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184.741 Programm- und Systemverifikation
(comments from 2013-2015; 90 bachelor students)

Die Vorträge von Prof. Weissenbacher
waren großartig. Großes Kompliment an
Sie. Ich habe bisher keinen so an-
genehmen Vortragenden erlebt. Es war
immer spannend und interessant.

Ich hätte mir im Vorhinein nicht gedacht,
dass es so interessant wird, aber ich war
sehr positiv überrascht.

sehr gute Folien und toller
Vortragsstil (besonders Georg
Weißenbacher)

die netten und kompetenten
Vorträge der Vortragenden
Georg Weissenbacher und Josef
Widder; der makellose englische
Akzent des Vortragenden Georg
Weissenbacher (wahrlich eine
Wohltat für die Ohren)

. . . war die Lehrveranstaltung, ihre Organisation be-
treffend, wirklich vorbildhaft. Vor allem die Er-
reichbarkeit des Lehrveranstaltungsteams (TISS-
Forum) war überdurchschnittlich gut.
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2014 FWF Doctoral College
“Logical Methods in Computer Science”
Co-author of proposal, board member
FWF Overall Funding: 2.8m (15 PhD positions)

2015 RiSE Research Network
Principal Investigator
FWF Overall Funding: 3.6m, FORSYTE share: 625k

2016 Microsoft European PhD Scholarship
Funding: 110k
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Academic Service

Event organization:

LOVE’16

spring school

Informatiktag’15 FMCAD Student SAT/SMT Summer Interpolation

Forum ’15 School ’14 Workshop ’13-15

PC membership:
Conference co-chair: FMCAD ’17 (TU Wien), CAV ’18

Conference PC: CAV ’13-’15; ICCAD ’15-’16; FMCAD ’13-’15;

Workshop PC: DUHDe ’15; CREST ’15; SMT ’14; SV-COMP ’12, . . .
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What happened since I arrived at TU Wien. . .

Toyota Prius
(New York Times, Feb. 12, 2014)

Toyota Motor is recalling all of
the 1.9 million newest-generation
Prius vehicles it has sold world-
wide because of a programming
error . . .

Heathrow Airport
(The Guardian, December 2014)

An unprecedented systems fail-
ure was responsible for the air
traffic control chaos [. . . ] “In this
instance a transition between the
two states caused a failure in the
system which has not been seen
before,” . . .
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Lufthansa Airbus A321
(Spiegel, March 20, 2015)

Beinahe wäre ein Airbus A321
der Lufthansa mit 109 Pas-
sagieren auf dem Flug von Bil-
bao nach München abgestürzt
– irregeleitete Bordcomputer hat-
ten die Kontrolle übernommen.

Boeing 787 Dreamliner
(The Guardian, May 2015)

The US air safety authority has
issued a warning and mainte-
nance order over a software bug
that causes a complete electric
shutdown of Boeing’s 787 . . .
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Heartbleed Bug
(CNN, April 9, 2014)

A major online security vulnera-
bility dubbed “Heartbleed” could
put your personal information at
risk, including passwords, credit
card information and e-mails.

in 184.741 (P&SV)

Rowhammer Bug
(InfoWorld, March 9, 2015)

. . . with certain varieties of DRAM
an attacker can create privilege
escalations by simply repeatedly
accessing a given row of mem-
ory.
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Software and integrated circuits are everywhere

106 lines of code 70 micro-processors
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Huge Effort Spent on V&V

Software verification Hardware validation
50% of development time 35% of development time

[Myers 1979–2012] [Abramovici 2006]
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Establishing correctness

Finding bugs

Locating faults


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Automated Verification
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Scalable Software
Model Checking

[CAV’14]

Efficient Detection
of “Deep” Bugs

[FMSD’15] (CAV’13),
[FM’15] Fault Localization

in Post-Silicon
[ICCAD’14]

My Habilitation

Logical foundations
[JAR’16] (single auth. SAT’12)

State-of-the-Art
[Proc. IEEE’15]
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Model Checking 101
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︸ ︷︷ ︸
Logic
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︸ ︷︷ ︸
T

(transitions)
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T

s s′

〈pc 7→ 2, x 7→ 1〉 〈pc 7→ 3, x 7→ 2〉

T

(T : operational semantics of program or circuit)

The Model Checking problem:

I

“starting states”

¬P

“bad states”

T T

T

T
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State Space Explosion
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Why explore states one by one?

