Proving Safety
with
Acceleration and Bounded Model Checking

Daniel Kréning, Matt Lewis,
Georg Weissenbacher

Challenges in Bounded Software Model Checking

1. High unwinding depth [FMSD’15]
2. Safety proofs [FM’15]

Challenges in Bounded Software Model Checking

1. High unwinding depth [FMSD’15]
2. Safety proofs [FM’15]

Challenges in Bounded Software Model Checking

memset (buf, 0, len);

Challenges in Bounded Software Model Checking

void* memset (void *buf, int c, size t len){
for(size_t i=0; i<len; i++)
((char*)buf) [i]l=c;

Challenges in Bounded Software Model Checking

void* memset (void *buf, int c, size t len){
for(size_t i=0; i<len; i++)
((char*)buf) [i]l=c;

Acceleration

i++

Acceleration

Acceleration

Integers vs. Bit-Vectors

» Unsigned integers: 0 < i < oo
» Unsigned bit-vectors: 0 < i < INT MAX

Integers vs. Bit-Vectors

» Unsigned integers: 0 < i < oo
» Unsigned bit-vectors: 0 < i < INT MAX

i =1+ nforn> (INTMAX — i):

(arithmetic overflow)

Does it really matter in practice?

» Last week on sv-comp@googlegroups. com:

C We use the property
CHECK (init (main()),
LTL(G ! signed_integer_overflow))

[..]

The results are quite unpleasant, it seems there are
lots of overflow bugs in our benchmarks. 7 7
— Matthias Heizmann

sv-comp@googlegroups.com

Bounding Acceleration

» Solution: impose bound 3 on n:

n<pg

Bounding Acceleration

» Solution: impose bound 3 on n:

n<pg

» Example:

In < (INTMAX — i) .i'=i+n
e
8

Bounding Acceleration

» Solution: impose bound 3 on n:

n < p(i)
(6 depends on state)
» Example:
In < (INTMAX — i) .i'=i+n
N——
B(1)

» [can also be implicit

Accelerating Arrays: Content Matters

0 len-1

oJo[olololo] ~ [o]0]

B(1)
———
In<(INTMAX—1i). i'=i4+nAi=0Ai'<len A

Vi<n.buf[i+jl=c A
Vj > n.buf’[i + j] = buf[i + j]

Accelerating Arrays: Content Matters

0 len-1

oJo[olololo] ~ [o]0]

B(i)
———
In<(INTMAX —i). i’=i4+nAi=0Ai'<len A

Vi<n.buf[i+jl=c A
Vj > n.buf’[i + j] = buf[i + j]

» Bound can be conservative = Under-Approximation
» Details in our previous papers [CAV’'13; FMSD’15]

Instrumenting Programs

while (P) {

Instrumenting Programs

while (P) { Whi;‘(e ()P{) {
) if (%
;
} else {
[-P] B:
}
}

Reachability Diameter

unsigned N = 106;

unsigned x = N,y = O;

while (x > 0) {
x=x—1;
y=y+1

}

assert (y # N);

Reachability Diameter

unsigned N = 105;

unsigned x =N,y = 0;

while (x > 0) {
x=x—1;
y=y+1

}

assert (y # N);

Reachability diameter:
» Longest shortest path between two states
» Fromx = 108,y = 0 to x = 0,y = 108: 10° iterations

Reducing the Reachability Diameter using Acceleration

unsigned N = 105;

unsigned x =N,y = 0;

while (x > 0) {
x=x—1;
y=y+1

}

assert (y # N);

Reducing the Reachability Diameter using Acceleration

unsigned N = 105;

unsigned x =N,y = 0;

while (x > 0) {
x=x—1;
y=y+1,

}

assert (y # N);

unsigned Nn= x;

iteration counter
assume (n> 0)
assume(x > 0); } feasibility check
X =X—0Nn, .
} acceleration
y=y+mn

assume(—underflow (x)); } iteration bound

Fail Fast, Fail Early...

unsigned N = 10% x =N,y = 0;
while (x > 0) {
£ (+) {
n= x; assume (N> 0);
X=x—N, y=y+n
assume (—underflow (x));
} else {
x=x—1,y=y+1,
}
}

assert (y # N);

» Fromx =108 y = 0to x = 0,y = 10°: 1 iteration

Fail Fast, Fail Early...

|
-p W)

» Reduced reachability diameter
T » Shorter paths to bugs!

Challenges in Bounded Software Model Checking

1. High unwinding depth [FMSD’15]
2. Safety proofs [FM’15]

Proving Safety

» Why not use interpolation-based model checking?

Proving Safety

» Why not use interpolation-based model checking?

» Accelerated transition relation contains quantifiers
» Insurmountable challenge for current interpolation systems

Proving Safety

» Why not use interpolation-based model checking?

» Accelerated transition relation contains quantifiers
» Insurmountable challenge for current interpolation systems

» In some cases, BMC can actually prove safety!

