Why not use interpolation-based model checking?
I Accelerated transition relation contains quantifiers
I Insurmountable challenge for current interpolation systems

I In some cases, BMC can actually prove safety!



Proving Safety

I Why not use interpolation-based model checking?
I Accelerated transition relation contains quantifiers
I Insurmountable challenge for current interpolation systems

I In some cases, BMC can actually prove safety!



Unwinding-Assertions

while (C) { B; }

if (C) {
B;

if (C) {
B;
if (C) {

B;

assert (¬C);

}
}
}
}

I Assertion holds if loop
cannot be unwound further!

I more generally: no more
feasible paths to extend

I Otherwise, there is a path
exceeding the bound k !



Unwinding-Assertions

while (C) { B; }

if (C) {
B;

if (C) {
B;
if (C) {

B;
assert (¬C);
}
}
}
}

I Assertion holds if loop
cannot be unwound further!

I more generally: no more
feasible paths to extend

I Otherwise, there is a path
exceeding the bound k !



Unwinding-Assertions

while (C) { B; }

if (C) {
B;

if (C) {
B;
if (C) {

B;
assert (¬C);
}
}
}
}

I Assertion holds if loop
cannot be unwound further!

I more generally: no more
feasible paths to extend

I Otherwise, there is a path
exceeding the bound k !



Unwinding-Assertions

while (C) { B; }

if (C) {
B;

if (C) {
B;
if (C) {

B;
assert (¬C);
}
}
}
}

I Assertion holds if loop
cannot be unwound further!

I more generally: no more
feasible paths to extend

I Otherwise, there is a path
exceeding the bound k !



Unwinding-Assertions and Accelerated Transitions

while (i ≤ googol) { i++; }

if (i ≤ googol) {
i++;

if (i ≤ googol) {
i++;

if (i ≤ googol) {
i++;

assert (i > googol);
}
}
}
}

I i=i+n subsumes i++

I Allows repeated and
redundant execution of
accelerated statement



Unwinding-Assertions and Accelerated Transitions

while (i ≤ googol) { i++; }

if (i ≤ googol) {
i=i+n1;

if (i ≤ googol) {
i=i+n2;

if (i ≤ googol) {
i=i+n3;

assert (i > googol);
}
}
}
}

I i=i+n subsumes i++

I Allows repeated and
redundant execution of
accelerated statement



Example: A Safe Program

unsigned N = ∗;
unsigned x = N, y = 0;
while (x > 0) {

x = x− 1;
y = y+ 1;

}
assert (y == N);



Unwinding Safe Program with Unwinding Assertion

N = ∗;
x = N, y = 0;
if (x > 0) {

x = x− 1; y = y+ 1;
if (x > 0) {

x = x− 1; y = y+ 1;
if (x > 0) {

x = x− 1;
y = y+ 1;
assert (x ≤ 0);

}
}

}
assert (y == N);



Accelerated Safe Program

unsigned N = ∗, x = N, y = 0;
while (x > 0) {

if (∗) {
n= ∗; assume (n> 0);
x = x−n; y = y+n;
assume (¬underflow (x));

} else {
x = x− 1; y = y+ 1;

}
}
assert (y == N);



Unwinding-Assertions and Accelerated Transitions

n = 1

N = 106



Unwinding-Assertions and Accelerated Transitions

n = 1

N = 106



Unwinding-Assertions and Accelerated Transitions

n = 1

N = 106



Unwinding-Assertions and Accelerated Transitions

n = 1

N = 106



Solution: Disallow Redundant Executions

u

v

[¬P]

π̃B
I Never take π̃ twice in a row!



Instrumenting Programs: Revisited

v0

x = x+ 1



Instrumenting Programs: Revisited

I Consider paths with and without overflow

v0 u

x = x+ 1

[overflow(x)]

[¬overflow(x)]



Instrumenting Programs: Revisited

I Accelerate overflow-free path only

v0 u

x = x+ 1

[overflow(x)]

[¬overflow(x)]

π̃

π
def
= x = x+ 1; [¬overflow(x)]

π̃
def
= x = x+ ∗; [¬overflow(x)]



Instrumenting Programs: Revisited

I “Trace automaton” disallows paths
I that execute π̃ twice in a row
I that execute x = x + 1 without subsequent overflow

0

1 2
x = x+ 1
π̃ x = x+ 1

π̃ [¬overflow(x)]

[overflow(x)]



Instrumenting Programs: Revisited

I Instrument program:
I g ∈ {0, 1, 2} represents non-final states of trace automaton
I edges reaching final state are suppressed

v0 u
x = x+ 1

x = x+ 1

[g = 0]

[g = 1]

[overflow(x)]

g = 0

[g = 0]

g = 1

π̃
g = 2

g
=

2

[g = 2]



Instrumented Example (Simplified)

unsigned N = ∗, x = N, y = 0;
bool g = ∗;

1: while (x > 0) {
if (∗) {

assume (¬g);
2: n= ∗; x = x−n; y = y+n;

assume (¬underflow (x));
3: g = true;

} else {
x = x− 1; y = y+ 1;
assume (underflow (x));
g = false;

}
}

4: assert (y == N);



Experimental Results

I CBMC with Z3 as backend (required for quantifiers)
I SVCOMP’14 (loop category) safe benchmarks:

I 21/35 accelerated (current limitation: no nested loops)
I 14 proven correct, including unbounded loops

I SVCOMP’14 unsafe benchmarks:
I 18/32 accelerated
I 12 bugs found

I Significant speedup for unsafe crafted benchmarks (factor 6)

CBMC

CBMC
+

Acceleration

CBMC +
Acceleration +

Trace Automata

#B
en

ch
m

ar
ks

#C
or

re
ct

#B
en

ch
m

ar
ks

ac
ce

le
ra

te
d

#C
or

re
ct

#C
or

re
ct

SVCOMP safe 35 14 21 2 14
SVCOMP unsafe 32 20 18 11 12
Crafted safe 15 0 15 0 15
Crafted unsafe 14 0 14 14 14



The SUM ARRAYS SV-COMP Benchmark

unsigned M = ∗, i;
int a[M], b[M], c[M];

for (i = 0; i < M; i = i+ 1) {
c[i] = a[i] + b[i];

}

for (i = 0; i < M; i = i+ 1) {
assert (c[i] == a[i] + b[i]);

}

I Contains unbounded loops!
I Proven safe using CBMC in less than 2 seconds



Take Home Message

I (Under-approximating) Acceleration helps finding deeper bugs
I No fix-points for safety proofs (in some cases ;-))