S′ = T (S) def
= {s′ |T (s, s′) ∧ s ∈ S}
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I R1 R2 Rk

T T T

¬P
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How do we efficiently represent sets of states?

Logical Formulas!

F (

V

)

︸︷︷︸
program variables,
registers, latches,

signals, . . .
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How do we efficiently represent sets of states?

Logical Formulas!

(x > 0) represents {s | s(x) > 0}

21



And what about transitions?

Binary Relations!

T (V , V ′ )︸︷︷︸
target states
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And what about transitions?

Binary Relations!

(x ′ = x + 1) represents {〈s, s′〉 | s′(x) = s(x) + 1}
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And what about transitions?

Binary Relations!

(x ′ = x + 1)︸ ︷︷ ︸
x++

represents {〈s, s′〉 | s′(x) = s(x) + 1}
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R

R′

T

R′

T−1

R′(V ′) def
= ∃V .

R

(V ) ∧ T (V ,V ′)
R(V )

def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)
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R R′

T

R′

T−1

R′(V ′) def
= ∃V . R(V ) ∧ T (V ,V ′)

R(V )
def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)
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R R′

T

R′

T−1

R′(V ′) def
= ∃V . R(V ) ∧ T (V ,V ′)

R(V )
def
= ∃V ′ . T (V ,V ′) ∧ R′(V ′)

23



︸ ︷︷ ︸
T

(transition relation)

24



1: if (x>0) {
2: x = x - 1;

3: } else {
4: x = x + 1;

5: }︸ ︷︷ ︸
T

(transition relation)
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1: if (x>0) {
2: x = x - 1;

3: } else {
4: x = x + 1;

5: }

D Q

R

zy

x

︸ ︷︷ ︸
T

(transition relation)
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1: if (x>0)

2: x = x - 1;

3: else

4: x = x + 1;

5: assert (x≥0);︸ ︷︷ ︸
T (〈pc, x〉, 〈pc′, x ′〉)

def
=

∧

(pc = 1) ∧ (x > 0) ⇒ (pc′ = 2) ∧ (x ′ = x)
(pc = 1) ∧ ¬(x > 0) ⇒ (pc′ = 4) ∧ (x ′ = x)
(pc = 2) ⇒ (pc′ = 5) ∧ (x ′ = x − 1)
(pc = 4) ⇒ (pc′ = 5) ∧ (x ′ = x + 1)



P(V )
def
= (pc = 5)⇒ (x ≥ 0)

I(V )
def
= (pc = 1)

25
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I R1 R2 Rk

T T T

¬P

I(V0) ∧

(
k∧

i=1

T (Vi−1,Vi)

)
∧ ¬P(Vk)

“Can property P be violated in k steps?”
(here, property = assertion over variables)
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T 〈〉
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T 〈〉

28



T 〈4〉

28



T 〈n〉

28



∃n ∈ N .

i′ = i + 1

T 〈n〉 is accelerated version of T :

I ¬P

∃n.T 〈n〉

computable if T 〈n〉 is Presburger-definable (for instance)
but not computable in general
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I R1 R2 Rk

T T T

R≤k =
k⋃

i=0

Ri (with R0
def
= I)

“Fixed point” if T cannot escape R≤k
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R≤k

I
¬P

T

System is safe if:

R≤k contains I

T cannot leave R≤k

R≤k does not overlap with ¬P

R≤k challenging to find for concrete industrial-size systems
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abstract
concrete
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abstract
concrete
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abstract
concrete
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abstract
less abstract
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refine

refine
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Counterexample-guided
Abstraction Refinement

(CEGAR)
Check Abstraction

Check FeasibilityRefine

failure trace

infeasible

abstract

safe

counter-
example

35



Model Checking in Practice
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︸ ︷︷ ︸
T
↓