Unwinding-Assertions

while (C) { B; }

Unwinding-Assertions

while (C) { B; }
if (C) {
B;

" (BC) { » Assertion holds if loop
o cannot be unwound further!
if (C) {

B;
assert (—C);
}
¥
¥

Unwinding-Assertions

while (C) { B; }
if (C) {
B;
i (C_) { » Assertion holds if loop
!3’ cannot be unwound further!
if (C.) { » more generally: no more
B; feasible paths to extend
assert (—C);
}
¥
¥

Unwinding-Assertions

while (C) { B; }
if (C) {
B;
i (BC) { » Assertion holds if loop
o cannot be unwound further!
if (C.) { » more generally: no more
B; feasible paths to extend
} assert (=C); » Otherwise, there is a path
) exceeding the bound k!
}

Unwinding-Assertions and Accelerated Transitions

while (i < googol) { i++; }

if (i < googol) {
i++;
if (i < googol) {
i++;
if (i < googol){
i++;
assert (i > googol);
}
}
}

}

Unwinding-Assertions and Accelerated Transitions

while (i < googol) { i++; }

if (i < googol) {

i=i+nyg;
if (i < googol) {
.1=1.+n2; » i=i+nsubsumes i++
if (i < googol){
i=itns; » Allows repeated and

assert (i > googol); redundant execution of
} accelerated statement

}
}
}

Example: A Safe Program

unsigned N = ;

unsigned x =N,y = 0;

while (x > 0) {
x=x-—1;
y=y+1

}

assert (y ==N);

Unwinding Safe Program with Unwinding Assertion

N = %;
x=N,y=0;
if (x> 0){
x=x—-1,y=y+1;
if (x >0){
x=x—-1,y=y+1;
if (x> 0) {
x=x-—1;
y=y+1
assert (x < 0);
}
}
1

assert (y == N);

Accelerated Safe Program

unsigned N = x,x =N,y = 0;
while (x > 0) {
if (+) {
n=x; assume (N> 0);
X=x—N y=y+n
assume (—underflow (x));
} else {
x=x—1,y=y+1,
}

}

assert (y == N);

Unwinding-Assertions and Accelerated Transitions

Unwinding-Assertions and Accelerated Transitions

Unwinding-Assertions and Accelerated Transitions

Unwinding-Assertions and Accelerated Transitions

=
=3

Solution: Disallow Redundant Executions

|
-p W)

- » Never take 7 twice in a row!

Instrumenting Programs: Revisited

x=x+1

Instrumenting Programs: Revisited

» Consider paths with and without overflow

x=x+1

@ [overflow

[-overflow(x)]

(

Instrumenting Programs: Revisited

» Accelerate overflow-free path only

s S + 1; [-overflow(x)]
7 ¥ x4 [-overflow(x)]
x=x+1

[overflow(x)]

[—overflow(x)]

Instrumenting Programs: Revisited

» “Trace automaton” disallows paths

» that execute 7 twice in a row
» that execute x = x + 1 without subsequent overflow

[overflow(x)]

Instrumenting Programs: Revisited

» Instrument program:

» g € {0,1,2} represents non-final states of trace automaton
» edges reaching final state are suppressed

Instrumented Example (Simplified)

unsigned N = *x,x =N,y = 0;

bool g = x;
1: while (x > 0) {
if (%) {
assume (—g);
2: n=sx*, x=x—nN;, y=y+n;
assume (—underflow (x));
3: g = true;
} else {

x=x—-1,y=y+1;
assume (underflow (x));
g = false;
}
}

4: assert (y ==N);

Experimental Results

» CBMC with Z3 as backend (required for quantifiers)
» SVCOMP’14 (loop category) safe benchmarks:
» 21/35 accelerated (current limitation: no nested loops)
» 14 proven correct, including unbounded loops
» SVCOMP’14 unsafe benchmarks:
» 18/32 accelerated
» 12 bugs found

» Significant speedup for unsafe crafted benchmarks (factor 6)

CBMC CBMC +
+ Acceleration +
CBMC Acceleration Trace Automata
2 23
E Ex
5 ¢ |82 8 8
c = c o fe ey
[0} Q Q3 Q o
m O 0 g (@] O
** * ** * *
SVCOMP safe 35 14 21 2 14
SVCOMP unsafe | 32 20 18 11 12
Crafted safe 15 0 15 0 15
Crafted unsafe 14 0 14 14 14

The suUM_ARRAYS SV-COMP Benchmark

unsigned M = %, i;

int a[M], b[M], c[M];
for(i=0;i<M; i=1i+1){
} c[i] = a[i] + b[i];

for(i=0;i<M; i=1i+1){
} assert (c[i] == a[i] + b[i]);

» Contains unbounded loops!
» Proven safe using CBMC in less than 2 seconds

Take Home Message

» (Under-approximating) Acceleration helps finding deeper bugs
» No fix-points for safety proofs (in some cases ;-))