Satisfiability Solver
(like linear programming, but for first-order/propositional logic)
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Satisfiability Solvers

PicoSAT Boolector Lingeling

Satisfiability of First-Order/Propositional Logic

Solve large instances with hundreds of thousands of variables

Cornerstone of modern-day formal verification
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Automated Verification in Industry

Software Hardware

SAGE
Sixth Sense
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What we want to verify:

What we can verify:

My research: Push the Boundary
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Scalable Software
Model Checking

[CAV’14]

Efficient Detection
of “Deep” Bugs

[FMSD’15] (CAV’13),
[FM’15] Fault Localization

in Post-Silicon
[ICCAD’14]

My Habilitation

Logical foundations
[JAR’16] (single auth. SAT’12)

State-of-the-Art
[Proc. IEEE’15]
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Logical foundations

Schlaipfer, Weissenbacher:
Labelled Interpolation Systems for Hyper-
Resolution, Clausal, and Local Proofs.
Journal of Automated Reasoning ’16

State-of-the-Art

Vizel, Weissenbacher, Malik:
Boolean Satisfiability Solvers and Their
Applications in Model Checking.
Proceedings of the IEEE ’15
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Interpolation-based Hardware Model Checking [Proc. IEEE’15]

I R1 R2 Rk

T T T

¬Pk

Exact reachability retards convergence

Over-approximate Ri instead?
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Craig’s Interpolation Theorem

A B

C “simpler” than A

if (A(V ,V ′) ∧ B(V ′,V ′′) |= ⊥)
⇓

∃C(V ′)

s.t.

A(V ,V ′) |= C(V ′)

B(V ′,V ′′) |= ¬C(V ′)
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Interpolation-based Hardware Model Checking [Proc. IEEE’15]

I R

T

¬P

︸ ︷︷ ︸
I(V )∧T (V ,V ′) ¬P(V ′)

I(V ) ∧ T (V ,V ′)︸ ︷︷ ︸
A(V ,V ′)

¬P(V ′)︸ ︷︷ ︸
B(V ′)

↓
C(V ′)
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Generalized Interpolation [Journal of Automated Reasoning’16]

Interpolants from Propositional/First-Order Refutation Proofs
A
x0

A
x0 x2

x2
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B
x1 x2
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A
x0 x2
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B
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�

�
x1 1 0

Systematic variation of logical strength and structure

B

Most general (propositional) interpolation algorithm to date
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Scalable Software
Model Checking

Birgmeier, Bradley, Weissenbacher:
Counterexample to Induction-Guided Abstraction-Refinement (CTIGAR).
Conference on Computer Aided Verification (CAV), 2014

Based on IC3, the leading hardware model checking algorithm
state space in software is much larger or∞

therefore, we need abstraction
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Abstraction/Refinement for IC3 [Computer Aided Verification’14]

R<k Rk

T

¬Pk

IC3 refines approximations by eliminating unreachable states

in software, concrete-state refinement strategy not efficient
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Abstraction/Refinement for IC3 [Computer Aided Verification’14]

Rk−1 Rk

T

¬Pk

Abstraction may introduce new predecessor
thwarts proof that bad state is unreachable

CEGAR refinement requires full counterexample trace
in IC3, only single step available!

Our approach combines CEGAR and IC3
single-step refinement based on interpolation
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Abstraction/Refinement for IC3 [Computer Aided Verification’14]

Our prototype tool successfully verifies more programs than
winner of the 2014 Software Verification Competition

New implementation for parallel software competed in

Software Verification Competition ’16

4th in parallel software category
first 3 tools do bug-finding exclusively
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Efficient Detection
of “Deep” Bugs

Daniel Kroening, Matt Lewis, Georg Weissenbacher:
Under-approximating Loops in C Programs for Fast Counterexample Detection.
Journal for Formal Methods in Systems Design ’15

Daniel Kroening, Matt Lewis, Georg Weissenbacher:
Proving Safety with Trace Automata and Bounded Model Checking.
Conference on Formal Methods ’15
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void*

memset(buf, 0, len);

for(size t i=0; i<len; )

((char*)buf)[i]=c;

return buf;

}
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void* memset(void *buf, int c, size t len){
for(size t i=0; i<len; i++)

((char*)buf)[i]=c;

return buf;

}
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size t i: 0 ≤ i ≤ INT MAX

but “standard” acceleration assumes i ∈ N!

i = i + n for n > (INT MAX− i):

(arithmetic overflow)

Off-the-shelf acceleration can
miss bugs
result in false positives
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Off-the-shelf acceleration does not support arrays

but content of buf matters in memset(buf, 0, len):

0 0 0 0 0 0 0 0

0 len-1
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Acceleration for Bit-vectors & Arrays [FMSD’15]

We support bit-vectors

∃n ≤ (INT MAX− i) . i′ = i+ n

as well as arrays(
∀j ≤ n . buf′[i+ j] = c ∧
∀j > n . buf′[i+ j] = buf[i+ j]

)

Detection of deep bugs (e.g., buffer-overflows) in C programs
on real GNU systems programs (e.g., Aeon web-server)
runtime does not depend on number of loop iterations

t

Buffer size
25 50 75 100 150 200 300 512

0
20
40
60
80

100
120
140
160
180
200
220
240
260

IMPULSE

SATABS ’06
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Acceleration for Proving Correctness [FM’15]

BMC checks whether “no more steps” feasible

Clashes with acceleration; there are always additional steps:

〈∞〉
◦

〈∞〉
=

〈∞〉

we use automata to eliminate “redundant” acceleration steps

v0 u
x := x+ 1

x := x+ 1

[g = 0]

[g = 1]

[overflow(x)]

g := 0

[g = 0]

g := 1

T 〈∞〉
g := 2

g
:=

2

[g = 2]

“Look ma, no fixpoints!”
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Hardware
(Integrated Circuits)

57



Fault Localization
in Post-Silicon

Zhu, Weissenbacher, Malik:
Silicon fault diagnosis using sequence interpolation with backbones.
International Conference on Computer-Aided Design ’14
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HDL Design
(VHDL, Verilog)

Logic Net-List

RTL synthesis


pre-silicon

Chip prototype

physical design


post-silicon
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1: always@(posedge clk)

2: if (ue[1]) begin
3: IP = IP + len;

4: if (btaken)

5: IP = IP + dist;

6: end

D Q

R

zy

x


pre-silicon


post-silicon

60
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2: if (ue[1]) begin
3: IP = IP + len;

4: if (btaken)

5: IP = IP + dist;

6: end

D Q

R

zy

x



hardware
model

checking
[Proc. IEEE’15]


testing
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Verified “Golden”
Hardware Model
(transition relation T )

vs.

(silicon prototype)
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Electrical Faults

Manufacturing process can introduce

stuck-at faults

bridging faults

transistor faults

. . .
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Post-Silicon Fault Localization with Interpolants [ICCAD’14]

crashes in state f

but T does not reflect electrical faults

I R1 R2 Rk

T T T

f
7
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Post-Silicon Fault Localization with Interpolants [ICCAD’14]

Verification task:

Which gate in which execution cycle causes the discrepancy?

Challenge:

On-chip at-speed executions can be extremely long

States in integrated circuit not fully observable

Solution:

Use interpolation to analyze windows of cycles individually
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Verification task:
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Challenge:

On-chip at-speed executions can be extremely long

States in integrated circuit not fully observable

Solution:

Use interpolation to analyze windows of cycles individually

cycle 105 + 2 cycle 105 + 3
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Post-Silicon Fault Localization with Interpolants [ICCAD’14]

Scalable fault diagnosis for post-silicon

Evaluated on micro-controller designs 68HC05 and 8051
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Scalable Software
Model Checking

[CAV’14]

Efficient Detection
of “Deep” Bugs

[FMSD’15] (CAV’13),
[FM’15] Fault Localization

in Post-Silicon
[ICCAD’14]

Thank You

Logical foundations
[JAR’16] (single auth. SAT’12)

State-of-the-Art
[Proc. IEEE’15]
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